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Abstract

The structure equations for a two-dimensional manifold are introduced and two results
based on the Codazzi equations pertinent to the study of isometric surfaces are obtained
from them. Important theorems pertaining to isometric surfaces are stated and a theo-
rem due to Bonnet is obtained. A transformation for the connection forms is developed.
It is proved that the angle of deformation must be harmonic, and that the differentials of
many of the important variables generate a closed differential ideal. This implies that a
coordinate system exists in which many of the variables satisfy particular ordinary
differential equations, and these results can be used to characterize Bonnet surfaces.

Keywords: manifold, differential form, closed, isometric, differential equation, Bonnet
surface

1. Introduction

Bonnet surfaces in three-dimensional Euclidean space have been of great interest for a number

of reasons as a type of surface [1, 2] for a long time. Bonnet surfaces are of nonconstant mean

curvature that admits infinitely many nontrivial and geometrically distinct isometries, which

preserve the mean curvature function. Nontrivial isometries are ones that do not extend to

isometries of the whole space E
3. Considerable interest has resulted from the fact that the

differential equations that describe the Gauss equations are classified by the type of related

Painlevé equations they correspond to and they are integrated in terms of certain

hypergeometric transcendents [3–5]. Here the approach first given by Chern [6] to Bonnet

surfaces is considered. The development is accessible with many new proofs given. The main

intention is to end by deriving an intrinsic characterization of these surfaces which indicates
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they are analytic. Moreover, it is shown that a type of Lax pair can be given for these surfaces

and integrated. Several of the more important functions such as the mean curvature are seen to

satisfy nontrivial ordinary differential equations.

Quite a lot is known about these surfaces. With many results the analysis is local and takes

place under the assumptions that the surfaces contain no umbilic points and no critical points

of the mean curvature function. The approach here allows the elimination of many assump-

tions and it is found the results are not too different from the known local ones. The statements

and proofs have been given in great detail in order to help illustrate and display the intercon-

nectedness of the ideas and results involved.

To establish some information about what is known, consider an oriented, connected, smooth

open surface M in E3 with nonconstant mean curvature function H. Moreover, suppose M

admits infinitely many nontrivial and geometrically distinct isometries preserving H. Suppose

U is the set of umbilic points of M and V the set of critical points of H. Many global facts are

known with regard to U;V and H, and a few will now be mentioned. The set U consists of

isolated points, even if there exists only one nontrivial isometry preserving the mean curva-

ture, moreover,U⊂V [7, 8]. Interestingly, there is no point in V−U at which all order derivatives

of H are zero, and V cannot contain any curve segment. If the function by which a nontrivial

isometry preserving the mean curvature rotates the principal frame is considered, as when

there are infinitely many isometries, this function is a global function on M continuously

defined [9–11]. As first noted by Chern [6], this function is harmonic. The analysis will begin

by formulating the structure equations for two-dimensional manifolds.

2. Structure equations

Over M, there exists a well-defined field of orthonormal frames, which is written as x, e1; e2; e3
such that x∈M, e3 is the unit normal at x, and e1; e2 are along principal directions [12]. The

fundamental equations for M have the form

dx ¼ ω1e1 þ ω2 e2; de1 ¼ ω12e2 þ ω13e3; de2 ¼ −ω12e1 þ ω23e3; de3 ¼ −ω13e1−ω23e2: (1)

Differentiating each of these equations in turn, results in a large system of equations for the

exterior derivatives of the ωi and ωij, as well as a final equation which relates some of the forms

[13]. This choice of frame and Cartan's lemma allows for the introduction of the two principal

curvatures which are denoted by a and c at x by writing

ω12 ¼ hω1 þ kω2; ω13 ¼ aω1; ω23 ¼ cω2: (2)

Suppose that a > c in the following. The mean curvature of M is denoted by H and the

Gaussian curvature by K. They are related to a and c as follows

H ¼
1

2
ðaþ cÞ; K ¼ a � c: (3)

The forms which appear in Eq. (1) satisfy the fundamental structure equations which are

summarized here [14],
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dω1 ¼ ω12∧ω2; dω2 ¼ ω1∧ω12

dω13 ¼ ω12∧ω23 dω23 ¼ ω13∧ω12;

dω12 ¼ ac ω2∧ω1 ¼ −K ω1∧ω2:

(4)

The second pair of equations of (4) is referred to as the Codazzi equation and the last equation

is the Gauss equation.

Exterior differentiation of the two Codazzi equations yields

ðda−ða−cÞhω2Þ∧ω1 ¼ 0; ðdc−ða−cÞkω1Þ∧ω2 ¼ 0: (5)

Cartan's lemma can be applied to the equations in (5). Thus, there exist two functions u and v

such that

1

a−c
da−hω2 ¼ ðu−kÞω1;

1

a−c
dc−kω1 ¼ ðv−hÞω2: (6)

Subtracting the pair of equations in (6) gives an expression for dlogða−cÞ

dlogða−cÞ ¼ ðu−2kÞ ω1−ðv−2hÞ ω2: (7)

Define the variable J to be

J ¼
1

2
ða−cÞ > 0: (8)

It will appear frequently in what follows. Equation (7) then takes the form

dlogJ ¼ ðu−2kÞω1−ðv−2hÞω2: (9)

The ωi constitute a linearly independent set. Two related coframes called ϑi and αi can be

defined in terms of the ωi and the functions u and v as follows,

ϑ1 ¼ uω1 þ vω2; ϑ2 ¼ −vω1 þ uω2;

α1 ¼ uω1−vω2; α2 ¼ vω1 þ uω2:
(10)

These relations imply that ϑ1 ¼ 0 is tangent to the level curves specified by H equals constant

and α1 ¼ 0 is its symmetry with respect to the principal directions.

Squaring both sides of the relation 2H ¼ aþ c and subtracting the relation 4K ¼ 4ac yields

4ðH2
−KÞ ¼ ða−cÞ2. The Hodge operator, denoted by �, will play an important role throughout.

