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Abstract

There are many evidences pointing to oxidative stress as the promoter of the develop-
ment of many degenerative diseases such as cancer, cardiovascular diseases, and neuro-
degeneration. It has been suggested that a diet rich in antioxidants would be beneficial 
to human health. To determine the antioxidant capacity of the different sources of anti-
oxidants, they have different chemical methods used, in vitro cells, laboratory animals, 
and recently nanoparticles. This chapter provides an account of the main antioxidant 
evaluation methods applied to phenolic compounds, recounting their advantages and 
disadvantages, as well as a reflection on the parameters that should always care to obtain 
reproducible results.

Keywords: antioxidant capacity, phenolics, free radicals, standardized methods

1. Introduction

Phenolic compounds, or polyphenols, are a wide group of metabolites that originate from 

the secondary metabolism of plants. They contain one or more hydroxyl groups attached to a 
benzene ring and have an important role in the defense against plant pathogens and abiotic 

stressors [1].

This is one of the largest groups given its high chemical diversity. The basis of their structure 

is precisely a phenol group, that is, a hydroxyl attached to an aromatic ring [2] (Figure 1). 

Phenolic compounds are a chemically heterogeneous group, with the following chemical 

properties: some compounds are water soluble, some are soluble in organic solvents, some 

are found as glycosides, and some others are large insoluble polymers. Another characteristic 

is that this is a chemical group with high antioxidant activity (AOA) [3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Antioxidants

The term “antioxidant” is more important every day in modern society, since it is being 

associated with a whole series of benefits to human health. Despite that, antioxidants have 
applications not only in health but also in fields such as the chemical industry, where they 
are used as additives in the manufacture of rubbers and plastics to delay damage by the 

action of oxygen [4]. Also, in the food industry adding these antioxidant molecules results 

in prolonged shelf life, as in the case of fats, which become rancid due to the action of reac-

tive oxygen and nitrogen species [5]. In the widest sense, an antioxidant molecule can be 

defined as a substance capable of preventing or delaying the oxidation of other molecules, 
such as lipids, proteins, or nucleic acids [6]. In the preceding definition, it is understood 
that the antioxidant molecule per se can perform such activity, as is the case of molecules 

as big as proteins and enzymes, or smaller molecules including vitamins, carotenoids, and 

phenolic compounds, of which flavonoids have an important role. However, authors like [6] 

mention that a more updated definition of what an antioxidant is would have to include not 
only the molecules that scavenge or reduce an oxidizing chemical compound but also those 

that act as chemical signals that induce the synthesis of enzymes related to the antioxidant 

mechanism of the cell.

Such oxidation can be carried out by two types of chemical reactive species: free radicals and 

other molecules that, without being radicals, due to their reactive nature can induce oxidation 

in molecules as the ones already mentioned.

3. Free radicals and reactive oxygen species (ROS) and their reaction 

mechanisms

It is widely known that in the atom, the electrons are ordered in their energy orbitals, with an 
even number of them in the last, most external level. This distribution gives the atom stability 

and a low possibility of reaction with a nearby atom. However, under certain conditions, the last 
level of energy can lose its stability by losing or gaining an electron. When this happens, the last 

orbital shows an unpaired electron, making the atom a free radical. This characteristic results in 

 Figure 1. Phenol group, the basic structure of phenolic compounds.
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a drastic increment of its ability to react with other atoms and/or molecules present nearby; in 

the cell environment, these molecules include lipids, proteins, and nucleic acids. When  chemical 

interaction between free radicals and the aforementioned molecules occurs, changes in the 

structural properties of macromolecules can result, which eventually affect their function [7].

It is important to mention also the reactive oxygen species (ROS). This term includes all those 

reactive molecules, free radicals or not, that center their reactivity on an atom of oxygen. In 

spite of the delimitation that the presence of oxygen [8] gives, this title also includes chemical 

species with chemical reactivity centered on or derived from atoms that are different from 
oxygen. Such is the case of species that contain nitrogen or chlorine, atoms that are respon-

sible for their chemical reactivity [9] (Table 1).

