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Abstract

Vanillin (4‐hydroxy‐3‐methoxybenzaldehyde) is an important flavor and aroma molecule, 
which has been widely used in not only foods and beverages such as chocolate and dairy 
products, but also masking unpleasant tastes in medicines or livestock fodder. Its chemi-
cal properties, manufacturing methods, novel applications, and developments in fast 
detections in air are discussed in detail.
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1. Introduction

Vanillin (4‐hydroxy‐3‐methoxybenzaldehyde) is an important flavor and aroma molecule but 
is also of interest because of its biogenetic relationship to the phenylpropanoid pathway and 
to other molecules of physiological significance, notably salicylate [1]. Vanillin is the most 
important ingredient of the well‐known vanilla, which is a complex blend of flavor and fra-
grance ingredients extracted from the seed pods of the vanilla orchid. As a flavorings agent, 
vanillin is used in not only foods and beverages such as chocolate and dairy products, but also 
masking unpleasant tastes in medicines or livestock fodder [2].

Here, its properties, manufacturing methods, and novel applications are discussed. Furthermore, 
its detection in air is introduced.

2. Molecular structure and properties of vanillin

Vanillin is the common name for 3‐methoxy‐4‐hydroxybenzaldehyde, and its molecular 
structure is shown in Figure 1.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2.1. Toxicity about vanillin

Toxicity about vanillin was studied as early as 1940 [3]. Generally, vanillin does not give 
human skin irritation and produce no sensitization reactions. Vanillin is considered to be a 
secondary allergen because sensitivity was found only in patients sensitive to vanilla, isoeu-
genol, and coniferyl benzoate. Animal studies showed that vanillin was not carcinogenic.

2.2. Antioxidant, antifungal or antimicrobial, and antimutagenic properties of vanillin 

and vanillin derivatives

Vanillin and vanillin derivatives have antioxidant and antimutagenic properties. Antifungal 
activities of vanillin and 33 vanillin derivatives against the human fungal pathogen 
Cryptococcus neoformans, which was the main pathogen of cryptococcal meningitis in immu-
nocompromised patients, have been studied [4]. Functional groups in the vanillin derivatives 
seemed to affect antifungal activity. The hydroxyl or alkoxy group seemed to be more effec-
tive than the halogenated or nitrated group in benzaldehyde in antifungal ability. O‐vanillin 
and o‐ethyl vanillin were with the highest antifungal activity against C. neoformans in the van-
illin derivatives. O‐Vanillin was further found to be able to cause mitochondrial dysfunction 
and trigger oxidative stress. These antifungal mechanisms of o‐vanillin were experimentally 
confirmed by the significantly reduced growth of the mutants lacking the genes involved in 
mitochondrial functions and oxidative stress response.

Evaluation in which structural elements of the vanillin molecule are responsible for its antifun-
gal activity was also investigated [5]. Minimum inhibitory concentrations (MICs) of vanillin, 
its six direct structural analogs, and several other related compounds were determined in yeast 
extract peptone dextrose broth against a total of 18 different food spoilage molds and yeasts. 
Experimental results showed that the antifungal order of isomers of hydroxybenzaldehyde 
and anisaldehyde was 2‐ > 3‐ > 4‐ and 3‐ > 2‐ > 4‐, respectively. The aldehyde moiety of vanillin 
seems to play a key role in its antifungal activity, but side‐group position on the benzene ring 
also influences this activity.

Figure 1. Molecular structure of vanillin.
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Antimicrobial activities and the MICs of solutions containing vanillin and vanillic acid 
against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Enterobacter aerogenes, 

Escherichia coli, and Yersinia enterocolitica were experimental studied by the agar well‐diffusion 
method [6]. The experimental results showed that the vanillin and vanillic acid was with inhib-
itory activity against all of the bacteria. Moreover, the MIC of the vanillin and vanillic acid 
decreased with the vanillic acid concentration. It suggested that thermal treatment of vanillin‐
containing food may lead to products with higher antioxidant and antimicrobial properties.

