
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6

Energy-Aware High Performance Computing

Martin Wlotzka, Vincent Heuveline, Manuel F. Dolz,

M. Reza Heidari, Thomas Ludwig,

A. Cristiano I. Malossi and Enrique S. Quintana-Orti

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/

Abstract

High performance computing centres consume substantial amounts of energy to power
large-scale supercomputers and the necessary building and cooling infrastructure.
Recently, considerable performance gains resulted predominantly from developments
in multi-core, many-core and accelerator technology. Computing centres rapidly
adopted this hardware to serve the increasing demand for computational power. How-
ever, further performance increases in large-scale computing systems are limited by the
aggregate energy budget required to operate them. Power consumption has become a
major cost factor for computing centres. Furthermore, energy consumption results in
carbon dioxide emissions, a hazard for the environment and public health; and heat,
which reduces the reliability and lifetime of hardware components. Energy efficiency is
therefore crucial in high performance computing.

This chapter addresses key issues of energy-aware high performance computing. We
outline some numerical methods which are often used in scientific applications, and
present an energy profiling and tracing technique suitable to analyse the power con-
sumption of applications. The next section is devoted to the performance and energy
characterization of the sparse matrix-vector product, a basic numerical building block.
Finally, we discuss opportunities for saving energy in computations by means of two
examples. First, we present energy-aware runtimes on shared memory multi-core plat-
forms for the Conjugate Gradient method. Second, we present energy-efficient tech-
niques for multigrid methods on distributed memory clusters.

Keywords: high performance computing, energy-aware numerics, energy profiling,
energy-aware runtimes, energy-efficient multigrid

© 2017 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



1. Introduction

Numerical simulations play a key role in scientific discovery. Modeling and simulation of

physical processes is an enabling technology for investigations beyond the scope of theoretical

analysis and experiments. Numerical simulations may yield insight in situations where techni-

cal, ethical, or financial issues prevent from experiments. This chapter presents an overview of

basic methodologies in high performance computing (HPC) used for numerical simulations of

physical processes. We discuss energy-aware parallelization techniques both for shared mem-

ory multicore platforms, as well as for distributed memory clusters.

We outline a class of discretization methods that can be used to deal with physical models

which are described by partial differential equations (PDEs) in Section 2. We demonstrate

that solving algebraic systems of equations, and in particular solving linear systems, is at

the heart of many simulations. In Section 3, we present techniques for power tracing and

analysis of scientific applications. Section 4 is devoted to the energy characterization of the

sparse matrix-vector multiplication. This is one of the fundamental numerical building

blocks used in many solver methods. In Section 5, we focus on energy-aware runtimes for

numerical linear algebra on multicore processors. Finally, we present a distributed memory

parallelization of linear algebra operations and energy-efficient techniques for multigrid

methods in Section 6.

2. Numerical simulation of physical processes modelled by partial

differential equations

We depict the discretization methods and parallelization techniques by means of two prototypical

partial differential equations, namely the Poisson’s equation and the continuity equation. Poisson’s

equation can be used to model a steady state temperature distribution in a continuum, where the

solution represents the equilibrium state. The time-dependent continuity equation can be used to

model the temporal evolution of a conserved physical quantity. In our examples, we restrict to the

case of two spatial dimensions. We outline the basic discretization methodology of the finite differ-

encemethod (FDM) and of the finite elementmethod (FEM) for Poisson’s equation, and of the finite

volume method (FVM) for the continuity equation. The goal is to show that these three methods

have in common the translation of the underlyingmodel equations into a finite-dimensional system

of algebraic equations, either linear or nonlinear. The solution to the algebraic equations represents

the numerical solution of themodel. Thus, performing numerical simulations often requires to solve

algebraic systems of equations. Therefore, the linear system solver is the crucial part of many

simulations. This is also true for nonlinear systems, since these are often solved by means of

Newton-typemethods that use a sequence of linear systems to approximate the nonlinear solution.

2.1. Poisson’s equation

The spatial domain where the model is defined is denoted by Ω. For our two-dimensional

example, we have Ω ⊂ R2. Poisson’s equation reads

ICT - Energy Concepts for Energy Efficiency and Sustainability130



−Δu ¼ f in Ω; (1)

where the unknown solution u represents the equilibrium temperature distribution in Ω, f is a

heat source term, and Δ = ∂
2/∂x2 + ∂

2/∂y2 denotes the two-dimensional Laplace operator.