4. The presence of free radicals and reactive oxygen species in living 

organisms

In mammals, the reactive chemical species generated are nitric oxide (NO−). This free radical 

is a product of the enzymatic action mediated by the nitric oxide synthase located in the cyto-

sol of the cell; it is continuously produced by vascular endothelial cells [10].

Regarding the endogenous generation of ROS, it is part of the normal working of the aerobic 
organism. Under normal physiological conditions, animal tissues produce significant amounts 
of ROS. Among the most produced ROS, the free radical superoxide (O

2
−) prevails [11]. This 

radical is produced through the electron transport chain in the mitochondrion (during the inter-

action between oxygen molecules and complexes I and III) [12]. It is necessary to remember that 

the electron transport chain is a series of reactions oriented to producing, between the matrix 

and the intermembrane space, a proton gradient that is used by the cell to synthetize ATP from 

ADP. During the functioning of such chain, from 1 to 3% of oxygen that enters the mitochon-

dria is transformed to superoxide (O
2
−), that is, it gains an electron. Despite that, and thanks 

to the presence in the mitochondrion of the superoxide dismutase, the levels of O
2
− diminish, 

 

Free radicals Nonradical reactive species

Superoxide O
2

− Hydrogen peroxide H
2
O

2

Hydroxyl HO− Hydroperoxide ROOH

Alkoxy RO− Hypochlorite ClO−

Peroxy-OOH Singlet oxygen 1O
2

Nitric oxide NO Ozone O
3

Nitric dioxide NO
2

Peroxynitrite NO O
2

−

Modified from Ref. [5].

Table  1. Examples of free radicals and reactive oxygen, nitrogen, and chlorine species.

Phenolic Antioxidant Capacity: A Review of the State of the Art
http://dx.doi.org/10.5772/66897

61



 becoming oxygen and hydrogen peroxide. Hydrogen peroxide too is quickly reduced to water 
inside the mitochondrion by the action of the enzyme glutathione peroxidase, and the hydro-

gen peroxide that is not reduced exits the mitochondrion to be eventually reduced by another 

class of peroxidases present in the cytoplasm and by catalase in the peroxisomes [12].

5. Methods for the evaluation of antioxidant activity

In the modern world, many scientists around the globe attribute the origin of many dis-

eases to oxidative stress; there is much evidence to support this theory [13, 14]. For this 

reason many nutritionists recommend the consumption of at least a minimum of foods 

such as fruits, vegetables, some drinks like grape wine, and spices and also food supple-

ments from natural and synthetic origin containing antioxidants to help keep an individual 
healthy [15].

The antioxidant molecules present in these foods, drinks, and supplements, among which 
phenols are included, have been characterized as antioxidants by means of several methods 

and under different experimental conditions. Despite that, sometimes the results from the 
same molecule may vary when different methods are used [5]. This can be understood in 

two ways: on the one hand, inside living systems there are multiple radicals and reactive 

chemical species, as well as mechanisms involved in oxidative stress; on the other hand, when 

an in vitro method is used, it is important to take into account the chemical nature of other 
molecules being tested to employ the most adequate assay in order to get results that are clos-

est to reality. For these reasons, there is no simple and universal method to characterize the 

antioxidant chemical abilities of all molecules [7]. Each proposed method will always have 

advantages and disadvantages, which need to be taken into account in terms of complexity, 
required facilities and equipment, the chemical mechanism that it tests, the quantification 
method, and its relevance in biological systems.

Several methods have been proposed to evaluate the antioxidant activity (AOA) of a mol-

ecule, which can be classified in several ways. In this chapter, they will be divided according 
to their reaction mechanism.

Antioxidants can deactivate radicals basically in two ways: (a) by a single-electron transfer 

(SET) and (b) by a hydrogen atom transfer (HAT). In the first case, the method will evaluate 
the capacity of the possible antioxidant to transfer an electron and reduce certain compound, 

including carbonyls, metals, and radicals [4, 7]. In the second case (HAT), the capacity of an 
antioxidant to scavenge free radicals by proton donation is measured (Figure 2).

