
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 15

Novel Insights into the Role of the Cytoskeleton in
Cancer

Xuan Zhang, Zenglin Pei, Chunxia Ji, Xiaoyan Zhang,
Jianqing Xu and Jin Wang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66860

Abstract

The cytoskeleton is a complex network of highly ordered intracellular filaments that 
plays a central role in controlling cell shape, division, functions, and interactions in 
human organs and tissues, but dysregulation of this network can contribute to numerous 
human diseases, including cancer. To clarify the various functions of the cytoskeleton 
and its role in cancer progression, in this chapter, we will discuss the microfilament (actin 
cytoskeleton), microtubule (β‐tubulin), and intermediate filament (keratins, cytokera‐
tins, vimentin, and lamins) cytoskeletal structures; analyze the physiological functions 
of the cytoskeleton and its regulation of cell differentiation; and investigate the roles of 
the cytoskeleton in cancer progression, the epithelial‐mesenchymal transition process 
(EMT), and the mechanisms of multidrug resistance (MDR) in relation to the cytoskel‐
eton. Importantly, the cytoskeleton, as a key regulator of the transcription and expres‐
sion of many genes, is known to be involved in various physiological and pathological 
processes, which makes the cytoskeleton a novel and highly effective target for assessing 
the response to antitumor therapy in cancer.
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1. Introduction

The cytoskeleton is a structure similar to a bird's nest; it can be tightly packed or sparse and 

is found in both prokaryotes and eukaryotes [1]. The main component of the cytoskeleton is 

protein, and the specific differences in structure never affect the type of proteins incorporated 
[2]. The cytoskeletons of prokaryotes display apparent plasticity in composition, without con‐
servation of the core filament‐forming proteins. However, the eukaryotic cytoskeleton has 
evolved in a variety of functions through the addition of accessory proteins and extensive 
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gene duplication. The distribution of cytoskeletal filaments puts constraints on the likely pro‐
karyotic line that made the leap into eukaryogenesis [3].

There are three main cytoskeletal structures in eukaryotes, microfilaments (MFs, ≈7 nm diame‐
ter), microtubules (MTs, ≈25 nm diameter), and intermediate filaments (IFs, ≈10 nm diameter) 
[1]. MFs are responsible for cell contraction and reinforcement of the cell surface and allow 
changes in cell morphology. Actin and tubulin are the main globular proteins that form MFs 
and MTs, respectively. Actin is a ubiquitous eukaryotic filament‐forming protein. Actin fila‐
ments (also called microfilaments or F‐actin) consist of two proto filament polymers wound 
together in a right‐handed helix [3]. Eukaryotic actin is a member of a large and diverse super‐
family of ATPases that includes Hsp70 chaperones and several classes of sugar/sugar alcohol 
kinases [4, 5] as well as eukaryotic actin‐related proteins (ARPs) [6, 7]. The actin cytoskeleton 

is involved in actin‐based cytoskeletal structures, including various functionally distinct struc‐
tures of actin organization, and can be regulated by actin regulatory proteins. It is well known 

that the actin cortex consists of a dense mesh‐like array of F‐actin anchored to the cell mem‐
branes [8, 9]. This structure provides the core “skeleton” of the cell, functioning to define cell 
shape and provide resistance to mechanical stress. Reorganization of the actin cytoskeleton 
describes a process where cells actively alter the architecture of actin filaments to adjust cell 
shape in response to environmental requirements. Globular‐ (G‐) actin is a highly conserved, 
polar protein with a molecular weight of 42 kDa that forms dimers and trimers in a process 
called actin nucleation; these structures then assemble into a double‐stranded helical filament 
(F‐actin) with a diameter of 7–9 nm (actin polymerization) [10–15]. Filopodia are thin, hair‐like 
cellular protrusions that consist of parallel actin bundles cross‐linked by interacting protein 
partners such as fascin, α‐actinin, fimbrin, and formins [16]. Filopodia sense changes in the 
cellular microenvironment, such as growth factor concentrations, to guide cellular movement 

