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Abstract

Aortic arch aneurysm is a complex aortic pathology which affects one or more aortic arch 
vessels. In this chapter, we explore the hemodynamic behavior of the aortic arch in aneu‐
rysmatic and treated cases with three currently available treatment approaches: surgery 
graft, hybrid stent‐graft and chimney stent‐graft. The analysis included time‐dependent 
experimental and numerical models of aneurysmatic arch and of the surgery, hybrid 
and chimney endovascular techniques. Dimensions of the models are based on typical 
anatomy, and boundary conditions are based on typical physiological flow. Flexible and 
transparent experimental models were used on a mock circulation in vitro experimen‐
tal system to allow both visualization and time‐dependent flow and pressure measure‐
ments. The simulations used computational fluid dynamics (CFD) methods to delineate 
the time‐dependent flow dynamics in the four geometric models. Results of velocity vec‐
tors, flow patterns, pressure and wall shear stress distributions are presented. Both the 
numerical and experimental results agree on the poor hemodynamics of the aortic arch 
aneurysm and present the hemodynamic advantages of the surgery technique, implying 
the possible advantage of fenestrated stent‐graft for the aortic arch. Out of the two mini‐
mally invasive procedures, the hybrid procedure clearly exhibits better hemodynamic 
performances. The chimney graft technique is based on off‐the‐shelf devices; thus, it is 
low in cost and requires less pre‐operation preparations. However, it is associated with 
higher risks for complications, such as endoleaks and stroke. This chapter may give some 
insight into the hemodynamic characteristics of the different procedures.

Keywords: thoraces aortic aneurysm, endovascular repair, stent‐graft, CFD, in vitro 
visualization
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1. Introduction

Aortic arch aneurysm is a rare condition of aortic aneurysm with relatively high fatal risk for 

fast enlargement and rapture [1–3]. Aortic arch aneurysms or thoracoabdominal aneurysm 

(that involves large portions of the aorta) are considered complex aortic pathologies require 
coverage of one or more aortic arch vessels (as sketched, for example, in Figure 1a) and are 
usually repaired using total vessel replacement via open surgery (as sketched in Figure 1b).

The introduction of endovascular aneurysm repair (EVAR) offers an attractive minimally 
invasive alternative for diseases of the aortic aorta. This technology has advanced to treat 

more complicated cases of aneurysm thanks to advances in imaging and materials technol‐

ogy. The surgical procedure for aortic arch replacement is considered one of the most chal‐

lenging cardiac surgeries, which often requires a combination of median sternotomy and 

lateral thoracotomy and usually requires aortic cross‐clamping and hypothermic circulatory 

arrest. It is a highly complex operation which carries a substantial risk of morbidity and mor‐

tality [4, 5]. The EVAR alternative, on the other hand, is a procedure that requires only small 
incisions in the groin, local anesthesia and without interrupting blood flow. EVAR procedures 
are associated with a lower morbidity and mortality compared to open repair technique [6–8].

However, EVAR techniques face a major challenge in the repair of the aortic arch, which is to 
maintain blood flow to the side branches in the sealing zone of the graft [9]. Since this condition 

is relatively rare and complicated, no standard clinically approved device was introduced yet 

and most of the reported clinical solutions to overcome this challenge are patient specific in 
house combination that can fall into one of the two major approach classifications: (i) the graft 
procedures using fenestrations or chimney technique (e.g., chimney of innominate artery, as 
sketched in Figure 1c), or (ii) the total hybrid debranching procedures (Figure 1d) [10].

In the chimney graft technique [7, 11, 12], a covered stent is placed parallel to the main aortic 

stent‐graft, similar to a chimney, providing the necessary blood perfusion to the vital upper 

branches. In order to distribute the blood flow among the other upper branches, bypasses are 
also required between the side branches. For example, a bypass between the innominate artery 
(IA) and the left subclavian artery (LSA) and between the LSA and the left common carotid 

Figure 1. Schematic illustrations of aortic arch with: (a) aneurysm; (b) surgery graft; (c) chimney SG and (d) hybrid graft.
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artery (LCCA), as shown in Figure 1c. The chimney graft technique allows the use of standard 

off‐the‐shelf covered stents for an emergency or immediate treatments of challenging aneurysms 
without sufficient neck, allowing an alternative to fenestrated stent‐grafts in urgent cases [13].