In the case of HAT, several inconveniences can arise during the evaluation, since the presence 
of reducing agents, including metals, can generate errors by an apparent reactivity [5]. Also, 

the result can be affected in SET by the presence of contaminating metals, and given that the 
SET reaction is normally very slow and requires quite a long time to finish, secondary reactions 
can occur, which may contribute to a high variability and poor repeatability of the results [5].
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There are several methods reported in the literature to determine the antioxidant activity of 

polyphenols; however, in this chapter only the most common methods related to antioxidant 

activity of phenols will be discussed.

5.1. Methods based on the HAT reaction mechanism

5.1.1. Method with phycoerythrin

The substrates that are employed in this assay are two proteins found in several species 

of red algae: β-phycoerythrin and R- phycoerythrin [17, 18]. Their most important trait, 

relevant to the assay, is that they are fluorescent; this fluorescence diminishes on contact 
with peroxyl radicals, product of heat decomposition of 2,2´-azobis(2-amidinopropane) 

dihydrochloride (AAPH), and the decrease is proportional to the amount of those radicals. 

But, when molecules of an antioxidant are added, the loss of fluorescence is decreased. 
However, phycoerythrin presented serious disadvantages identified in [19], such as the 

variability in the quality of this fluorescent protein varied from one extraction to another; it 
is also photoblanched under plate-reader conditions, and finally this protein interacts with 
polyphenols due to the nonspecific protein binding and loses fluorescence even without 
added radical generator [4]. For this reason, another fluorescent molecule that did not have 
such disadvantages being the fluorescein (3′,6′-dihydroxyspiro[isobenzofuran-1[3H],9′[9H]

Figure 2. Reaction mechanisms of single-electron transfer (SET) and hydrogen atom transfer (HAT) [16]. Both mechanisms 

almost always occur together in all samples, with the balance determined by antioxidant structure and pH.
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thioxanthene]-3-one), a nonprotein synthetic molecule, was the most appropriate [19]. 

Using this method, the automated oxygen radical absorbance capacity (ORAC) of several 
products, including fruit juices and nectars, has been reported using Trolox as standard; 

these results have been published as equivalents of such standard [20]. The results involve 

both the time that the inhibition of the oxidation lasts and the concentration of the substrate 

that can be inhibited.

5.1.2. Comments about this method

When this method is used to evaluate phenolic acids, they show a low activity against per-

oxyl radicals compared with some flavonoids, which have several hydroxyl groups. Despite 
this appreciation, even flavonoids in form of glycogens can show ORAC activity. This 
shows that several factors are involved in the antioxidant activity of the molecules, such as 

their propensity to donate hydrogens or oxygens, which is directly related to the reduction 

of their potential [20].

5.1.3. Total radical-trapping antioxidant parameter (TRAP)

This method evaluates the capacity of antioxidant compounds to block the potential reac-

tion between peroxyl radicals originated from the 2,2´-azobis(2-amidinopropane) (ABAP) 

and the R-phycoerythrin by measuring its fluorescence or from the 2,2′-azobis(3-ethyl-
benzothiazoline-6-sulfonic acid) (ABTS) by measuring its absorbance [21, 22]. Using this 

method, the antioxidant capacity is determined as the time needed for all the antioxidant 

to be consumed, by the increment of the time needed for the oxidized products to appear 

when the antioxidants are added or also as the percentage of reduction of the oxidation 

reaction. The values of this test are generally expressed as the increment of the time needed 

for the oxidized products to appear or the reaction time of the antioxidant, compared with 

the times of Trolox [23].

5.1.4. Comments about this method

When one wishes to compare the results obtained in different laboratories, there is the 
problem that the time allowed for the reaction to occur is different. This problem can be 
overcome by reducing the time of observation when testing a specific antioxidant and 
also by using more adequate equipment. It is necessary to mention that this assay has 
also been criticized for using nonphysiological oxidative stress (water-soluble peroxyl 

radicals) [24].

5.2. Methods based on the SET reaction mechanism

5.2.1. FRAP method

The initials FRAP stand for “ferric reducing antioxidant power method.” This method is 

based on the reductive capacity of the iron that is part of the compound Fe (TPTZ)3+ [25]. 