through the surrounding matrix [10–12]. Fascin is a highly conserved actin‐bundling pro‐
tein with three isoforms. While Fascin‐1 is ubiquitously expressed during embryogenesis, its 
expression is later restricted to the endothelium, neuronal tissue, and testis [16]. Fascin‐2 and 
Fascin‐3 are expressed in the retinal epithelium and testis only [17]. Fascin is phosphorylated 
by protein kinase C (PKC), which regulates its actin bundling activity in accordance with the 
current microenvironmental conditions, which are communicated via surface integrins [16].

Microtubules are responsible for structural strength and cell shape. They allow organelles to 
move within cells. These structures act like rails on which kinesin and dynein can pull organ‐
elles. Most microtubules consist of 13 protofilaments that interact laterally to form a hollow 
tube and arise from the polymerization of heterodimers of a‐ and ß‐tubulin, which are added 
to the plus‐end of microtubules containing GTP in both subunits [3, 18].

As the major components of the cytoskeleton, intermediate filaments (IFs) are ubiquitous cyto‐
skeletal elements that are encoded by about 70 genes in the human genome [19–21] and are 

divided into six groups based on their structure. These groups include the keratins, cytokera‐
tins, mesoderm‐specific intermediate filaments, neurofilaments and related proteins, lamins, 
and beaded filament proteins of the eye lens [21–24]. Although these IF proteins have very 
different amino acid sequences, the organization of the structural domain is similar [24]. The 

keratin group is defined as the group of intermediate filaments within epithelial cells, forming 
particles from 44 kDa to approximately 66 kDa that are characterized by high  stability and 
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chemical resistance [25]. As the major structural proteins of the nuclear lamina, the lamins 
are subdivided into A‐ and B‐types, both of which belong to the type V intermediate filament 
protein family [26].

On the other hand, prokaryotes also have homologs of the eukaryotic microfilaments (actin), 
microtubules (tubulin), and intermediate filament proteins [27]. FtsZ was first found in the 
prokaryote as the cytoskeleton and forms filaments but not tubules [28]. The MreB and ParM 
proteins in prokaryotic cells function like actin in eukaryotic cells [29]. The third type of cyto‐
skeleton in prokaryotes is crescentin, which is responsible for the shape of cells [30].

2. The physiological functions of the cytoskeleton and the regulation of 

cell differentiation

The cytoskeleton is the frame around or within the cell, and a system of intracellular filaments 
is crucial for cell shape, division, and function in all three domains of life [3, 4]. The classi‐
cal functions of the cytoskeleton have been summarized as morphology determination, cell 

polarity formation, structural support, membrane constitution, cell motility, and receptor or 

channel localization in the plasma membrane [31–33].

The activity of actin, the main type of microfilament, is regulated by GTPases, which control 
the formation of actin filaments [34–36]. In patients with Alzheimer's disease (AD), actin fila‐
ments play a central role in maintaining and modifying synaptic connections [37]. As the key 

mediator between receptor activation during learning and a protein involved in regulating 

spine morphology [38, 39], actin not only plays a role in the nervous system but also has func‐
tions in the immune system [40]. For example, F‐actin can mediate signaling in B cells and 
T cells [41, 42]. The dynamics of the actin cytoskeleton regulate adhesion and signal transduc‐
tion in T cells/APCs [40]. SWAP‐70 and HS1 are important downstream components of the 
TCR signaling pathway and are regulated by actin [43, 44].