Poisson’s equation is usually accompanied by boundary conditions. One can use Dirichlet-type

boundary conditions to model given environmental temperatures, or Neumann-type bound-

ary conditions to model given heat fluxes. Theory on existence and uniqueness of solutions can

be found in textbooks, e.g., Refs. [1, 2].

2.2. Finite difference discretization of Poisson’s equation

The finite difference method approximates derivatives by means of difference quotients, which

are evaluated at certain points in the domain Ω. In the simplest case, the method is based on a

rectangular gridΩh, covering the domain with squares of side length hwhich lie parallel to the

coordinate axes. The grid points are denoted as xi,j, where the indices i and j establish a

lexicographic enumeration of points in the grid. In this sense, xi − 1,j is the left neighbor of xi,j
at a distance h and xi,j + 1 is the upper neighbor at a distance h. Figure 1 shows an example

domain with a grid. An approximation of the Laplace operator can be defined as

Δu xi, j
� �

≈
1

h2
u xi−1, j
� �

þ u xiþ1, j

� �

þ u xi, j−1
� �

þ u xi, jþ1

� �

−4u xi, j
� �� �

: (2)

Eq. (2) defines a discrete Laplace operator by means of the five-point stencil, which uses the

function values at the point xi,j and its four neighbor points in direction of the coordinate

axes.

Writing ui,j = u(xi,j) and fi,j = f(xi,j), this discretization of the Poisson equation results in the linear

system of equations

4ui, j − ui−1, j − uiþ1, j − ui, j−1 − ui, jþ1 ¼ h2f i, j: (3)

Reusing the notation, the discretized system can be formulated with a matrix A and vectors u

and b as Au = b. Here, the components of u and b represent the values of the discrete solution

and of the source term at the grid points, respectively. The matrix A has the coefficients from

Figure 1. Simple computational grid Ωh of a polygonal domain Ω.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

131



the left-hand side of Eq. (3) as its entries. Thus, solving Poisson’s equation by means of the

finite difference method amounts to solving the linear system in Eq. (3) represented as Au = b.

For error and stability analysis, and for convergence theory, see Ref. [3].

2.3. Finite element discretization of Poisson’s equation

The finite element method uses a modified formulation of Poisson’s equation. Multiplying

Eq. (1) with a test function v and using Green’s first identity, one obtains the variational

formulation

a u; vð Þ ¼ f ; vð Þ ∀ v (4)

with the bi-linear form aðu, vÞ ¼ ∫Ω∇v � ∇u dx, which admits a unique solution in the Sobolev

space H1
0 Ωð Þ of weakly differentiable functions. Again, a rigorous derivation of the variational

formulation, treatment of boundary conditions, and analysis can be found in Refs. [1, 2].

To approximate the solution of Eq. (4), the finite element method uses finite-dimensional

function spaces of piecewise polynomials based on a grid Ωh where we denote the vertices xi.

A simple case of such finite element function spaces of Lagrange-type is the space of piecewise

first-order polynomials Vh ¼ vh∈H
1
0 Ωð Þ : vh

�

�

�C∈P1 for all cells C∈Ωh

n o

resulting in the prob-

lem formulation

uh∈Vh : a uh; vhð Þ ¼ f ; vhð Þ ∀ vh∈Vh: (5)

The Lagrange finite element basis functions have the property φi(xj) = δij using the Kronecker

symbol, meaning that φi(xi) = 1 and φi(xj) = 0 for i ≠ j. Therefore, the support of any such basis

function φi, i.e., the region where φi ≠ 0 comprises only the adjacent cells of the vertex xi.

Expanding the discrete solution uh ¼ ∑n
i¼1uiφi in terms of an n-dimensional finite element basis

with coefficients ui, Eq. (5) is equivalent to the linear system of equations

∑
n

i¼1
uia φi;φj

� �

¼ f ;φj

� �

j ¼ 1, ::.; nð Þ: (6)

This can again be written as Au = b, where Aij = a(φj, φi) and bi = (f, φi). For an overview of finite

element theory, see Ref. [4].