It produces the following result on the basis forms ωi,
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�ω1 ¼ ω2; �ω2 ¼ −ω1; �2 ¼ −1: (11)

Moreover, adding the expressions for da and dc given in Eq. (6), there results

1

a−c
ðdaþ dcÞ ¼ ðu−kÞω1 þ hω2 þ ðv−kÞω2 þ kω1 ¼ uω1 þ vω2 ¼ ϑ1: (12)

Finally, note that

α1 þ 2 � ω12 ¼ uω1−vω2 þ 2 � ðhω1 þ kω2Þ ¼ ðu−2kÞω1−ðv−2hÞω2 ¼ dlogJ: (13)

Therefore, the Codazzi equations (12) and (13) can be summarized using the definitions of H

and J as

dH ¼ Jϑ1; dlogJ ¼ α1 þ 2 � ω12:
(14)

3. A theorem of Bonnet

Suppose that M� is a surface which is isometric to M such that the principal curvatures are

preserved [10–12]. Denote all quantities which pertain to M� with the same symbols but with

asterisks, as for example

a� ¼ a; c� ¼ c:

The same notation will be applied to the variables and forms which pertain to M and M�.

When M and M� are isometric, the forms ωi are related to the ω�
i by the following transforma-

tion

ω
�
1 ¼ cos τ ω1− sin τ ω2; ω

�
2 ¼ sin τ ω1 þ cos τ ω2: (15)

Theorem 3.1 Under the transformation of coframe given by Eq. (15), the associated connection

forms are related by

ω
�
12 ¼ ω12−dτ: (16)

Proof: Exterior differentiation of ω�
1 produces

dω�
1 ¼ − sin τ dτ∧ω1 þ cos τ dω1− cos τ dτ∧ω2− sin τ dω2

¼ dτ∧ð− sin τω1− cos τω2Þ þ cos τ ω12∧ω2− sin τω1∧ω12 ¼ ð−dτþ ω12Þ∧ω
�
2:

Similarly, differentiating ω
�
2 gives

dω�
2 ¼ cos τ∧ω1 þ sin τ dω1− sin τ dτ∧ω2 þ cos τ dω2

¼ dτ∧ð cos τω1− sin τω2Þ þ sin τω12∧ω2 þ cos τω1∧ω12 ¼ ω
�
1∧ð−dτþ ω12Þ:
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There is a very important result that can be developed at this point. In the case that a ¼ a� and

c ¼ c�, the Codazzi equations imply that

α1 þ 2 � ω12 ¼ dlogða−cÞ ¼ dlogða�−c�Þ ¼ α
�
1 þ 2 � ω

�
12:

Apply the operator � to both sides of this equation, we obtain

α2−2ω12 ¼ α
�
2−2ω

�
12:

Substituting for ω�
12 from Theorem 3.1, this is

2dτ ¼ α2−α
�
2: (17)

Lemma 3.1

ϑ1 ¼ ϑ
�
1:

Proof: This can be shown in two ways. First from Eq. (15), express the ωi in terms of the ω�
i

ω1 ¼ cos τ ω
�
1 þ sin τ ω

�
2; ω2 ¼ − sin τ ω

�
1 þ cos τ ω

�
2: (18)

Therefore,

ϑ1 ¼ uω1 þ vω2 ¼ uð cos τ ω
�
1 þ sin τω�

2Þ þ vð− sin τω�
1 þ cos τω�

2Þ ¼ u
�
ω

�
1 þ v

�
ω

�
2 ¼ ϑ

�
1;

where u� ¼ u cos τ−v sin τ and v� ¼ u sin τþ v cos τ. □

Lemma 3.1 also follows from the fact that dH ¼ dH
� and Eq. (8).

Lemma 3.2

α
�
2 ¼ sin ð2τÞ α1 þ cos ð2τÞ α2:

Proof:

α
�
2 ¼ ðu sin τþ v cos τÞð cos τω1− sin τω2Þ þ ðu cos τ−v sin τÞð sin τω1 þ cos τω2Þ
¼ ðu sin ð2τÞ þ v cos ð2τÞÞω1 þ ð−v sin ð2τÞ þ u cos ð2τÞÞω2

¼ sin ð2τÞα1 þ cos ð2τÞα2:

Substituting α
�
2 from Lemma 3.2 into Eq. (13), dτ can be written as

dτ ¼ 1

2
ðα2− sin ð2τÞα1− cos ð2τÞα2Þ ¼

1

2
ðð1− cos ð2τÞÞα2− sin ð2τÞα1Þ: (19)

Introduce the new variable t ¼ cot ðτÞ so dt ¼ −csc2ðτÞ dτ and sin τ ¼ 1
ffiffiffiffiffiffiffi

1þt2
p , cos τ ¼ 1

ffiffiffiffiffiffiffi

1þt2
p ,

hence the following lemma.
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Lemma 3.3
dt ¼ tα1−α2:

This is the total differential equation which must be satisfied by the angle τ of rotation of the

principal directions during the deformation. If the deformation is to be nontrivial, it must be

that this equation is completely integrable.

Theorem 3.2 A surface M admits a nontrivial isometric deformation that keeps the principal

curvatures fixed if and only if

dα1 ¼ 0; dα2 ¼ α1∧α2: (20)

Proof: Differentiating both sides of Lemma 3.3 gives

dt∧α1 þ tdα1−dα2 ¼ ðtα1−α2Þ∧α1 þ tdα1−dα2 ¼ 0:

Equating the coefficients of t to zero gives the result (20).

This theorem seems to originate with Chern [6] and is very useful because it gives the exterior

derivatives of the αi. When the mean curvature is constant, dH ¼ 0, hence it follows from

Eq. (14) that ϑ1 ¼ 0. This implies that u ¼ v ¼ 0, and so α1 and α2 must vanish. Hence, dt ¼ 0

which implies that, since the αi is linearly independent, t equals a constant. Thus, we arrive at a

theorem originally due to Bonnet.

Theorem 3.3 A surface of constant mean curvature can be isometrically deformed preserving

the principal curvatures. During the deformation, the principal directions rotate by a fixed

angle.