The key function of intermediate filaments is to support the cell membrane, serving as a 
structural scaffold to maintain cell shape. Cell motility is significantly enhanced as a result of 
changes in intermediate filaments. Intermediate filaments are fixed to the membrane through 
transmembrane proteins such as cadherins, which are involved in the formation of cell‐cell 
tight junctions and the distribution of traction forces that arise in the interspace between cells. 
Under stress stimulation, intermediate filaments are significantly upregulated to induce the 
rearrangement of the cytoskeleton [45, 46]. Keratins are proteins that form intermediate fila‐
ments of epithelial cell cytoskeleton and have an antiapoptotic function, regulate protein syn‐
thesis, and play a role in wound healing [25]. Epithelial cells obtain a specific pattern of keratin 
expression during differentiation and maturation; this pattern reflects the specificity of the 
tissue and the degree of maturation [25]. The different components of the cytoskeleton do not 
work alone, and microtubules, microfilaments, and intermediate filaments often interact with 
each other to complete cellular processes. They always participate in protein localization and 

cell signaling. A characteristic of differentiation is a change in cell shape that is dependent 
on the cytoskeleton. During mesenchymal stem cell differentiation, the actin cytoskeleton of 
mesenchymal stem cells changes during osteogenic and chondrogenic differentiation [47]. 
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Previous studies have shown that adipocyte differentiation is associated with actin structure 
[48, 49]. Disruption of the actin cytoskeleton can regulate MKL1 and result in adipocyte dif‐
ferentiation [50]. Rearrangements in and the formation of processes by the cytoskeleton are 
associated with the synthesis of synaptopodin, which is a marker of differentiated podocytes 
[51]. Moreover, cell differentiation is regulated by activating or repressing some transcription 
factors and is linked to the cytoskeleton [52–57]. For example, Zoubiane demonstrated that 
microtubules were required for β‐casein expression, which resulted in epithelial cell differen‐
tiation [55]; Ahmad discovered that the pattern of microtubules in HL‐60 cells changed follow‐
ing differentiation, with α‐tubulin appearing more regularly organized in the differentiated 
HL‐60 cells [56]; Takiqawa also confirmed that the cytoskeleton, including microtubules and 
microfilaments, regulates the expression of a differentiated phenotype in chondrocytes [57].

3. The cytoskeleton and its role in cancer progression

The cytoskeleton is known to contribute to cancer. The cytoskeleton may induce cell prolifera‐
tion and activate oncogenes, resulting in tumorigenesis [58]. In mammary carcinoma cells, the 

upregulation of WNT4 increased mesenchymal and cytoskeleton remodeling markers [59]. 

CKAP4 (cytoskeleton‐associated protein 4) is a DKK1 binding protein expressed on the sur‐
face of cells, with DKK1/CKAP4 promoting pancreatic cancer and lung cancer [60]. DKK1 is 
considered a factor that can modulate the β‐catenin pathway and stimulate cancer cells or 
noncancerous proliferation [61, 62]. Zyxin localizes to focal adhesion sites and stress fibers in 
response to mechanical cues and has been shown to control the assembly of the cytoskeleton, 

the generation of traction force, cell movement, and signal transduction. If zyxin is nonfunc‐
tional, the cytoskeleton may be disturbed, leading to cancer [59].

Many actin‐bundling proteins are also linked to cancer progression and tumor chemoresis‐
tance [63]. Fascin proteins organize F‐actin into parallel bundles and are required for the 
formation of actin‐based cellular protrusions. The inhibition of fascin can interfere with the 
formation of filopodia and suppress the migration and invasion of tumors [64], making it pos‐
sible to use fascin as a small molecular target to inhibit cancer metastasis.

Intermediate filaments interact with arcs and can inhibit the activity of arcs, which can trans‐
port intermediate filaments to cell nucleus. However, fewer intermediate filaments may alter 
the cell shape and lead to diseases such as tumors [65]. For example, the changes in nuclear 
architecture that are the pathological hallmarks of cancer cells are related to alterations in the 

lamins, with alterations in lamins A/C being verified in the colon [66], gut [67], lung [68], and 

prostate cancer [69].