When this compound is reduced to Fe (TPTZ)2+, a blue color appears, and its absorbance can 

be measured at 593 nm. The medium of the reaction is acid, and the results can be expressed 
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in the form of Fe2+ equivalents, or as in other methods, by using a standard compound. This 
method was initially developed to be used in plasma, but nowadays it is employed in other 

liquids such as fruit juices and pulps and other foods.

5.2.2. Comments about this method

The most criticized part of this method is that it assumes that the maximum reaction time is 

between 4 and 6 min [5], but in the case of phenolic compounds including acids such as caf-

feic, tannic, and ferulic, or quercetin, the reaction can last for more than an hour.

Also, according to [20] since this method is used in complex liquid mixtures such as fruit nec-

tars, all the molecules that are part of that fluid take part in the reduction of Fe3+; therefore, it 

is not possible to determine the individual participation of the different components from the 
mix of antioxidants in the total antioxidant activity.

5.2.3. Copper reduction assay

This assay is based on the reduction of Cu(II) to Cu(I). In this reaction, all the antioxidant mol-
ecules from a sample are involved. There are basically two methods that use copper. The first 
of them is the assay Bioxytech AOP-490, where the molecule bathocuproine (2,9-dimethyl-

4,7-diphenyl-1,10-phenanthroline) forms a complex 2:1 with copper (Cu(I)), and a chromo-

phore is formed, with a maximum of absorbance at 490 nm [21]. The amount of bathocuproine 

that contains Cu(I), product of the reaction of Cu(II), causes a variation in the absorbance of the 
color complex at 450 nm. Similarly, the assay with CUPRAC uses neocuproine (2,9-dimethyl-
1,10-phenanthroline), and the complex with Cu(I) will be the one that presents coloration at 
450 nm. Uric acid is used in the standard curve, and, therefore, the results will be expressed 

as equivalents of that acid [5].

5.2.4. Comments about this method

The advantage of copper over iron is that every class of antioxidant, including thiols, will be 

detected with very little interference from free reactive radicals, and the kinetic of the reaction 
when using copper is faster compared with iron (FRAP) [5]. An inconvenience that can arise 

is that the phenanthroline is not water miscible, and, therefore, it must be mixed with organic 

solvents such as 95% methanol [26].

5.2.5. Trolox equivalent antioxidant capacity/ABTS radical cation decolorization assay

By using a spectrophotometer in this assay, the loss of color can be measured when an antioxi-

dant is added to the chromophore ABTS. + (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid)). When the antioxidant molecule reduces ABTS. to ABTS, the solution diminishes its 

blue-green coloration, tending to be colorless. [27]. The usual way to prepare and use ABTS is 

by adding 80 mg of manganese dioxide to a stock solution of 5 mM ABTS prepared in a buffer 
of 17 mM Na/K at pH 7. As an antioxidant standard, Trolox (6-hydroxy-2,5,7,8-tetramethyl-
chroman-2-carboxylic acid) is used. The standard curve is made with at least six concentra-

tions, ranging from 0 to 350 μM. The samples to be tested are diluted in the buffer of Na/K pH 
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7 and then mixed with 200 μL of the ABTS solution in a 96-well plate. The absorbance at 750 

nm is recorded. Trolox equivalent antioxidant capacity (TEAC) values are calculated from the 
standard curve with Trolox, and the results are expressed in Trolox equivalents (mM) [27].

5.2.6. Comments about this method

Currently, this method is widely used in many laboratories around the world due to its 
simplicity of use [28–30]. Thus, the antioxidant activity of a vast range of compounds has 

been reported using this method. The assays can be carried out in media with both organic 

and inorganic solvents without affecting ABTS activity. It can be carried out in plates 
with wells, greatly reducing the use of reagents and making this method environmentally 
friendly. However, this radical is not naturally found in living organisms, and, thus, the 
results may not be considered representative of those that take place in living organisms. 
Finally, regarding the thermodynamic properties of phenols, one compound can reduce 

ABTS only if its redox potential is lower than that of ABTS; the potential of phenols is lower, 

so they can reduce ABTS, and it can be used as an antioxidant test for these molecules [5].