4. Connection form associated to a coframe and transformation properties

Given the linearly independent one forms ω1;ω2, the first two of the structure equations

uniquely determine the form ω12. The ω1;ω2 is called the orthonormal coframe of the

metric

ds
2 ¼ ω

2
1 þ ω

2
2,

and ω12 is the connection form associated with it.

Theorem 4.1 Suppose that A > 0 is a function on M. Under the change of coframe

ω
�
1 ¼ Aω1; ω

�
2 ¼ Aω2, (21)

the associated connection forms are related by

ω
�
12 ¼ ω12 þ � dlogA: (22)

Proof: The structure equations for the transformed system are given as
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dω�
1 ¼ ω�

12∧ω
�
2; dω�

2 ¼ ω�
1∧ω

�
12:

Using Eq. (21) to replace the ω�
i in these, we obtain

dlog A∧ω1 þ dω1 ¼ ω�
12∧ω2; dlogA∧ω2 þ dω2 ¼ ω1∧ω

�
12:

The ωi satisfy a similar system of structure equations, so replacing dωi here yields

ðω�
12−ω12Þ∧ω2 ¼ dlog A∧ω1; ðω�

12−ω12Þ∧ω1 ¼ −dlog A∧ω2:

Since the form ωi satisfies the equations �ω1 ¼ ω2 and �ω2 ¼ −ω1, substituting these

relations into the above equations and using Ωk ∧ ð�ΘkÞ ¼ Θk ∧ ð�ΩkÞ, we obtain that in

the form

ω1∧ � ðω�
12−ω12Þ ¼ −ω1 ∧ d log A; ω2 ∧ � ðω

�
12−ω12Þ ¼ −ω2∧ d log A:

Cartan's lemma can be used to conclude from these that there exist functions f and g such

that

�ðω�
12−ω12Þ ¼ −dlog A−fω1; � ðω�

12−ω12Þ ¼ −dlog Aþ gω2:

Finally, apply � to both sides and use �2 ¼ −1 to obtain

ω�
12−ω12 ¼ �dlogAþ fω2; ω�

12−ω12 ¼ �dlogAþ gω1:

The forms ωi are linearly independent, so for these two equations to be compatible, it suffices

to put f ¼ g ¼ 0, and the result follows. □

For the necessity in the Chern criterion, Theorem 3.2, no mention of the set V of critical points

of H is needed. In fact, when H is constant, this criterion is met and the sufficiency also holds

with τ constant. However, when H is not identically constant, we need to take the set V of

critical points into account for the sufficiency. In this case, M−V is also an open, dense, and

connected subset of M. On this subset J > 0 and the function A can be defined in terms of the

functions u and v as

A ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

> 0: (23)

To define more general transformations of the ωi, define the angle ψ as

u ¼ A cos ðψÞ; v ¼ A sin ðψÞ: (24)

This angle, which is defined modulo 2π, is continuous only locally and could be discontinuous

in a nonsimply connected region of M−V. With A and ψ related to u and v by Eq. (24), the

forms ϑi and αi can be written in terms of A and ψ as
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ϑ1 ¼ Að cos ðψÞ ω1 þ sin ðψÞω2Þ; ϑ2 ¼ Að− sin ðψÞ ω1 þ cos ðψÞ ω2Þ;

α1 ¼ Að cos ðψÞ ω1− sin ðψÞ ω2Þ; α2 ¼ Að sin ðψÞ ω1 þ cos ðψÞ ω2Þ:
(25)

The forms ωi, ϑi, αi define the same structure on M and we let ω12, ϑ12, α12 be the connection

forms associated to the coframes ω1;ω2; ϑ1;ϑ2; α1;α2. The next theorem is crucial for what

follows.

Theorem 4.2

ϑ12 ¼ dψþ ω12 þ �d log A ¼ 2dψþ α12: (26)

Proof: Each of the transformations which yield the ϑi and αi in the form (25) can be

thought of as a composition of the two transformations which occur in the Theorems 3.1

and 4.1. First apply the transformation ωi ! Aωi and τ ! −ψ with ω�
i
! ϑi in Eq. (15), we

get the ϑi equations in Eq. (25). Invoking Theorems 3.1 and 4.1 in turn, the first result is

obtained

ϑ12 ¼ dψþ ω12 þ � dlog A:

The transformation to the αi is exactly similar except that τ ! ψ, hence

α12 ¼ −dψþ ω12 þ � dlog A:

This implies �dlog A ¼ α12 þ dψ−ω12. When replaced in the first equation of (26), the second

equation appears. Note that from Theorem 3.2, α12 ¼ α2, so the second equation can be given

as ϑ12 ¼ 2dψþ α2.

Differentiating the second equation in Eq. (14) and using dα1 ¼ 0, it follows that

d � ω12 ¼ 0: (27)

Lemma 4.1 The angle ψ is a harmonic function d � dψ ¼ 0 and moreover, d � ϑ12 ¼ 0.

Proof: From Theorem 4.2, it follows by applying � through Eq. (26) that

�ϑ12 ¼ �ω12 þ �dψ−dlogA ¼ 2 � dψ−α1: (28)

Exterior differentiation of this equation using d � ω12 ¼ 0 immediately gives

d � dψ ¼ 0:

This states that ψ is a harmonic function. Equation (28) also implies that d � ϑ12 ¼ 0.
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5. Construction of the closed differential ideal associated withM

Exterior differentiation of the first equation in (14) and using the second equation pro-

duces

dϑ1 þ ðα1 þ 2 � ω12Þ∧ϑ1 ¼ 0: (29)

The structure equation for the ϑi will be needed,

dϑ1 ¼ ϑ12∧ϑ2 ¼ − � ϑ12∧ϑ1: (30)

From the second equation in Eq. (26), we have �ω12−d logAþ α1 ¼ �dψ, and putting this in the

first equation of Eq. (26), we find

− � ϑ12 þ α1 þ 2 � ω12 ¼ 2 d logA: (31)

Using Eq. (31) in Eq. (30),

dϑ1 þ ðα1 þ 2 � ω12Þ∧ϑ1 ¼ 2 d logA∧ϑ1: (32)

Replacing dϑ1 by means of Eq. (29) implies the following important result

d log A∧ϑ1 ¼ 0: (33)

Equation (33) and Cartan's lemma imply that there exists a function B such that

d log A ¼ Bϑ1: (34)

This is the first in a series of results which relates many of the variables in question such as J, B,

and ϑ12 directly to the one-form ϑ1. To show this requires considerable work. The way to

proceed is to use the forms αi in Theorem 3.2 because their exterior derivatives are known.