In the hybrid total aortic arch debranching, a bifurcated Dacron graft is connected to the 

ascending aorta using a proximal end‐to‐side anastomosis [14–17]. The deployment of the 

endograft is done after bypassing the LSA as shown in Figure 1d.

Both approaches were proven to be technically feasible with high short‐term technical suc‐

cess rate and relatively favorable rates of perioperative outcomes. Long‐term outcomes remain 
undefined [12, 18–20]. The hybrid technique is considered to have better performance [21]; 
however, it uses custom‐made devices associated with long manufacturing times and increased 

costs [22]. The chimney technique has the advantage of applying available off‐the‐shelf devices, 
being technically less complicated. However, in high‐risk patients, it is associated with a rel‐

evant morbidity, mortality and reintervention rate. Therefore, it is often recommended only for 

patients not suitable for conventional aortic arch repair or emergency cases at present [23, 24].

In this study, we show the similarities between the numerical mesh and the visualization 

 models, thus properly representing the case, while obtaining similar flow patterns and 
regimes.

2. Methods

2.1. Experimental models

Four silicone prototype models were procured by dipping, representing typical anatomical 
geometries of the four cases. A hybrid graft was manually fitted using Propoxy 20 as seen 
in Figure 2a, to modify the healthy case. Figure 2b displays the resulted hybrid model after 

being fitted with the hybrid graft and a placement of a bypass between the LCCA and LSA. 
Note the clipping of the LCCA and IA arteries at their connection point to the aortic arch 
according to surgery specs using silicone glue.

Figure 2. (a) Fitting the hybrid bypass mold to the real size model according to surgery specifications and (b) the resulted 
model.
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Modifying a healthy case model to a chimney graft model was done, by inserting a 10‐mm 

diameter tube—representing a stent‐graft (SG) from the IA down to the aortic arch as seen 
in Figure 3a. In order to enable the insertion, the IA was cut and reconnected to the aortic 

arch. Figure 3b shows the permanent placement of the inner tube representing a SG. Note the 
bypass connection to the various arteries using an adhesive.

After gluing all of the models and bypasses, every model underwent a pressure test to insure 

no endoleaks. The hybrid model during visual sealing verification prior to a pressure test is 
seen in Figure 4a and during a pressure test in Figure 4b. Note the stream of water leaking 

from the bypasses connection to the LSA.

The four finalized models are seen in Figure 5.

Figure 4. The hybrid model (a) during a pressure test. Note the leaking water stream at the bypasses connection point 
and (b) after fixing the leak.

Figure 3. Remodeling the original model to match the chimney technique. Note the: (a) insertion of the stent graft into 
the Aortic arch and IA, (b) the permanent placement of the inner tube modeling the SG and (c) the connection of the LSA 
and LCCA arteries to the IA via a bypass.
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2.2. Pulse duplicator flow loop and particle image set‐up

An in vitro experimental set‐up was utilized to create image aortic, graft and bypass flow. 
A pulse duplicator flow loop was constructed to generate pulsatile flow to mimic the physi‐
ological conditions of the arterial system using a positive displacement pump (enabler by 
hemo dynamics) as seen in Figure 6a. Each model was placed in turn into the system, where 
the aortic root was connected to a model of a three‐leaflet aortic valve which was connected to 
a bubble trap and a pulse duplicator. A series of valves were placed at the IA, LSA, LCCA and 
descending aorta, respectively, to control pressure and flow rates as seen in Figure 6b. The 

mean inlet flow rate was set at 4 L/min at 60 beats per minute. Flow volume in the IA, LCCA 
and LSA was set to 0.4, 0.32 and 0.28 L/min, respectively, according to common physiologi‐
cal distribution rates. The IA, LCCA and LSA arteries were then reconnected to a reservoir.