2.3. Protection human keratinocyte stem cells against ultraviolet‐B irradiation

Ultraviolet‐B (UVB) irradiation is one of major factors, which induce cellular damages in 
the epidermis. Protective effects and mechanisms of vanillin against UVB‐induced cellular 
damages in keratinocyte stem cells (KSC) have been investigated recently [7]. Experimental 
results indicated that vanillin significantly decreased the UVB irradiation‐induced cytotoxic-
ity. Also, vanillin seemed to be able to induce production of pro‐inflammatory cytokines. 
It was explained that vanillin could significantly reduce phosphorylation of ataxia telangiec-
tasia mutated (ATM), tumor suppressor protein 53 (p53), serine threonine kinase checkpoint 
kinase 2 (Chk2), c‐Jun N‐terminal kinase/stress‐activated protein kinase (JNK), S6 ribosomal 
protein (S6RP), p38/mitogen‐activated protein kinase (p38), and histone 2A family member 
X (H2A.X) generated by the UVB. Vanillin also could inhibit UVB‐induced activation of p53 
luciferase reporter. The results suggested that vanillin protects KSC from UVB irradiation. 
Vanillin may play its role through the suppression of downstream step of MDM2 in UVB 
irradiation‐induced p53 activation.

3. Manufacturing methods of vanillin

A simple laboratory synthesis is illustrated in Figure 2 to make a small amount of vanillin. This 
synthesis scheme involves electrophilic bromination of 4‐hydroxybenzaldehyde, followed by 
copper‐catalyzed methoxylation.

For large‐scale industrial syntheses, a classic early method starts from eugenol, which occurs 
naturally in cloves, nutmeg, and cinnamon. This isomerizes to isoeugenol in alkaline solution, 
and this in turn can be oxidized (by nitrobenzene) to vanillin (Figure 3).

Figure 2. Laboratory synthesis scheme of vanillin.
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Lignin was known to be a source of vanillin as early as at the beginning of the twentieth century. 
Lignin is a well‐known polymer, which plays strengthening role in woods and in the cell walls 
of plants. Since the 1920s, much of the world's vanillin was extracted from lignin waste from the 
cellulose industry [8].

Recently, potential of industrial Eucalyptus globulus sulfite liquor and kraft liquors was 
evaluated for the production of syringaldehyde and vanillin by oxidation with O

2
 in alkaline 

medium [9]. The Eucalyptus globulus sulfite liquor and kraft liquors were collected at differ-
ent stages of processing before the recovery boiler. Under controlled temperature and pres-
sure, the oxidations were performed in a jacketed reactor by two methods. One was the direct 
oxidation of pulping liquors, and the other was the one of kraft lignins isolated from liquors. 
Products profiles were established, as well as the yields, temperature and O

2
 uptake during 

the reaction. Results showed that sulfite liquor was the best raw material leading to the highest 
yield by direct oxidation. Thin kraft liquor (KL) was with the second high yield. Proportion of 
by‐products such as syringic and vanillic acids was low.

Natural vanillin was obtained by plant tissue culture early. Molecular biology and microbial 
biotransformation techniques can also be used to produce natural vanillin [10]. These techniques 
rely on natural vanillin precursor molecules (eugenol, isoeugenol, curcumin, or ferulic acid), and 
their enzymatic reaction pathways are very different. Among them, microbial biotransformation 
method seems to be the most promising for large amount of natural vanillin production with 
high efficiency and high quality.

Screening of bacteria to produce vanillin and/or vanillic acid from isoeugenol was car-
ried out [11]. Achromobacter, Aeromonas, Agrobacerium, Alcaligenes, Arthrobacter, Bacillus, 
Micrococcus, Pseudomonas, Rhodobacter, and Rhodococcus were found to be able to produce 
vanillin and/or vanillic acid, in addition of isoeugenol to the culture medium [11]. In par-
ticular, a soil isolate strain IE27 showed the highest vanillin‐producing activity, and it was 
identified as Pseudomonas putida. Under the optimized culture conditions, P. putida IE27 
cells produced 16.1 g/l vanillin from 150 mM isoeugenol. The molar conversion yield from 
isoeugenol to vanillin was as high as 71% at 20°C after a 24‐h incubation. Therefore, it is 
expectable to produce natural vanillin with high efficiency.