For an arbitrary function on M, define

df ¼ f 1α1 þ f 2α2: (35)

Differentiating Eq. (35) and extracting the coefficient of α1∧α2, we obtain

f 21−f 12 þ f 2 ¼ 0: (36)

In terms of the αi, �dψ ¼ ψ1α2−ψ2α1, Lemma 4.1 yields

ψ11 þ ψ22 þ ψ1 ¼ 0: (37)

Finally, since �ϑ12 ¼ 2 � dψ−α1, substituting for �dψ, we obtain that
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�ϑ12 ¼ −ð2ψ2 þ 1Þα1 þ 2ψ1 α2: (38)

Differentiating structure equation (30) and using Lemma 4.1,

�ϑ12∧ dϑ1 ¼ 0;

so,

�ϑ12∧ϑ12∧ϑ2 ¼ 0

This equation implies that either ϑ12 or �ϑ12 is a multiple by a function of the form ϑ2. Hence,

for some function p,

ϑ12 ¼ −pϑ2; �ϑ12 ¼ pϑ1;

ϑ12 ¼ pϑ1; �ϑ12 ¼ pϑ2,
(39)

Substituting the first line of Eq. (39) back into the structure equation, we have

dϑ1 ¼ 0: (40)

The second line yields simply dϑ1 ¼ pϑ1∧ϑ2. Only the first case is examined now. Substituting

Eq. (40) into Eq. (29), the following important constraint is obtained

ðα1 þ 2 � ω12Þ∧ϑ1 ¼ 0: (41)

Theorem 5.1 The function ψ satisfies the equation

2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞ ¼ 0: (42)

Proof: By substituting �dψ into Eq. (28) we have

�ϑ12 ¼ 2 � ðψ1α1 þ ψ2α2Þ−α1 ¼ −ð2ψ2 þ 1Þα1 þ 2ψ1α2: (43)

Substituting Eq. (43) into Eq. (26) and solving for �ω12, we obtain that

�ω12 ¼ �ϑ12− � dψþ dlog A ¼ �ϑ12− � dψþ Bϑ1 ¼ �dψ−α1 þ Bϑ1:

This can be put in the equivalent form

2 � ω12 þ α1 ¼ 2 � dψ−α1 þ 2Bϑ1: (44)

Taking the exterior product with ϑ1 and using dψ1, we get
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ðα1 þ 2 � ω12Þ∧ϑ1 ¼ ð2 � dψ−α1Þ∧ϑ1 ¼ ð2ψ1 � α1 þ 2ψ2 � α2−α1Þ∧ϑ1

¼ ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞϑ2∧ϑ1:

Imposing the constraint (41), the coefficient of ϑ1∧ϑ2 can be equated to zero. This produces the

result (42).

As a consequence of Theorem 5.1, a new function C can be introduced such that

2ψ1 ¼ C sin ð2ψÞ; 2ψ2 þ 1 ¼ −C cos ð2ψÞ: (45)

Differentiation of each of these with respect to the αi basis, we get for i ¼ 1; 2 that

2ψ1i ¼ Ci sin ð2ψÞ þ 2ψi C cos ð2ψÞ; 2ψ2i ¼ −Ci cos ð2ψÞ þ 2ψi C sin ð2ψÞ:

Substituting f ¼ ψ into Eq. (36) and using the fact that ψ satisfies Eq. (37) gives the pair of

equations

−C1 cos ð2ψÞ−C2 sin ð2ψÞ þ 2ψ1C sin ð2ψÞ−ð2ψ2 þ 1ÞC cos ð2ψÞ−1 ¼ 0;

C1 sin ð2ψÞ−C2 cos ð2ψÞ þ 2ψ1C cos ð2ψÞ þ ð2ψ2 þ 1ÞC sin ð2ψÞ ¼ 0:

This linear system can be solved for C1 and C2 to get

C1 þ Cð2ψ2 þ 1Þ þ cos ð2ψÞ ¼ 0; C2−2Cψ1 þ sin ð2ψÞ ¼ 0: (46)

By differentiating each of the equations in (46), it is easy to verify that C satisfies Eq. (36),

namely, C12−C21−C2 ¼ 0. Hence, there exist harmonic functions which satisfy Eq. (42). The

solution depends on two arbitrary constants, the values of ψ and C at an initial point.

Lemma 5.1

dC ¼ ðC2
−1Þϑ1; � ϑ12 ¼ Cϑ1: (47)

Proof: It is easy to express the ϑi in terms of the αi,

ϑ1 ¼ cos ð2ψÞα1 þ sin ð2ψÞα2; ϑ2 ¼ − sin ð2ψÞα1 þ cos ð2ψÞα2: (48)

Therefore, using Eqs. (45) and (46), it is easy to see that

dC ¼ C1α1 þ C2α2 ¼ ðC2
−1Þð cos ð2ψÞα1 þ sin ð2ψÞα2Þ ¼ ðC2

−1Þϑ1:

Using Eq. (45), it follows that

�ϑ12 ¼ −ð2ψ2 þ 1Þα1 þ 2ψ1α2 ¼ C cos ð2ψÞα1 þ C sin ð2ψÞα2

¼ Cð cos ð2ψÞα1 þ sin ð2ψÞα2Þ ¼ Cϑ1:

This implies that ϑ12 ¼ −Cϑ2.
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It is possible to obtain formulas for B1;B2. Using Eq. (48) in Eq. (34), the derivatives of logA can

be written down

ðlogAÞ1 ¼ B cos ð2ψÞ; ðlogAÞ2 ¼ B sin ð2ψÞ: (49)