Warm water (37°C) was utilized while letting the system work for several hours prior to the 
experiment in order to reduce the air solubility in the water.

A 532 nm laser with a diverging lens was placed at a distance to form a thin sheet of light. A 

high speed camera (Bonito, Allied vision technologies, Germany) was placed at a 90° angle 
beneath the model. Fluoresentric particles were then injected into the system, and videos and 
still shots were taken and analyzed.

Figure 5. (a) Typical model dimensions and (b) the four silicone models.

Figure 6. (a) The experimental system. The pulse duplicator is seen on the right and (b) measuring flow rates at the IA, 
LCCA and LSA.
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2.3. Numerical analysis

The numerical model is fully described in previous publications [19] and is briefly described 
below. The numerical analysis included computational fluid dynamics (CFD) simulations of 
the time‐dependent flow in models of the aneurysmatic arch and of the surgery, hybrid and 
chimney endovascular techniques (Figure 7), identical to the experimental models.

The numerical model is fully detailed elsewhere [19] and will be presented here briefly. The model 
solves numerically the equations governing momentum and continuity in the fluid domain:

    
∇ ⋅ V = 0

   ρ   DV ___ 
Dt

   = − ∇ p + μ  ∇   2  V + ρg
   (1)

where p is static pressure, t is time, V is the velocity vector, ρ and μ are density and dynamic vis‐

cosity of the fluid, respectively, and g is the vector of gravity. The flow was assumed laminar and 
the fluid was assumed homogenous, incompressible (with density ρ = 1 g/mL) and Newtonian.

In order to compare the numerical models with the experiments, the simulations used water 

(with viscosity μ = 1 cP). In addition, simulations with blood (μ = 3.5 cP) were also performed.

The boundary conditions were similar to those specified for the experimental apparatus. The 
time‐dependent inlet aortic flow and outlet pressure are shown in Figure 8a. Flow distribu‐

tion between branches outlets was imposed as described in Figure 8b.

The commercial software ADINA (ADINA R&D Inc., MA) was used to solve the set of fluid 
equations using the finite‐element scheme. The numerical meshes consisted of 0.5–1 M tetra‐

hedral elements each. For each case, a single cardiac cycle was analyzed with 10 time steps per 
cycle. Mesh and time‐step validation test were performed as detailed in previous reports [19].

Figure 7. The four numerically meshed models (top—full models and bottom—magnified view).
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3. Results

The resulted flow fields as calculated and visualized in the four cases are presented in Figures 9–14.

In the aneurysmatic case, three noticeable vortices are calculated (as seen in Figure 9a) and visu‐
alized (Figure 9b). In both methods, similar flow patterns dominant the flow field, including a 

Figure 9. Flow patterns in the aneurysm case—(a) CFD particle trace and (b) visualization.

Figure 8. Boundary conditions of the numerical models: (a) inlet aortic flow and outlet pressure, as a function of time 
and (b) flow distribution between side branches (IA, innominate artery; LSA, left Subclavian artery; LCCA, left common 
carotid artery; DA, descending aorta).
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single major vortex toward the center of the aneurysm accompanied by a shear layer between 
the vortex and the aneurysm wall. During diastole, a single vortex appears at the branching 

point of the IA with the aortic arch and a smaller vortex preceding the aneurysm.

Figure 10 shows flow patterns in the surgery graft case as calculated (a and b) and visualized (c). 
The branching arteries provoke vortices that form during the diastole. Helical flow starts near 

Figure 10. Flow patterns in the surgery graft. (a and b) CFD particle trace (c) visualization.

Figure 11. Flow patterns in the chimney graft (a) CFD particle trace at the IA branching (b) CFD particle trace in the aorta 
adjacent to the chimney graft (c) visualization.
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the branching arteries and down streams toward the descending aorta as seen in Figure 10b. 

A noticeable vortex appears at the branching point of the IA with the aorta. Two more vortices 

appear at the bottom section of the aortic arch where the helical flow is generated.