Production of vanillin from vanillic acid and O‐benzylvanillic acid was investigated by using 
whole cells and enzyme preparations of Nocardia sp. strain NRRL 5646 [12]. With growing 

Figure 3. Industrial synthesis scheme of vanillin.
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cultures of the whole cells, 69 and 11% of vanillic acid were found to be decarboxylated to 
guaiacol and reduced to vanillyl alcohol, respectively. On the other hand, no decarboxylation 
of 4‐O‐benzylvanillic acid was found in conversion to the corresponding alcohol product. 
Purified Nocardia carboxylic acid reductase, an ATP and NADPH‐dependent enzyme, was 
found to be able to reduce vanillic acid to vanillin quantitatively.

In addition to make use of the microbial biotransformation, enzymatic synthesis of natural 
vanillin was studied [13]. Flavoprotein vanillyl alcohol oxidase (VAO) could convert both 
creosol and vanillylamine to vanillin with high production yield. This conversion of creosol 
was realized via a two‐step process. The first step was to convert creosol to vanillyl alcohol, 
and then, the second step was the oxidation of the vanillyl alcohol to vanillin. In the second 
step, the conversion of vanillyl alcohol to vanillin was inhibited by the competitive binding of 
creosol. The VAO‐catalyzed conversion yield of vanillylamine to vanillin was high at alkaline 
solutions. Furthermore, mechanism study showed that vanillylamine was firstly converted 
to a vanillylimine intermediate product. The intermediate product was then hydrolyzed to 
vanillin nonenzymatically.

4. Novel applications of vanillin

4.1. Preparation of benzoxazine resin and reactive monomeric surfactant containing 

oxazine ring

Vanillin is used to synthesize polybenzoxazine with the expected desirable benzoxazine prop-
erties as well as a high char yield of 55.3% [14]. The synthesized monomer provides an unused 
aldehyde group from vanillin. The aldehyde can be further reacted with other materials to 
enhance properties. As a model, the unused aldehyde is reacted with amine terminated poly 
(ethylene oxide) to form a surfactant, which retains 1,3‐benzoxazine's reactivity. The chemical 
structure of the synthesized monomers, surfactant, and polymers is characterized by Fourier 
transform infrared spectroscopy (FT‐IR) and proton nuclear magnetic resonance spectros-
copy (1H NMR). Thermal properties are also characterized by differential scanning calorime-
try (DSC) and thermogravimetric analysis (TGA). Miniemulsions with stability up to 2 weeks 
are created with the newly synthesized surfactant and polystyrene. Dynamic light scattering 
(DLS) indicates 627 nm as the average diameter of the emulsion droplets.

4.2. Renewable polymers prepared from vanillin and its derivatives

Methacrylated derivatives of vanillin and vanillyl alcohol are synthesized and used as two 
monomers, respectively. The two monomers were further polymerized by a free‐radical pro-
cess [15]. Rheokinetics of their polymerization were studied to determine the cure behaviors. 
Thermomechanical properties of the resulting polymers affected by the structure and func-
tionalities of the monomers were discussed. In comparison with methacrylated vanillin mono-
mer, the methacrylated vanillyl alcohol gave a higher cross‐linking density of the polymers, 
which in turn resulted a higher storage modulus and glass transition temperature, a better 
thermal resistance. Methacrylated vanillyl alcohol monomer was also with low viscosity at 
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room temperature. Therefore, methacrylated vanillyl alcohol monomer is an expectable bio‐
based reactive diluent for unsaturated polyester resins and vinyl esters.

5. Detection and analysis of vanillin and vanillin‐type aromatic 

compounds

Vanillin and other purely olfactory odorants such as coumarin, octanoic acid, and phenylethyl 
alcohol cannot be identified when presented oral cavity only (OCO), because the oral cavity 
trigeminal system is fully unresponsive to these odorants in vapor phase [16]. Therefore, 
modern analytical methods are usually required for detection and analysis of vanillin and its 
derivatives.

5.1. Detection of real natural vanilla from synthetic one

Because of the extremely different in price of natural real vanilla from synthetic one, detection 
of fake vanilla is required. Basically, gas or liquid chromatography can tell the real natural 
from synthetic vanilla because some impurities such as 4‐hydroxybenzaldehyde present in 
natural vanilla essence could be detected. Another way is to investigate amount of radioac-
tive carbon‐14. Natural plant‐sourced vanillin contains a certain level of carbon‐14, whose 
half‐life is 5730 years. On the other hand, vanillin derived from crude oil has no radiocarbon 
since it has decayed away over the millions of years; the oil was trapped underground. Ratio 
of the natural isotopes, carbon‐13 to carbon‐12, also can be used for identify the real natural 
vanilla from the synthetic ones, because the vanilla orchid uses a different biosynthetic path-
way to other plants. Orchid‐derived vanillin has a greater ratio of carbon‐13 to carbon‐12 than 
synthetic vanillin [17].