Differentiating each of these in turn, we obtain for i ¼ 1; 2,

ðlogAÞ1i ¼ Bi cos ð2ψÞ−2Bψi sin ð2ψÞ; ðlogAÞ2i ¼ Bi sin ð2ψÞ þ 2Bψi cos ð2ψÞ: (50)

Taking f ¼ logA in Eq. (36) produces a first equation for the Bi,

B1 sin ð2ψÞ þ 2Bψ1 cos ð2ψÞ−B2 cos ð2ψÞ þ 2Bψ2 sin ð2ψÞ þ B sin ð2ψÞ ¼ 0: (51)

If another equation in terms of B1 and B2 can be found, it can be solved simultaneously with

Eq. (51). There exists such an equation and it can be obtained from the Gauss equation in (4)

which we put in the form

dω12 ¼ −ac ω1∧ω2 ¼ −ac A−2 α1∧α2:

Solving Eq. (26) for ω12, we have

ω12 ¼ dψþ α2 þ ðlogAÞ2α1−ðlogAÞ1α2:

The exterior derivative of this takes the form,

dω12 ¼ ½1−ðlogAÞ11−ðlogAÞ22−ðlogAÞ1�α1∧α2:

Putting this in the Gauss equation,

−ðlogAÞ11−ðlogAÞ22 þ {−ðlogAÞ1 þ 1}þ acA−2 ¼ 0:

Replacing the second derivatives from Eq. (50), we have the required second equation

−B1 cos ð2ψÞ−B2 sin ð2ψÞ þ B{2ψ1 sin ð2ψÞ−ð2ψ2 þ 1Þ cos ð2ψÞ}þ 1þ acA−2 ¼ 0: (52)

Solving Eqs. (51) and (52) together, the following expressions for B1 and B2 are obtained

B1 þ Bð2ψ2 þ 1Þ−ð1þ acA−2Þ cos ð2ψÞ ¼ 0; B2−2Bψ1−ð1þ acA−2Þ sin ð2ψÞ ¼ 0: (53)

Given these results for B1 and B2, it is easy to produce the following two Lemmas.

Lemma 5.2

dB ¼ ðBCþ 1þ acA−2Þϑ1; dlogJ ¼ ðCþ 2BÞϑ1: (54)

Proof: Substituting Eq. (53) into dB, we get
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dB ¼ B1α1 þ B2α2 ¼ ðBCþ 1þ acA−2Þð cos ð2ψÞα1 þ sin ð2ψÞα2Þ ¼ ðBCþ 1þ acA−2Þ ϑ1:

Moreover,

dlogJ ¼ α1 þ 2 � ω12 ¼ α1 þ 2ð�ϑ12− � dψþ dlogAÞ ¼ α1 þ 2 � ϑ12−2 � dψþ 2dlogA
¼ �ϑ12 þ 2dlogA ¼ Cϑ1 þ 2Bϑ1:

Lemma 5.3

dψ ¼ −
1

2
sin ð2ψÞϑ1−

1

2
ðCþ cos ð2ψÞÞϑ2: (55)

Proof:

2dψ ¼ 2ψ1α1 þ 2ψ2α2 ¼ C sin ð2ψÞα1−ðC cos ð2ψÞ þ 1Þα2

¼ C sin ð2ψÞð cos ð2ψÞϑ1− sin ð2ψÞϑ2Þ−ðC cos ð2ψÞ þ 1Þð sin ð2ψÞϑ1 þ cos ð2ψÞϑ2Þ
¼ − sin ð2ψÞϑ1−ðCþ cos ð2ψÞÞϑ2:

In the interests of completeness, it is important to verify the following theorem.

Theorem 5.2 The function B satisfies Eq. (36) provided ψ satisfies both Eqs. (37) and (41).

Proof: Differentiating B1 and B2 given by Eq. (53), the left side of Eq. (36) is found to be

B21−B12 þ B2 ¼ 2B1ψ1 þ B2ð2ψ2 þ 1Þ þ 2Bðψ11 þ ψ22 þ ψ1Þ þ A−2ððacÞ1 sin ð2ψÞ−ðacÞ2 sin ð2ψÞÞ

−2acBA−2ð cos ð2ψÞ sin ð2ψÞ− sin ð2ψÞ cos ð2ψÞÞ þ ð1þ acA−2Þð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ

¼ 2ð1þ acA−2Þð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ þ A−2ððacÞ1 sin ð2ψÞ−ðacÞ2 cos ð2ψÞÞ:

1010 To simplify this, Eq. (37) has been substituted. Using Eq. (48) and �dðacÞ ¼ ðacÞ1α2−ðacÞ2α1, it

follows that

�dðacÞ∧ϑ2 ¼ ððacÞ1 sin ð2ψÞ−ðacÞ2 cos ð2ψÞÞα1∧α2:

12 Note that the coefficient of α1∧α2 in this appears in the compatibility condition. To express it in

13 another way, begin by finding the exterior derivative of 4ac ¼ ðaþ cÞ2−ða−cÞ2,

4dðacÞ ¼ 2ðaþ cÞða−cÞϑ1−2ða−cÞ
2ðα1 þ 2 � ω12Þ:

14 Applying the Hodge operator to both sides of this, gives upon rearranging terms

2 �
dðacÞ

a−c
¼ ðaþ cÞϑ2−ða−cÞðα2−2ω12Þ:

15 Consequently, we can write

−
2

ða−cÞ2
� dðacÞ∧ϑ2 ¼ ðα2−2ω12Þ∧ϑ2 ¼ −ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞα1∧α2:

16 Therefore, it must be that
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−ðacÞ1 sin ð2ψÞ þ ðacÞ2 cos ð2ψÞ ¼ −
1

2
ða−cÞ2ð2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞÞ:

It follows that when f ¼ B, Eq. (36) finally reduces to the form

ð1þH2A−2Þ½2ψ1 cos ð2ψÞ þ ð2ψ2 þ 1Þ sin ð2ψÞ� ¼ 0:

The first factor is clearly nonzero, so the second factor must vanish. This of course is equivalent

to the constraint (41).