5.2.7. 2, 2′-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay

DPPH is a nitrogenous organic radical with a delocalized electron, and this characteristic 
gives it a purple coloration, with a maximum absorbance at 515 nm [31]. The assay is based 

on the measurement of the capacity of antioxidants to reduce DPPH [32]. Such reduction can 

be measured by the decolorization of the purple color in its absorbance. This assay was first 
reported by [33], and according to [34], to carry it out, it is necessary to dilute 200 μL of the 

sample in methanol and mix it with 2 mL of 0.5 mM DPPH. After 30 min, the absorbance is 
measured at 515 nm in a spectrophotometer. The percentage of DPPH radical scavenging is 
calculated with the expression:

  % inhibition of DPPH radical =  ( (Abr − Aar)  /  Abr)  × 100  (1)

where Abr is the absorbance before the reaction and Aar is the absorbance after the reaction 

occurred.

5.2.8. Comments about this method

As ABTS, DPPH is also widely used in many laboratories in the world due to its simplicity 
and the ease to carry it out. However, the fact that the absorbance is read at 515 nm can cause 
interferences with compounds that absorb at the same wavelength, which may complicate 

the interpretation of the results [5]. On the other hand, other chemical characteristics of DPPH 
make understanding the results more difficult. This assay is not competitive because DPPH is 
a radical and an oxidant at the same time, so decolorization of the reactive can be attributed 
both to the reaction of the radical and to a reduction of the steric accessibility, with the latter 
being determinant for the reaction. Thus, small molecules, with better accessibility to the site 
of the radical, would seem to have better antioxidant capacity. In contrast, larger molecules 
with much faster reaction times with DPPH than some smaller molecules could apparently 
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show lower antioxidant capacity. For these reasons, the results with DPPH must be inter-

preted with caution.

5.2.9. Folin-Ciocalteu AOC method or total phenolic assay

This is a classic method for the detection of total phenols in the laboratory [35]. However, dur-

ing color development an oxidation-reduction reaction takes place; due to that, this method 
has been proposed as a method for the detection of antioxidant activity, particularly in phe-

nols [36]. It was originally proposed in 1927, using molybdotungstate as a reagent for phenol 

reduction, with which a colorized compound was obtained; this compound was read at wave-

lengths between 745 and 750 nm [36].

This simple, sensitive and precise method, when the reaction occurred in an acid medium, it 

was much too slow. For this reason [37] improved the method by substituting the molybdo-

tungstate for molybdotungstophosphoric heteropolyanion, which reduces phenols more spe-

cifically, and the colorized product is read at 765 nm. The experimental conditions proposed 
in [37] consist in mixing 1 mL of the sample diluted in at least 60 mL of water and 5 mL of the 

Folin-Ciocalteu reagent; afterward, the mix is agitated, and 15 mL of Na
2
CO

3
 is added, mixed, 

and diluted to 100 mL with water; finally, it is incubated for 2h at 24°C, and the absorbance 
is measured at the indicated wavelength. Despite the simplicity of the instructions, several 
recent articles report variations in the incubation period, the concentrations of the reagents, 

and especially the interchange of gallic acid for some other standards, among which can be 

cited acids like tannic, chlorogenic, caffeic, vanillic, and ferulic, among others. This can lead 
to variations in the results, sometimes of several orders of magnitude [38].

5.2.10. Comments about this method

The advantage of the method is that it can be used with practically any plant sample, but only 

when the aforementioned conditions are controlled [38]. There is also a list of molecules, both 

inorganic (hydrazine, iron ammonium sulfate, manganese sulfate, sodium cyanide, sodium 

sulfite, and xanthine, among others) and organic that include amino acids such as adenine, 
sugars such as fructose, proteins, and fatty acids. If said interferences are controlled, then it is 
possible to consider the results of this method to report the antioxidant activity of the samples.