A solid phase micro‐extraction (SPME)‐GC‐MS method seems to be able to distinguish the nat-
ural real vanilla extracts from the synthetic one too [18]. The fiber material in SPME, sampling 
time, desorption time, and other experimental conditions were optimized. Under the opti-
mized conditions, a relative standard deviation (RSD) of 2.5–6.4% indicated good reproduc-
ibility of the method. Because GC profile of the natural extracts was different from synthetic 
ones, it is easily to determine whether the sample is natural or synthetic. The method is also 
applicable to identify the type of vanilla extract/flavoring used in flavor foods.

5.2. Analysis of vanillin

The presence of vanillin in orange, tangerine, lemon, lime, and grapefruit juices could be 
easily identified and confirmed using GC‐MS [19]. Vanillin concentrations in the orange, tan-
gerine, lemon, lime, and grapefruit juices were determined to be 0.20, 0.35, 0.41, 0.35, and 0.60 
ppm, respectively.

A headspace‐solid phase micro‐extraction (HS‐SPME) GC‐MS method was also proposed to 
determine of vanillin in vanilla products [20]. Detection limits were reported to be 1.33–13.2 ppb. 
Furthermore, LC‐ESI‐MS determinations of the vanillin were carried out at the same time, and 
the results were compared. Totally, 24 commercially available vanilla products were analyzed 
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with the two methods. Vanillin was detected in all of the 24 products. Also, 18 other flavor 
related compounds were detected in the samples.

As illustrated in Figure 4, the sampling system allowed real‐time and continuously sampling 
of the aroma volatiles from model liquid foods [21]. The sample samples could be kept at a 
certain temperature (e.g., at 37°C), and aroma volatiles released into the headspace. A carrier 
gas was flowed into the headspace and further into a quadrupole MS via a jet separator. The 
MS analysis could monitor and identify the volatile molecular weight. Also, this sampling 
system can examine the dynamic flavor releasing process of liquid samples.

Recently, odor imaging sensing with multi‐probe film is reported [22]. Odor substances are 
determined by fluorescent quenching with imaging film and a cooled CCD camera. The sys-
tem could detect gaseous odor flow and visualize shape, spread, and concentration distribu-
tion of odor. A multi‐film and FRET probes consisted of a certain combination of fluorescence 
dyes such as tryptophan and vanillin have been used for high sensitive and selective detection 
of odor. This approach is expectable in near future for more sensitivity and selectivity.

There are a lots of other analytical methods for the analysis of vanillin, based on spectropho-
tometric [23, 24], FIA [25], ion selective electrodes [26], flourimetric [27], thin layer chromatog-

Figure 4. Illustration of a sampling system for the measurement of dynamic flavor release.
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raphy [28], GC‐MS [20, 29], HPLC [30, 31], and capillary electrophoresis (CE) [32–35]. Because 
CE is not only fast (usually shorter than 10 min), but also with nano‐liter amount of injec-

tion volume for samples, it is particularly noticeable. Recently, direct sampling method for 
CE determination of vanillin in indoor air has been developed [36]. Here, the CE determination 
of vanillin is discussed in detail.

5.3. CE detection of vanillin in indoor air

Generally, a fused silica capillary is used in CE. When running buffer solution is filled into the 
capillary, silanol groups (Figure 5A) in the surface of capillary dissociate, and inner surface 
of the capillary is charged negatively (Figure 5B). Cations in the running buffer solution are 
pulled toward the inner surface. As a result, an electric double layer is formed (Figure 5C). 
When an electric voltage is applied across the two ends of the capillary, an electroosmotic 
flow (EOF) toward cathode arises.

  EOF= (εΖ/(4πρ))E  (1)

where ε, Ζ, ρ, and E are the dielectric constant, zeta potential, solution viscosity, and electric 
field, respectively.