6. Intrinsic characterization ofM

During the prolongation of the exterior differential system, the additional variables ψ, A, B, and

C have been introduced. The significance of the appearance of the function C, is that the process

terminates and the differentials of all these functions can be computed without the need to

introduce more functions. This means that the exterior differential system has finally closed.

The results of the previous section, in particular, the lemmas, can be collected such that they

justify the following.

Proposition 6.1 The differential system generated in terms of the differentials of the variables

ψ, A, B, and C is closed. The variables H; J;A;B;C remain constant along the ϑ2-curves so

ϑ1 ¼ 0. Hence, an isometry that preserves H must map the ϑ1, ϑ2 curves onto the

corresponding ϑ�
1, ϑ

�
2 curves of the associated surface M� which is isometric to M.

Along the ϑ1, ϑ2 curves, consider the normalized frame,

ζ1 ¼ cos ðψÞe1 þ sin ðψÞe2; ζ2 ¼ − sin ðψÞe1 þ cos ðψÞe2: (56)

The corresponding coframe and connection form are

ξ1 ¼ cos ðψÞω1 þ sin ðψÞω2; ξ2 ¼ − sin ðψÞω1 þ cos ðψÞω2; ξ12 ¼ dψþ ω12: (57)

Then ϑ1 can be expressed as a multiple of ξ1 and ϑ2;ϑ12 in terms of ξ2, and the differential

system can be summarized here:

ϑ1 ¼ Aξ1; ϑ2 ¼ Aξ2; ϑ12 ¼ ξ12 þ �d logA ¼ −CAξ2;
dlogA ¼ ABξ1; dB ¼ AðBCþ 1þ acA−2Þξ1; dC ¼ AðC2

−1Þξ1;
dH ¼ AJξ1; dJ ¼ AJð2Bþ CÞξ1:

(58)

The condition dϑ1 ¼ 0 is equivalent to

dA∧ξ1 þ Adξ1 ¼ 0:

This implies that dξ1 ¼ 0 since dA is proportional to ξ1. Also, d � ϑ12 ¼ 0 is equivalent to

d � ξ12 ¼ 0.
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Moreover, d � ξ12 ¼ 0 is equivalent to the fact that the ξ1;ξ2 curves can be regarded as coordi-

nate curves parameterized by isothermal parameters. Therefore, along the ξ1;ξ2 curves,

orthogonal isothermal coordinates denoted ðs;tÞ can be introduced. The first fundamental form

of M then takes the form,

I ¼ ξ21 þ ξ22 ¼ EðsÞðds2 þ dt2Þ: (59)

Now suppose we set eðsÞ ¼
ffiffiffiffiffiffiffiffiffi

EðsÞ
p

, then

ξ1 ¼ eðsÞ ds; ξ2 ¼ eðsÞ dt; ξ12 ¼
e′ðsÞ

e2ðsÞ
ξ2 ¼

e′ðsÞ

eðsÞ
dt: (60)

This means such a surface is isometric to a surface of revolution. Since ψ, d�ξ12 ¼ 0, Eq. (57)

implies that d�ω12 ¼ 0. This can be stated otherwise as the principal coordinates are isothermal

and so M is an isothermic surface.

Since A;B;C;H, and J are functions of only the variable s, this implies that H and J, or H and K,

are constant along the t curves where s is constant. This leads to the following proposition.

Proposition 6.2

dH∧dK ¼ 0; ξ12 ¼ −ðCþ BÞAξ2: (61)

This is equivalent to the statement M is a Weingarten surface.

Proof: The first result follows from the statement about the coordinate system above. Since

ϑ12 ¼ ξ12 þ �dlogA ¼ −CAξ2 and dA ¼ A2Bξ1,

ξ12 ¼ −CAξ2− � dlogA ¼ −CAξ2− � A
−1 dA ¼ −CAξ2−AB � ξ1 ¼ −ðCþ BÞAξ2

Consequently, the geodesic curvature of each ξ2 curve, s constant, is

e′ðsÞ

e2ðsÞ
¼ −AðBþ CÞ;

which is constant.

To express the ωi in terms of ds and dt, start by writing ωi in terms of the ξi and then

substituting Eq. (60),

ω1 ¼ cos ðψÞe ds− sin ðψÞe dt; ω2 ¼ sin ðψÞe dsþ cos ðψÞe dt: (62)

Subscripts ðs;tÞ denote differentiation and Hs ¼ H′ is used interchangeably. Beginning with

dH ¼ H′ ds and using Eq. (62), we have

dH ¼ H1ω1 þH2ω2 ¼ ðH1 cos ðψÞ þH2 sin ðψÞÞ e dsþ ð−H1 sin ðψÞ þH2 cos ðψÞÞ e dt ¼ H′ ds:

Equating coefficients of differentials, this implies that
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H1e cos ðψÞ þH2e sin ðψÞ ¼ H′; −H1 sin ðψÞ þH2 cos ðψÞ ¼ 0:

Solving this as a linear system we obtain H1, H2,

H1 ¼
H′

e
cos ðψÞ; H2 ¼

H′

e
sin ðψÞ: (63)

Noting that u ¼ H1=J and v ¼ H2=J, using Eq. (57) the forms αi can be expressed in terms of

ds;dt

α1 ¼
H′

J
ð cos ð2ψÞ ds− sin ð2ψÞ dtÞ; α2 ¼

H′

J
ð sin ð2ψÞ dsþ cos ð2ψÞ dtÞ: (64)

Substituting ξ1 from Eq. (60) into dH ¼ AJξ1,

dH ¼ H′ds ¼ AJξ1 ¼ AJ eðsÞ ds:

Therefore, H′ ¼ AJe > 0 and so HðsÞ is an increasing function of s. Now define the function

QðsÞ to be

Q ¼
H′

J
¼ A � e > 0: (65)

Substituting Eq. (65) into Eq. (64), αi is expressed in terms of Q as well. Equations (20) in

Theorem 3.2 can easily be expressed in terms of ψ and Q.