5.3. Assessment of the antioxidant capacity in cell culture

The methods used to assess antioxidant capacity that have been mentioned so far are carried 

out mainly in vitro, using only one oxidizing chemical species and a single reagent to show 

oxidant and antioxidant activity by means of color development, fluorescence, etc. However, 
it is necessary to know the real role of antioxidant molecules in living systems [39]. Cell 
culture is being used to address that issue; in them, chemical molecules that cause oxidation 

per se can interact with each other, as well as with molecules that do not cause oxidation 

by themselves, but that generate a disturbance in the redox balance of the cell, provoking 
in the end oxidative stress [40]. One of the advantages of this system is its ease of handling, 

compared with laboratory animals, which are harder to obtain and handle given the strict 

regulations for their ethical management. In this type of assays, it is important to verify the 
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final  concentration accumulated in the cell that is a product of their addition in the culture 
medium and/or its direct addition to cells, since not all antioxidants are incorporated into the 

cell in the same way, as it is cited by [40]. An example could be tocopherol and tocotrienol, 

because in several studies it has been reported that apparently, tocotrienols have a higher 

antioxidant activity compared with tocopherols; however, if the concentration of these anti-

oxidants is adjusted, both compounds have the same antioxidant capacity. The apparent dis-

parity in antioxidant activity is due to the fact that tocotrienols can enter the cell more easily 

given their short chain compared with tocopherols.

5.4. Nanotechnology-aided assays

With the advent of the nanotechnology in the decades of 1980–1990 [41], the technology that 

is being developed has also proposed the use of a method that uses nanoparticles to evaluate 

antioxidant activity as well. Scampicchio proposed, in one of the first works in the field [42], 

the assessment of some phenolic compounds by the generation and growth of gold nanopar-

ticles (AuNPs) from a gold solution (AuIII) in solution (HAuCl
4
) by the generation of a sharp 

plasmon absorption band at 555 nm. The optical properties of the AuNPs correlate well with 

the reduction potential of phenolic acids, something that can be determined by voltimetric 

measurements, and this method is proposed to evaluate antioxidant capacity of pure com-

pounds or their mixtures [6].

When [43] conducted an experiment where they characterized the kinetic of AuNP generation 
at an absorbance of 540 nm and described a sigmoid curve as a function of the concentration 

of polyphenols, they proposed the following equation:

     A  
540

   =  A  
max

   /  1 + e − KAuNPs (X −  XC  
50

  )    (2)

XC
50

 = the concentration of polyphenols that give half of the maximum plasmon reso-

nance absorption; KAuNPs = the number of AuNPs produced by concentration unit of 

polyphenols.

The authors proposed that KAuNPs be used as a parameter to estimate antioxidant activity. 

This method has already been employed in the determination of antioxidant activity of sev-

eral products including honey [44], wine [45], tea [46], apples [47], etc. For their part, [48] also 

used silver nanoparticles for the same goal. The method, whose name is silver nanoparticle 

antioxidant capacity (SNPAC), uses Trolox as its standard. The rationale of this method is 
that polyphenols are able to reduce Ag+ ions in the presence of citrate-stabilized silver seeds; 

the intensity of the plasmon, visible at 423 nm, is evaluated, and thus antioxidant capacity 

[49] is quantitatively assessed. With respect to polyphenols, this method is more robust and 
repeatable than assays that use a direct reduction of metallic ions by antioxidants. As the gold 

method, this method has already been employed in several fruit juices and teas [50]. Some 

of its main advantages are good linearity with the concentration of the sample (polyphenols) 

and the lack of interference by molecules present in the samples such as reducing sugars, fruit 
acids, or amino acids.
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6. Conclusions

Throughout the development of different methods to determine antioxidant activity of several 
molecules, polyphenols among them, one can observe an evolution, which goes from the involve-

ment of the antioxidant with its substrate, its exposition to several antioxidants, and a medium 

that shows the changes that take place during the reaction, to more sophisticated methods where 
the kinetic of the formation of nanoparticles show the presence or absence of antioxidant activity.