2.4. Continuity equation

The prototype continuity equation reads ∂tρ + ∇ � j = f, where ρ denotes the density of some

conserved physical quantity, j is the flux, and f is a source term. The divergence operator

applied to the flux is ∇ � j = ∂j/∂x + ∂j/∂y. As an example for a conserved physical quantity, we

consider the amount of some chemical substance which is dissolved in water with a concen-

tration denoted as c. This concentration may vary in time and space. The flux j of the substance

transported with a given water flow v is j = cv. Thus, the equation of continuity for this

example reads

ICT - Energy Concepts for Energy Efficiency and Sustainability132



∂tcþ ∇ � cvð Þ ¼ f in Ω× 0;Tð Þ: (7)

The time interval under consideration is (0, T), and Ω again denotes the physical domain

where the model is defined. Note that we omit the discussion of initial and boundary condi-

tions for simplicity here, although they are important for practical applications.

2.5. Finite volume discretization of the continuity equation

The finite volume method is well-suited to treat partial differential equations like the continu-

ity equation [5]. Like the finite difference and the finite element method, it also uses a grid, Ωh,

covering the model domain. In this paragraph, we outline a simple cell-centered finite volume

method. To this end, the grid cells Ci ∈ Ωh are enumerated with the index i. Integrating Eq. (7)

over a cell and using the divergence theorem yields ∂t∫Ci
c dxþ ∫∂Ci

cv � n ds ¼ ∫Ci
f dx; where n

denotes the outer unit normal vector field on the cell boundary. Denoting the average concen-

tration of the solute in cell Ci as ui ¼
1
mi
∫Ci
c dx with cell volume mi = vol(Ci), the boundary

integral term can be approximated as

∫∂Ci
cv � n ds ¼ ∑

j≠i
Ai, jvi, jui, j: (8)

The summation index j runs over all cells adjacent to cell Ci, vi,j is the water velocity from cell Ci

to cell Cj, Ai,j is the cross-sectional area of the water flow between the two cells, and ui,j is the

average concentration of the solute in the cell where the flow originates from. This leads to the

spatially discretized system

∂t Muð Þ þ Au ¼ b; (9)

where the matrix M is a diagonal matrix with Mii = mi, the entries of the matrix A are

determined through Eq. (8), and bi ¼ ∫Ci
f dx. The resulting system of ordinary differential

equation for the temporal evolution is often treated by means of numerical integrators such as

one-step or multistep methods [6, 7]. When using implicit integrators, which is often the case

for stiff problems, the computation of the time steps requires to solve linear systems of

equations.

2.6. Commonalities

This brief outline on the basic methodology for discretizing partial differential equations by

means of the finite difference, finite element, and finite volume method shows important

commonalities. All three methods are based on a computational grid which covers the model

domain. They transform the infinite-dimensional model problem into a finite-dimensional

system of algebraic equations. Our linear example models directly yield linear systems. But

also the solution of nonlinear equations is often approximated in Newton-type iteration with a

sequence of linear systems. Thus, methods for solving linear systems of equations play the key

role in many simulations. The structure of linear problems is induced by the association of the

discrete variables with the grid cells or vertices. Couplings between the variables occur only

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

133



locally between the neighboring grid cells or vertices. Therefore, the resulting discrete opera-

tors and matrices are sparse, i.e., there is only a small number of nonzero entries per row.

2.7. Numerical methods for solving linear systems of equations

As shown above, solving linear systems of equations is at the heart of many scientific applica-

tions. Such linear systems may directly arise from the discretization of partial differential

equations, or when using a Newton-type iteration to approximate the solution of nonlinear

systems. The numerical methods for solving linear systems can be classified in terms of being

“direct” or “iterative”. Direct linear solvers yield the solution after an a priori known number

of computational steps. Prominent members of this class are the LU-, QR-, and Cholesky-

factorization. In general, this class includes all methods derived from Gaussian elimination.

Intermediate states of the solution vector in direct solver algorithms may be affected with

arbitrarily large errors. Therefore, direct solvers must usually be executed entirely until the

designated end of the algorithm. The computational complexity of direct methods is O(n3).

Iterative linear solvers compute a sequence of approximations x
(0)
! x

(1)
! x

(2)
! … which

converges to the solution of the linear system. Iterative solvers are usually stopped after a

certain number of steps and the recent iteration is taken as approximation to the solution. A

typical stopping criterion is when the residual vector norm falls below a given tolerance.

Examples of iterative methods are the classic relaxation schemes such as Jacobi, Gauss-Seidel and

successive over-relaxation (SOR), and derived relaxation schemes like asynchronous iteration.