Theorem 6.1 Equation (20) is equivalent to the following system of coupled equations in ψ andQ:

sin ð2ψÞðlogðQÞÞs þ 2 cos ð2ψÞψs−2 sin ð2ψÞψt ¼ 0;

cos ð2ψÞðlogðQÞÞs−2 sin ð2ψÞψs−2 cos ð2ψÞψt ¼ Q:
(66)

Moreover, Eq. (66) is equivalent to the following first-order system

ψs ¼ −

1

2
Q sin ð2ψÞ; ψt ¼

1

2
ðlogðQÞÞs−

1

2
Q cos ð2ψÞ: (67)

System (67) can be thought of as a type of Lax pair. Moreover, Eq. (67) implies that ψ is

harmonic as well. Differentiating ψs with respect to s and ψt with respect to t, it is clear that ψ

satisfies Laplace's equation in the ðs;tÞ variables ψss þ ψtt ¼ 0. This is another proof that ψ is

harmonic.

Theorem 6.2 The function QðsÞ satisfies the following second-order nonlinear differential

equation
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Q″ðsÞQðsÞ−ðQ′ðsÞÞ2 ¼ Q4ðsÞ: (68)

There exists a first integral for this equation of the following form

Q′ðsÞ2 ¼ QðsÞ4 þ κQðsÞ2; κ∈R: (69)

Proof: Equation (68) is just the compatibility condition for the first-order system (67). The

required derivatives are

ψst ¼ −
Q

2
cos ð2ψÞððlogQÞs−Q cos ð2ψÞÞ; ψts ¼

1

2
ðlogQÞss−

1

2
Qs cos ð2ψÞ þQ sin ð2ψÞψs:

Equating derivatives ψst ¼ ψts, the required (68) follows.

Differentiating both sides of Eq. (69) we get

Q″ðsÞ ¼ 2QðsÞ3 þ κQðsÞ: (70)

Isolating κQðsÞ from Eq. (69) and substituting it into Eq. (70), Eq. (68) appears.

It is important to note that the function C which appears when the differential ideal closes can

be related to the function Q.

Corollary 6.1

C ¼ 1

Q

� �′

: (71)

Proof: Using ϑi from Eq. (58) in Lemma 5.3, in the s;t coordinates

2dψ ¼ − sin ð2ψÞ Ae ds−ðCþ cos ð2ψÞÞ Ae dt ¼ ψsdsþ ψt dt

Hence using Eq. (67), this implies that 2ψs ¼ − sin ð2ψÞ Ae ¼ −Q sin ð2ψÞ, hence Q ¼ Ae. The

second equation in Eq. (67) for ψt implies that ðCþ cos ð2ψÞÞ Ae ¼ Q cos ð2ψÞ−ðlogQÞ′.
Replacing Ae ¼ Q, this simplifies to the form (71).

7. Integrating the Lax pair system

It is clear that the first-order equation in (67) for QðsÞ is separable and can be integrated. The

integral depends on whether K is zero or nonzero:

QðsÞ ¼ 1

εsþ γ
; K ¼ 0; log

2ðK þ
ffiffiffiffi

K
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ K
p

Þ
Q

 !

¼ ε
ffiffiffiffi

K
p

sþ γ; K≠0: (72)

An Intrinsic Characterization of Bonnet Surfaces Based on a Closed Differential Ideal
http://dx.doi.org/10.5772/67008

37



Here ε ¼ �1 and γ is the last constant of integration. Taking specific choices for the constants,

for example, eγ ¼ 2
ffiffiffiffi

K
p

when K≠0 and a ¼
ffiffiffiffi

K
p

, the set of solutions (72) for QðsÞ can be summa-

rized below.

DomðsÞ QðsÞ DomðsÞ QðsÞ

s > 0
1

s
s < 0 −

1

s

0 < s <
π

a

a

sin ðasÞ −
π

a
< s < 0 −

a

sin ðasÞ
s > 0

a

sinhðasÞ s < 0 −
a

sinhðasÞ

(73)

It is presumed that other choices of the constants can be geometrically eliminated in favor of

Eq. (73). The solutions (73) are then substituted back into linear system (67). The first equation

in (67) implies that either

ψ≡0; mod
π

2
;

2ψs

sin ð2ψÞ ¼ −Q: (74)

Substitute ψ≡0 into the second equation in (67). It implies that ðlogQÞs ¼ Q and ψ ¼ π=2 gives

ðlogQÞs ¼ −Q. In both cases QðsÞ is a solution which already appears in Eq. (73).

For the second case in Eq. (74), the equation can be put in the form

ðlogj tan ðψÞjÞs ¼ −Q:

Integrating we have for some function yðtÞ to be determined,

tan ðψÞ ¼ e
−

ð

QðsÞds
� yðtÞ: (75)

Therefore, tan ðψÞ can be obtained by substituting for QðsÞ for each of the three cases in

Eq. (73). The upper sign holds for s > 0 and the lower sign holds if s < 0.

i. QðsÞ ¼ �s−1, −

ð

QðsÞds ¼ logjsj∓ and

tan ðψÞ ¼ s∓ � yðtÞ: (76)

ii. QðsÞ ¼ � a
sin ðasÞ, −

ð

QðsÞds ¼ logjcscðasÞ− cot ðasÞj∓ and

tan ðψÞ ¼ tan
as

2

� �� �∓

� yðtÞ: (77)

iii. QðsÞ ¼ � a
sinhðasÞ, −

ð

QðsÞds ¼ ∓arctanhðeasÞ, and
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tan ðψÞ ¼ ðtanhð
as

2
ÞÞ∓ � yðtÞ: (78)

In case ðiiÞ, if s > 0 and yðtÞ ¼ �1 then ψ ¼ �1
2ðasþ πÞ, modπ, and if s < 0 and yðtÞ ¼ �1, then

ψ ¼ � 1
2 as, modπ.

It remains to integrate the second equation of the Lax pair (67) using solutions for both QðsÞ

and tan ðψÞ. The first case ðiÞ is not hard and will be shown explicitly here. The others can be

done, and more complicated cases are considered in the Appendix.