Figure 5. Illustration of molecular structure of the capillary inner surface and principle of CE separation. (A) molecular 
structure of inner surface of capillary; (B) dissociation of silanol group; (C) formation of electric double layer; (D) 
electromigration of analytes in CE.
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On the other hand, electrophoretic velocity (Vep) of an ion toward the electrode of opposite 
charge is:

  Vep = (q/(6πρr))E  (2)

where q and r are the electric charge and radius of the ion, respectively. Usually, EOF 
is larger than Vep for most of ions, and detector is usually close to the cathode end of 
the capillary. Electromigration velocity of a cation will be (EOF + Vep) while that of an 
anion (EOF–Vep). Neutral molecule will move with the electroosmotic flow (EOF). Then, 
cations, anions, and neutral molecules are separated (Figure 5D). Because different ions 
are with different q/r, their Vep is different. Thus, ions can be separated from each other 
by CE.

CE instrument is relatively simple. Basically, it consists of an electric power supply, a capil-
lary, and a detector. Figure 6 illustrates a typical laboratory‐built CE apparatus [35]. It was 
consisted of a 30 kV high‐voltage power supply and an UV‐absorbance detector. Wavelength 
of the UV‐absorbance detector could be set at 254 nm for detection of aromatic compounds. 
A capillary (inner diameter of 50–100 μm, out diameter of 364 μm) could be used. Its total 
length and the effective length (length from the anode end to the detector) could be about 
30–70 and 20–60 cm, respectively. The capillary was usually cleaned thoroughly by sub-

sequently flushing 1 mol/L NaOH, distilled‐deionized water, and finally running buffer. 
Sample injection could be performed with either an electrophoretic method (e.g., injection 
voltage 1 kV, injecting time 30 s) or a hydrodynamic flow method with a height difference 
(e.g., 1 cm) between the two ends of the capillary.

Buffer solutions such as phosphate buffers or boric buffers with certain pH and concen-

tration can be used in CE. Samples are usually dissolved or diluted with the buffers. For 
example, vanillin stock solution was prepared by dissolving a certain amount of vanillin into 
distilled‐deionized water directly [35]. Its concentration was 10-3 mol/L. This stock solution 
was diluted to required concentrations with the running buffer when used. Vanilla perfume 
was also diluted with the buffer solutions to concentrations of 1 and 10%. For vanillin spiked 
vanilla perfume sample, a certain amount of the vanillin standard solution was added into the 
diluted vanilla perfume sample.

5.3.1. CE of vanillin standard solution [35]

Figure 7 showed the CE results of vanillin at running buffers with different pH. It is well 
known that the higher the pH of the running buffer, the faster the EOF. Therefore, EOF 
was the fastest in running buffer of pH 11.5, while slowest in running buffer of pH 7.2. On 
the other hand, vanillin is a weak acid, and its acid dissociation constant Ka is about 10‐9.25. 
At pH 11.5, almost all of vanillin molecules behavior as anions, while at pH 7.2 most of 
them as neutral molecules. At pH 9.3, about half vanillin molecules dissociated to anions. 
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Therefore, Vep of vanillin was the largest at pH 11.5, slowest at pH 7.2. As a result of V = 
EOF‐Vep, the vanillin was detected at about 500, 450, and 600 s at pH of 11.5, 9.3, and 7.2, 
respectively.

Figure 8 showed the calibration curve of vanillin at the running buffer of pH 9.3. It can be seen 
that the peak area is proportional to the vanillin concentration in the range of 10-6–10-2 mol/L. 
The detection limit was about 10-6 mol/L.

5.3.2. CE of vanilla perfume [35]

Figure 9 showed electropherogram of 10% vanilla perfume sample solution (A) and 10% vanilla 
perfume sample solution spiked with 10-3 mol/L vanillin standard solution (B). In Figure 9A, three 
peaks were detected. In order to confirm which peak was vanillin, the vanilla perfume sample 
was spiked with vanillin standard solution. Figure 9B showed that only the third peak became 
large in the spiked sample. Therefore, the third peak was confirmed to be vanillin in the vanilla 
perfume. Vanillin concentration in the 10% vanilla perfume sample was determined to be about 
3 × 10-3 mol/L by a standard addition method. The first and second peaks have not been identified.