Widely used standard iterative solvers are the Krylov subspace methods such as conjugate gradi-

ent (CG), general minimal residual (GMRES) and their variants. In practice, Krylov subspace

methods are often used with a preconditioner that accelerates the convergence of the sequence of

approximations to the solution of the linear system. The computational complexity of Krylov

subspace methods is O(n2) for sparse systems. Another type of iterative linear solver are multigrid

methods. These are themost efficient state of art methods with a computational complexity ofO(n)

for sparse systems. Iterative linear solver algorithms are built on a limited number of basic linear

algebra operations. All iterative methods mentioned above use only vector scaling and addition,

scalar product, vector norm computation, and matrix-vector multiplication. Therefore, any opti-

mization of a linear algebra routine has a direct effect on the entire linear solver.

The applicability of any particular method depends on the mathematical properties of the

system matrix. The matrix properties result from the underlying model equations and the

discretization. Some methods such as the LU- and QR-decomposition or the GMRES method

are applicable for general nonsingular matrices. Other methods require stronger properties

like diagonal dominance or being symmetric positive definite. The latter is the case for the CG

method. Textbooks on linear algebra and solvers include Refs. [8, 9].

3. Energy tracing and analysis for parallel scientific applications

The development of exascale systems has exposed the fact that the current technologies,

programming practices, and performance metrics are not adequate. Existing tools for HPC

ICT - Energy Concepts for Energy Efficiency and Sustainability134



systems mainly focus on monitoring and evaluation of performance metrics. Newer hardware

has a wide range of sensors and measurement devices related to the power consumption, with

varying granularity and informative value. Recently, new tools have been developed or have

been adapted from other research areas (e.g., mobile computing) for analyzing the power

consumption. Most of these tools focus only on the power consumption and disregard the

performance aspects. Therefore, it is crucial to identify adequate sensors, hardware counters,

and measurement devices to gain detailed insights about the power consumption and the

performance of the hardware.

In order to optimize energy consumption of scientific applications, enhanced profiling and

tracing frameworks combining both power and performance metrics are needed. Moreover, to

gain a better understanding of energy usage, performance metrics, such as performance coun-

ters or routine events, should be correlated with the power traces. Only with analyzing these

measurements, energy inefficiencies in software codes can be localized and optimized. In this

chapter, we propose an integrated framework with a modular design to study power and

energy profiles/traces of HPC scientific applications. This framework provides support for

analyzing the power and performance of different types of parallel applications that run on

distributed and shared memory platforms.

3.1. Framework environment

This section describes the software tools of the built-in framework that were developed for

performance and energy profiling, and tracing of applications [10, 11]. This approach is based

on the postmortem offline analysis as the recorded data is accessed after the application

execution. The main advantage of this methodology is that the data can be analyzed many

times and compared with other data.

The tracing mechanism normally proceeds out by collecting and analyzing data in order to

characterize the application execution and system behavior. The approach to perform this

analysis is realized in terms of statistics storage, comprising, e.g., absolute values for the

number of invoked routines, the execution time of routines, and the hardware counters.

Profiling tools that output these statistics are very useful to analyze the application behavior.

Tracing tools are, as well, important to analyze the different phases and behavior of the

application over time. Their extension to the power analysis also drives us to include data

from the power measurement devices, with the aim of correlating them with the application

traces. We use a combination of all these methods.

As shown in Figure 3, our proposed performance and energy/power analysis framework is

composed of several components, including a power measurement library, a power measure-

ment device, and a set of visualization tools. The scientific application runs on a high perfor-

mance computing system (HPC), such as a cluster of multicore architecture or a hybrid system

that benefits from offload computing parts such as GPGPUs. The application is instrumented

with our power measurement library (PMLib), which allows for measuring the power con-

sumption of the machine running the application. The second component is a measurement

device which is attached to the target platform. This device is usually either an internal DC or

an external AC wattmeter that steadily samples power and sends the output to a tracing

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

135



server. The instrumented application makes calls to some API functions from the power

measurement library for performing different and complementary tasks such as:

• Instructing the tracing server to start/stop collecting data captured by wattmeters.

• Dump the samples into a disk file (power trace) in a particular format.

• Querying various features of the measurement device, etc.