In the light of so many methods, a question arises: Why is not there a universal method to 
evaluate the antioxidant activity of any molecule? The answer may not be simple, but it 

would have to do with the goals that are sought; they may be the simple detection of antioxi-

dant activity in a sample, or they may include the comparison of antioxidants with each other 

and the understanding of the process inside a living system such as cells in culture or more 

complex systems as laboratory animals and of course the human body.

Many authors recommend that certain steps be considered to select and report the results of 

antioxidant activity (Table 2). These include carrying out the assay in a systematic way, always 

respecting the conditions established for its development: controlling the source of the sample 

that is subject to experimentation regarding its origin, management during its collection and 

transport to the laboratory, and always controlling the standard used to compare the results of 

the sample. By adhering to these steps, variations in the results obtained by different laboratories 
can be reduced when the antioxidant activities from samples of the same origin are compared.

In the same way, the selection of one of the many available methods must be based on the 

following criteria, to optimize the results: (a) select a relevant source for the sample that is 

 

Method Required 

equipment

Biological 

relevance

Mechanism End point References

Fluorescein Sophisticated Medium ? Fixed time [19]

TRAP Sophisticated High HAT Lag phase [21, 22]

FRAP Medium Low SET Time varies [25]

Copper reduction Medium Low SET Time [26]

TEAC/ABTS Simple Low SET Time [27]

DPPH Simple Low SET IC
50

[31, 32]

Folin-Ciocalteu 
AOC

Simple Medium SET IC
50

[36]

Cell culture Medium High ? ? [39]

Nanotechnology Sophisticated High ? ? [42, 43]

Modified from Ref. [5].

Table 2. Relevant characteristics of the methods to evaluate the antioxidant capacity of phenolic compounds.
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 abundant enough to repeat the results; (b) select a method that is as simple as possible, tak-

ing into account the facilities, the equipment, and the reagents that are available; (c) choose a 
method where reaction times are clear, as well as the type of mechanisms that will be carried 

out; (d) select an assay with good repeatability; (e) consider if the antioxidants are of hydro-

philic or lipophilic nature; and (f) take into account the nature of the oxidants.

Many of the proposed assays that have been traditionally used to give a value to a molecule 

or group of molecules, in the case of crude extracts, are complex, since several factors can 

participate. For example, particle size has an effect over the determination of its activity, the 
pH, and the medium of dissolution. This can lead us to declare that simple tests that need little 
equipment are not always the most adequate. This is the case of DPPH; since it is a test that 
requires only a methanol, DPPH, glassware, and spectrophotometer, it could give the best 
results when assigning an antioxidant value to a molecule.

Another important aspect that could be a source of confusion in the literature is the inter-

changeable use of the terms activity and antioxidant capacity. During the compilation of 
articles for the preparation of this chapter, it was noted that several authors titled his research 

as antioxidant activity and reported figures rather denote the ability of extracts or molecules 
for antioxidation, reporting them in units of a standard as can be equivalent of Trolox or per 
unit of time. So that being strict about definitions, if the antioxidant activity of a sample is 
reported, it should simply describe whether or not presented such a phenomenon, something 

similar to what is done when colorful preliminary tests are done to detect the presence or 

no major group of secondary metabolites. As suggested be careful in handling of such terms 

and keep in mind that in the case of the antioxidant activity refers to whether or not an oxi-
dation retardant of a substrate regardless of the magnitude. On the other hand, it indicates 

how much capacity has antioxidation an extract or molecule to a substrate, in this case being 

reported in% inhibition, IC
50

, XC
50

, Trolox equivalents, etc., units that can be compared to 
know which sample is more suitable to prevent oxidation of said substrate.

The rise all over the world of the number of people with chronic-degenerative diseases caused 

by oxidative stress and a lack of antioxidants in the diet is more and more alarming, espe-

cially if the high cost that this implies for the health sector of any country is considered, due 

to the need to treat everyday more cases of cancer, diabetes, arteriosclerosis, hypertension, 

etc. Finding new sources of antioxidants, especially from natural sources, is paramount, and 

comparing them with the traditional molecules is also important; therefore, it is desirable to 

employ assays that show if an extract or molecule has or not antioxidant activity and that are 

able to quantify their antioxidant capacity.
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