Figure 6. Illustration of a laboratory‐built CE instrument.
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5.3.3. Detection of vanillin in indoor air by offline combination of CE with absorption and desorption 
of vanillin with active carbon [35]

In order to detect vanillin in indoor air with CE, about 0.02 g active carbon was spread on a 
glass slide for adsorption of vanillin in air. The glass slide was placed in a room of about 80 m2, 

Figure 7. Electropherograms of vanillin standard solution (10-4 mol/L) in running buffers of pH 7.2 (A), 9.3 (B), and 11.5 (C).
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where a vanilla perfume of 5 ml was placed too for a certain period of time. Then, the active 
carbon on the glass slide was collected into a vial, and 0.5 ml ethanol or mixture of ethanol/pH 
11.5 running buffer with a mixing ratio of 1:1 was added for desorption of vanillin adsorpted 
on the active carbon. The vial was centrifuged for 5 min at a centrifugation speed of 3000 rpm. 
The supernatant was directly injected into the capillary, and CE was carried out. Figure 11 

showed CE results.

When the active carbon placed in the room for 2 days, the peak of vanillin was not detectable 
(top figure in Figure 10). When the active carbon placed in the room for 4 days, the vanillin 

Figure 8. Vanillin calibration curves in running buffers of pH 9.3.

Figure 9. Electropherograms of 10% vanilla perfume sample (A) and the 10% vanilla perfume spiked with 10-3 (mol/L) 
vanillin (B) in the pH 9.3 phosphate buffer.
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peak was clearly detected (bottom figure in Figure 10). This meant that the CE method could 
be used for detection of vanillin in air by combination with the active carbon adsorption.

5.3.4. Fast detection for trace vanillin and vanillin‐type aromatic compounds in air by direct 

sampling [36]

As stated above, CE could detect vanillin in air by offline combining with the adsorption/
desorption method. However, it is usually time‐ and labor‐consuming. Recently, a direct sam-

pling of vanillin in the air of CE was demonstrated [36].

As shown in Figure 11, the inlet end of a fused silica capillary filled with a pH 7.2 phosphate 
buffer was directly placed in the air, while the outlet end was immersed into a buffer vial at 
the low electric potential side. Then, gaseous or volatile components such as vanillin and its 
derivatives would absorb at the air/buffer interface of the capillary inlet end. That meant a 
direct sampling of the vanillin in air at capillary inlet end for CE. After a certain period of sam-

pling time, the inlet end was immersed into another buffer vial at the high electric potential 

Figure 10. Electropherograms of supernatant of the ethanol/pH 11.5 running buffer after desorption from the active 
carbons. The active carbons adsorption time was 2 (top) and 4 (bottom) days, respectively.
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side; CE was carried out by applying a high electric voltage of 20 kV. Evaporated vanillin in 
indoor air was detected fast.

It was found that the CE peak area increased with the direct sampling time. This was  easily 
understood because the longer the sampling time, the more the vanillin absorbed at the 
running /air/buffer interface, the larger the peak area. Also, the peak area in the direct 
sampling‐CE was considered to be proportional to the vanillin concentrations in air.

Figure 12 showed results of a conventional CE of 10% vanilla perfume sample (A) and direct 
sampling‐CE in indoor air with a sampling time of 5 min (B), respectively. A conventional CE 
usually gave two peaks for vanilla perfume sample. The detection time of the two peaks was 
about 420–600 s. In particular, the second peak was identified to be vanillin [35].

As shown in Figure 12B, there were also two peaks detected in the direct sampling‐CE in air, 
and they were from vanilla perfume. Moreover, they were detected even with a  sampling 

Figure 12. Results of a conventional CE of 10% vanilla perfume solution (A) and direct sampling‐CE in indoor air with a 
sampling time of 5 min (B), respectively.

Figure 11. Illustration of the direct sampling of CE in air for vanillin in indoor air. 
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time as short as 5 min. This sampling time was extremely short in comparison with the 
offline active carbon adsorption/desorption‐CE determinations [35]. In the offline active car-
bon adsorption/desorption‐CE, it took more than 2 days to detect vanillin in indoor air [35]. 
Therefore, the direct sampling‐CE is much faster and simpler than the offline active carbon 
adsorption/desorption‐CE. The direct sampling‐CE is promising and expectable in fast gas 
analysis.
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