The last component of the framework is a visualization tool, which is used to analyze the

power traces generated by PMLib, once the application finishes its computation. One can

combine the power traces with the application performance traces produced by the Extrae tool

to make the results more meaningful and visualize the final work with Paraver. Due to the

flexibility of the framework and PMLib, it is also possible to take advantage of other tracing

tools such as TAU [12], VampirTrace [13], etc.

3.2. The power measurement library: PMLib

The power measurement library (PMLib) has been designed to analyze the power consump-

tion of HPC applications. The library supports various power measurement devices such as:

• AC wattmeters that connect to the input lines of power supply units of the computing

systems and measure the AC input power. These devices include general power distribu-

tion units or professional wattmeters such as ZES Zimmer LMG450 or WattsUp?.

Figure 2. Single-node application system and sampling points for external and internal wattmeters.

ICT - Energy Concepts for Energy Efficiency and Sustainability136



• DC wattmeters that can connect to the output DC lines of the power supply units inside

the computing systems and measure the DC output power.

• Data acquisition cards such as National Instruments (NI) DAQs.

• Built-in power measurement components such as IPMI, Intel RAPL, and NVIDIA NVML.

The PMLib also offers a set of API interface to allow applications to measure their power

consumption. The system and sampling points for external and internal wattmeters are illus-

trated in Figure 2.

3.3. Experimental results

In this section, we provide a detailed power and performance analysis of a dense linear algebra

code to demonstrate the use of our performance-power framework on a multicore technology

platform. This study offers a vision of the power drawn by the system during the execution of

Figure 3. Collecting traces at runtime and visualisation of power-performance data.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

137



the LAPACK LU factorization [14]. This factorization is the key to the solution of dense linear

systems. In order to collect and illustrate this information, we bind an execution trace of the

algorithm obtained with our proposed framework Extrae + Paraver, with our own power

evaluation setup, using PMLib and an internal DC wattmeter.

The following experiments were carried out using IEEE double-precision arithmetic on a two

8-core AMD Opteron 6128 processors, running at 2.00 GHz, with 48 GB of DDR3 RAM

memory. This experiment benefits from the Intel MKL (v10.3.4) implementation of BLAS.

Tracing and visualization were obtained with Extrae (v2.2.0) and Paraver (v4.1.0). In our

evaluation, the power readings are collected from an internal DC wattmeter at a sampling rate

of 28 Sa/s. The wattmeter is directly attached to the 12 V lines that connect the PSU to the

motherboard (chipset plus processors) of the test platform. Therefore, the results are not

affected by inefficiencies of the PSU, or the “noise” due to the operation of other hardware

components such as fans, disks, network interfaces, etc.

The LAPACK implementation for the LU factorization with partial pivoting (dgetrf) was

evaluated during our experiments. In this case, the parallelism is exploited within the

invocations to the multithreaded MKL BLAS. The block size in LAPACK routines was

set to 128 as it always delivers performance figures close to the optimal. Figure 4 depicts

Figure 4. Trace of LAPACK dgetrf. Top: full. Bottom: first two iterations.

ICT - Energy Concepts for Energy Efficiency and Sustainability138



the activities of the cores and the power consumption traces during the execution of this

routine, responsible for computing the LU factorization. In the trace, the colors identify

the different kernels called by the main dgetrf routine: dgetf2 (factorization of the

current panel), dlaswp (interchanging rows), dtrsm (triangular system solve), dgemm

(matrix-matrix multiplications to calculate the trailing submatrix). The top trace in the

figure shows the complete execution of dgetrf, while the bottom trace indicates the first

two main iterations of the routine. As can be seen in the traces, the combination of this

LAPACK routine along with the multithreaded MKL BLAS leads to interlaced sequential

and parallel regions. It is also remarkable that the kernels, dgetf2 and dgemm, mostly

monopolize the execution time of the routine. The zoomed trace in the bottom part

reveals unbalanced loads among the execution units for the dgemm kernels, leading

therefore to the need for the synchronization of threads. A closer look at the power

traces highlights the fact that the recurring sequential and concurrent phases cause the

power consumption to toggle repeatedly between 301 and 390W. For more details, refer

to Ref. [15].