ðiÞ Consider QðsÞ ¼ s−1 and tan ðψÞ ¼ s−1 � yðtÞ. The second equation in (67) simplifies consid-

erably to yt ¼ −1, therefore,

yðtÞ ¼ −ðtþ σÞ; tan ðψÞ ¼ −

ðtþ σÞ

s
: (79)

For QðsÞ ¼ −s−1 and tan ðψÞ ¼ s � yðtÞ, the second equation of (67) becomes yt ¼ −y2, there-

fore,

yðtÞ ¼
1

tþ σ
; tan ðψÞ ¼

s

tþ σ:
(80)

8. A third-order equation for H and fundamental forms

Since ξ12 ¼ ðlogeðsÞÞ′dt, using Eq. (60) ω12 can be written as

ω12 ¼ ξ12−dψ ¼ ðlog eðsÞÞ′ dt−dψ: (81)

Using Eqs. (14) and (64) for α1, it follows that

dlogðJÞ ¼ Qð cos ð2ψÞ ds− sin ð2ψÞ dtÞ−2 � ðψt dtþ ψs dsÞ þ 2 � ðlogðeðsÞÞÞ′ dt:

when ωi are put in the s;t coordinates, using �ω1 ¼ ω2, it can be stated that �ds ¼ dt and

�dt ¼ −ds. Consequently, dlogðJÞ simplifies to

dlogðJÞ ¼ ðQ cos ð2ψÞ þ 2ψt−2ðlogðeðsÞÞÞ
′Þ dsþ ð−Q sin ð2ψÞ−2ψsÞ dt: (82)

First-order system (67) permits this to be written using eðsÞ ¼
ffiffiffiffiffiffiffiffiffi

EðsÞ
p

as

ðlogðJÞÞ′ þ ðlogðEÞÞ′ ¼ ðlogðQÞÞ′
: (83)

Hence, there exists a constant τ independent of s such that E � J ¼ τQ or
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E ¼ τ
Q

J
¼ τ

Q2

H′
: (84)

This result (84) for E is substituted into the Gauss equation −((log(E))ss+(log(E))tt)=2E(H
2
−J2)

giving

ðlogðEÞÞ″ ¼ 2ðlogðQÞÞ″−ðlogðHsÞÞ
″ ¼ 2Q2

−

H″

H′

� �′

: (85)

Therefore, the Gauss equation transforms into a third-order differential equation in the s

variable,

H″

H′

� �′

þ 2τH ¼ 2Q2 1þ τ
H2

H′

� �

: (86)

Thus, a characterization of Bonnet surfaces is reached by means of the solutions to these

equations. This equation determines the function HðsÞ and after that the functions JðsÞ and

EðsÞ. Therefore, Bonnet surfaces have as first fundamental form the expression

I ¼ EðsÞðds2 þ dt2Þ; EðsÞ ¼ τ
Q2ðsÞ

H′ðsÞ
: (87)

Since ψ is the angle from the principal axis e1 to the s curve with t equals constant, the second

fundamental form is given by

II ¼ L ds2 þ 2M ds dtþN dt2: (88)

where the coefficients L;M;N are given by

L ¼ EðH þ J cos ð2ψÞÞ ¼ EH þ τQ cos ð2ψÞ;

M ¼ −EJ sin ð2ψÞ ¼ −τQ sin ð2ψÞ;

N ¼ EðH−J cos ð2ψÞÞ:

(89)

Appendix

It is worth seeing how the second equation in (67) can be integrated for cases (ii) and (iii). Only

the case s > 0 will be done with QðsÞ taken from Eq. (73).

ðaÞ Differentiating tan ðψÞ given in Eq. (77), we obtain that

ψt ¼
tan ðas2Þ

tan 2ðas2Þ þ y2
ytðtÞ:

The following identities are required to simplify the result,

Manifolds - Current Research Areas40



tan ðasÞ ¼
2 tan ðas2Þ

1− tan 2ðas2Þ
; cos ð2ψÞ ¼

tan 2ðas2Þ−y
2

tan 2ðas2Þ þ y2:

Substituting ψt into Eq. (67), we obtain

2 tan ðas2Þ

tan 2ðas2Þ þ y2
yt ¼ −a cot ðasÞ−

a

sin ðasÞ

tan 2ðas2Þ−y
2

tan 2ðas2Þ þ y2
:

Simplifying this, we get

4

a
yt ¼ −

1

2
1− tan 2 as

2

� �� �

−

1

2
cot 2

as

2

� �

−1
� �

y2− sec 2 as

2

� �

þ csc2
as

2

� �

y2:

This simplifies to the elementary equation,

yt ¼
a

2
ðy2−1Þ; yðtÞ ¼ −tanh

at

2
þ η

� �

:

Here η is an integration constant. To summarize then,

tan ðψÞ ¼ tanh
at

2
þ η

� �

� tan
asþ π

2

� �

:

ðbÞ Consider now s > 0 and take QðsÞ from the last line of Eq. (73). Differentiating tan ðψÞ from

(78), we get

ψt ¼
coth ðas2 Þ

1þ coth2ðas2Þy
2
ytðtÞ:

In this case, the following identities are needed,

tanhðasÞ ¼
2tanhðas2Þ

1þ tanh2ðas2Þ
; cos ð2ψÞ ¼

1−coth2ðas2Þy
2

1þ coth2ðas2Þy
2
:

Therefore, Eq. (67) becomes

2
cothðas2Þ

1þ coth2ðas2Þy
2
yt ¼ −acoth ðasÞ−

a

sinhðasÞ

tanh2ðas2Þ−y
2

tanh2ðas2Þ þ y2
:

This reduces to

−

4

a
yt ¼ 1þ tanh2 as

2

� �

þ sech2 as

2

� �� �

þ coth2 as

2

� �

þ 1−csch2 as

2

� �� �

y2:

Simplifying and integrating, it has been found that
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yt ¼ −

a

2
ð1þ y2Þ; yðtÞ ¼ − tan

at

2
þ η

� �

:

To summarize then, it has been shown that,

tan ðψÞ ¼ cot
at

2
þ η

� �

� coth
as

2

� �

:

These results apply to the case s > 0 and similar results can be found for the case s < 0 as well.
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