4. The role of the cellular cytoskeleton in epithelial‐mesenchymal 

transition (EMT)

Epithelial‐mesenchymal transition (EMT) is a biological process resulting in the loss of polar‐
ity and cell junctions, and disturbances in the cytoskeleton [70]. The reorganization of the 

actin cytoskeleton is important for metastasis and the differentiation of epithelial cells to 
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 mesenchymal cells [71]. When cells undergo EMT, the number of β‐actin fibers is reduced 
and the distribution of β‐actin becomes diffused. RhoA induces action fiber formation and 
regulates the cytoskeleton. The Rho family also plays a role in tumor migration and EMT [72]. 

Cellular transformation was closely associated with changes in the distribution and amount of 

cytoplasmic actin isoforms [73]. Actin filaments are formed by the polymerization of G‐actin, 
which induces the formation of a leading edge in cancer cells undergoing EMT through inter‐
actions with binding proteins and contractile proteins such as myosin II, which accelerates the 

movement of actin fibers on the substrate to the leading edge [74].

Tubulin plays an important role in EMT induction and contributes to TGF‐β‐induced membrane 
extensions or protrusions of human carcinoma cells undergoing EMT in three‐ dimensional col‐
lagen gels [75]. Acetylated α‐tubulin can serve as a new marker of EMT and is expressed at 
a high level on normal epithelial cells, while the expression of acetylated α‐tubulin decreases 
during TGF‐β‐induced EMT [76]. β‐III tubulin can modulate snail expression during EMT in 
HT‐29 and LS180 colon cancer cells [77]. When human mammary epithelial cells undergo EMT, 
the expression of Twist or Snail downregulates the tubulin tyrosine ligase enzyme, leading 

to the detyrosination of α‐tubulin. The accumulation of detyrosinated Glu‐tubulin is vital for 
the formation of microtentacles. These results provide new insight into tumor progression, as 

increasing α‐tubulin detyrosination could promote EMT [78]. Because of their effect on tumor 
migration during EMT, the inhibition of microtubules can be a useful target for antitumor 
drugs [79, 80].

During the EMT process, intermediate filaments are significantly rearranged, typically 
switching from cytokeratin‐rich to vimentin‐rich networks [81]. Intermediate filaments can 
be expressed in different types of cells. For example, keratins are specifically expressed in 
epithelial cells; type III (mostly mesodermal) proteins are expressed in mesenchymal cells 
[82–84]. Epithelial cells express different keratins that are considered almost specific markers, 
whereas mesenchymal cells, endothelial cells, and hematopoietic cells express vimentin [82, 

85, 86]. Vimentin is a type III intermediate filament that is significantly upregulated during 
EMT in epithelial cells; thus, vimentin can be used as a marker of EMT [87]. E‐cadherin is one 
type of cell adhesion molecule that regulates EMT [88]. Reduced CK8 expression is regarded 
as an indicator of EMT, leading to more malignant forms of cancer [89]. Breast milk exosomes 
containing high levels of TGF‐β2 can induce changes in both benign and malignant breast 
epithelial cells, consistent with the development and progression of breast cancer, which 

occurs due to alterations in cellular shape and the actin cytoskeleton and the loss of cell‐cell 
junctions [90]. TGF‐β‐induced EMT was found to restrain cell invasion, which may be allevi‐
ated by the overexpression of hyperactivated Ras [91]. Endocytosis has emerged as a highly 
interconnected infrastructure of various cellular circuitries that is essential for the execution 

of different cellular programs, including those promoting a canonical EMT program and rely‐
ing on the activation of Wnt, Notch, or TGF‐β signaling [92]. On the other hand, miR‐200 can 
inhibit EMT and the migration of cervical cancer cells through RhoE, which is an actin‐bind‐
ing protein [93]. Therefore, the cellular cytoskeleton plays a role in EMT by activating Wnt, 
Notch, or TGF‐β signaling pathways, triggering the reprogramming of gene expression pat‐
terns via transcriptional changes and the altered expression of mRNA, including epithelial 
(E‐cadherin, claudins, occludins, desmoplakin, mucin‐1, and cytokeratin‐8, ‐9, ‐18) and mes‐
enchymal markers (fibronectin, FSP1, vitronectin, vimentin, smooth‐muscle actin, and FGFR2 
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IIIb and IIIc species variants) (Figure 1). Further in‐depth study is required to determine the 
features of the dynamic expression and arrangement of intracellular filaments during cancer 
invasion and migration.