Figure 11 shows flow patterns in the chimney SG case as calculated (a and b) and visual‐
ized (c). Large vortices are found at the IA origin and at the SG's intake. Smaller vortices are 
formed adjacent to the SG.

The flow in the bypass connection with the IA, LCCA and LSA are shown in Figure 12. 

Vortices are found at the exit point from the SG to the IA, at the anastomosis to the LCCA and 
at the connection point of the bypass with the IA and LSA.

In the hybrid graft case (Figure 13), a vortex is seen at the branching point of the graft with 
the aorta. Smooth flow is seen in the graft and bifurcation. Vortices also appear at the stumps 
of the IA, LCCA and LSA. Vortices are also found at the bypass connection to the LCCA and 
LSA (Figure 14) and at the LSA stump.

Figure 12. Flow patterns in the chimney bypass (a) CFD particle trace (b) visualization.

Figure 13. Hybrid graft (a) particle trace (b) visualization.
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4. Discussion

In this study, four numerical models were built and verified using an in vitro experimental 
method. The models represent aortic arch aneurysm and three different treatment approaches. 
Comparison of flow patterns between the numerical and experimental results exhibits similar 
flow regimes in all four models, indicating the validity of the numerical model.

In the aneurysm case, poor hemodynamics is well demonstrated. A large vortex occupies the 

entire aneurysm sac, and in its center, a single significant stagnation point is observed, espe‐

cially during diastole as seen in Figure 9. This induces poor particle washout and has a high 

risk of thrombus formation, as shown in previous studies as well [25, 26].

The surgery graft case demonstrated the best hemodynamics performance of all cases. The flow 
patterns deduced from the numerical analysis are clearly seen in the visualization (Figures 9–14). 
The helical flow that is generated at the aortic arch as seen in the numerical solution is noticed in 
vitro as well. This type of flow is consistent with findings from literature [27–29].

The chimney case (Figures 11 and 12) presented the most disturbed flow of all the three 
approaches. The large vortex at the insertion point of the stent‐graft provokes a strong shear 

layer and vortical area downstream. A second large vortex at the bend toward the IA is well 

shown in the numerical model, but was not visually confirmed by the experiments due to 
local reflections and light scattering from the model. In addition, a series of vortices forming 
in the stubs of the arteries where they connect to the bypass are clearly seen numerically and 

experimentally (Figure 12).

In the hybrid graft case, a single vortex is noticed at the connection with the aortic arch (seen 
in Figure 13), followed by clean flow in the hybrid grafts branching point. Visualization con‐

firms these findings. The bypass connection between the LSA and LCCA shows a vortex in the 
stub and is confirmed visually (Figure 14). Light did not reach the LCCA, and thus, visional 
confirmation was not possible.

Figure 14. Hybrid bypass (a) CFD particle trace (b) visualization.
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This study is aimed at validating the numerical models using methods of visualization. The 

two methods were compared qualitatively by means of flow patterns analysis.

The resulted time‐dependent flow presented similar flow regimes and vortex configurations.

The analysis did not take into consideration the motion of the aortic wall [30], and we did not 

use patient‐specific geometries or boundary conditions. Nor turbulence or non‐Newtonian 
effects were considered. Yet, we believe that our models represent the dominant factors influ‐

encing the hemodynamics in the different cases.

The reason for model simplifications is that patients’ anatomy and physiology come in 
large variations, and whatever models used will lead to inaccuracy for the global analysis. 

Therefore, the models are based on representative prototype anatomical geometries, the 

boundary conditions are based on typical time functions from literature and the flow models 
were simplified. These assumptions might lead to some inaccuracies in the calculated values 
for specific patients, especially in WSS and pressure; however, it should not change the over‐

all conclusions of the study.

In conclusion, this study was aimed at introducing a valid numerical model for the differ‐

ent cases. Future research will use more accurate experimental analysis and will examine 
flow parameters in the different numerical models, including specific regions (like gutter and 
stumps), wall shear stress, pressure drops and perfusion.
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