5. Mechanism of multidrug resistance (MDR) in relation to the 

cytoskeleton

Many patients develop drug resistance to anticancer agents, with the mechanisms includ‐
ing alterations in the ATP‐binding cassette [94], microtubule dynamics, drug transport, and 

cell death [89], all of which involve tubulin and microtubules [95–97]. Microtubules have 
been considered a highly significant molecular target for anticancer agents, including micro‐
tubule‐stabilizing agents. For example, paclitaxel binds to the β‐tubulin subunit, accelerates 
the polymerization of tubulin, and stabilizes the resultant microtubules [98, 99]. Moreover, 
the paclitaxel‐induced resistance of vimentin intermediate filaments to okadaic acid may 
occur through a microtubule‐independent mechanism [100]. Townson also demonstrated 

that K8/18 filaments provided resistance to apoptosis in granulosa cell tumors by impairing 
FAS expression [101]. The organization of actin filaments associated with cellular differentia‐
tion may also influence the expression of P‐glycoprotein (P‐gp) through ezrin, radixin, and 
moesin in MDR osteosarcoma cells [92–104], which exhibit a significant increase in well‐orga‐
nized actin stress fibers [103], while inhibiting actin remodeling can suppress drug resistance 

in cancer [105].

The balance between polymerized and nonpolymerized tubulin will be a key determinant of 

the response to antimitotic‐based chemotherapy. Cancer cells obtain mitotic drug resistance 

Figure 1. Cellular cytoskeletons in epithelial‐mesenchymal transition process (EMT).

Cytoskeleton - Structure, Dynamics, Function and Disease304



properties through β I‐tubulin mutations [106], which is important for maintaining micro‐
tubule structure and sensitivity to microtubule‐targeting agents. β‐tubulin mutations confer 
resistance to epothilone and taxanes in ovarian cancer cells. Moreover, mutations in both 
a‐ and β‐tubulin have been found to confer resistance to colchicine and vinblastine in Chinese 
hamster ovary (CHO) cells [107, 108]. The upregulation of β III‐tubulin was further associated 
with resistance to paclitaxel and docetaxel [109–113]. On the other hand, as a negative regula‐
tor of β III‐tubulin, HDAC3 can also mediate drug resistance [113].

As a major intermediate filament in the cells of epithelial‐derived tumors, cytokeratin K8/18 
expression is involved in cytokeratin‐dependent drug resistance [114]. Hepatocyte cytokera‐
tin plays a role in bile formation and resistance to bile acid challenge; however, the loss of K8 
significantly increased liver injury in response to toxic stress in mice [115]. Caulin also dem‐
onstrated that normal and malignant epithelial cells deficient in K8/18 were approximately 
100 times more sensitive to TNF‐induced death [116], indicating that interaction between the 

damaging agent and cytokeratin might trigger signaling responses for cell survival.

In our previous study, we found that tissue remodeling proteins such as KRTHB3, KRT7, 
KRT8, KRT17, TPM4, CRYAB, SEPW1, LGALS3BP, and VATI were overexpressed in resis‐
tant KB‐v1 cells, implying that the intracellular vesicular transport of many drugs is partly 
controlled by cytoskeletal filaments [117]. Research into the cytoskeleton is experiencing 
increased interest and rapid advancement, which will provide a greater mechanistic under‐
standing of the molecular pathways and mechanisms contributing to drug resistance and will 

enable the development of more patient‐tailored therapies.
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