4. HPC energy metric and performance characterization of the sparse

matrix-vector product

HPCmetrics are supposed to drive system architects in the development of new hardware and

supercomputers. With this respect, High performance Linpack (HPL) Linpack and the Top500

[16] have done a great job over the last 20 years, however with the advent of the power-wall

and the imminent end of Moore’s law, things started to change quite radically. Energy and

power consumption are considered today as primary design parameters, together with FLOP/

S and pure performance. For this reason, in 2007, the Green500 [17] ranking has been intro-

duced, where FLOP/S have been normalized over power consumption. The new metric has

finally moved some attention towards the power and energy consumption, however, the

picture that it provides is still quite far from reality. This is visible in Figure 5, where FLOPS/

W performance of the first system in Top500 and Green500 are compared between 2007 and

today’s. From the picture, it is clear that the 3.5x progress in last 5 years of Green500 has not

propagated at all to the top systems in Top500. The motivation behind this behavior is that

Green500 does not account for scalability and problem size. In other words, a small

nonscalable system that barely enters Top500 could, in principle, rank first in Green500 due to

a favorable MFLOPS/W ratio. Indeed, all top 10 systems in Green500 are rather small systems,

with a consumption of O (100 kW), as shown in Figure 6.

The above scenario tells us that more has to be done at the level of the metrics to correctly

capture real computational patterns. We need metrics that promote scalability rather than

FLOPS. In other words, we need metrics that measure time- and energy-to-solution, with

respect to problem size. This must also be accompanied by an increased typology of bench-

marks, to capture all the variety of computations performed in real world applications.

To provide an example of the complexity and variety of the problem, in this chapter, we

analyze the sparse matrix-vector product (SpMV). Sparse matrices appears in a lot of

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

139



applications, with strong link to finite element models for partial differential equations,

numerical methods for boundary value problems and also in economic modeling, ranking

search methodologies for the web, and information retrieval. The sparse matrix-vector prod-

uct (SpMV) has a central role in many of these applications [18], and is a key ingredient to

address large-scale sparse linear systems and eigenvalue problems via iterative methods [8,

9]. Due to the relevance of SpMV in scientific computing, we pursue the accurate character-

ization of this operation on multithreaded architectures, from the point of view of three

performance metrics, i.e., time, power, and energy. In this section, we present the most

important aspects of Ref. [19].

Figure 5. Comparison of the FLOPS/W performance of the no. 1 systems of the Top500 and the Green500 list.

Figure 6. Snapshot of the Green500 list.

ICT - Energy Concepts for Energy Efficiency and Sustainability140



4.1. Sparse matrices parameterisation

Let us consider the SpMV operation y = Ax, where A is an n × n sparse square matrix, with nz

nonzero real elements, and x, y are both real dense vectors of dimension n. We assume that A is

stored in compressed sparse row (CSR) format, using two integer vectors of dimension nz and

n + 1 for the indices, and a real vector of size nz for the matrix entries [8, 9].

We do not limit our analysis to a specialized type of matrices (e.g., arrow, banded, tridiagonal,

etc.) nor to a specific class of problems (e.g., matrices arising in electrical problems, structural

problems, computational chemistry, …). Our first goal is to analyze the problem and to

identify a small set of parameters that capture the main “sparsity properties” of SpMV. A

couple of these parameters, n and nz, are immediate and already appeared during the initial

description of the problem. They are relevant because they determine the starting location of

the matrix and vectors in the memory hierarchy that in turn has a big impact on the perfor-

mance of SpMV. However, these quantities are not sufficient to describe in detail the sparsity

pattern and they do not lead to an effective parameterization for our model. We thus introduce

three complementary parameters (two of them normalized or nondimensional) to distinguish

between matrices with similar dimension and number of nonzeros, but different sparsity

patterns can later end in distinct characterization groups. In particular, for our CSR-based

implementation of SpMV, we distinguish:

1. Block size: In many applications the nonzeros are clustered into a few compact dense

blocks. The block size bs specifies the number of columns in these blocks. This parameter

is important, because it captures the number of elements in vector x that are accessed with

unit stride, which generally renders a better exploitation of data prefetching and the cache

memory.

2. Block density: bd = bs/nzr ∈ [0, 1] is the fraction of the nonzeros per row, nzr, occupied by a

single block. This parameter is relevant because, with bs fixed, it characterizes the reuse

factor in the access to vector y, i.e., for an average number of floating-point arithmetic

operations performed each time, an element of vector y is loaded into a register (specifi-

cally, nzr FLOP).

3. Row density: rd = nzr/n ∈ [0, 1] is the number of nonzeros per row relative to the row size.

This ratio is orientational of the level in the memory hierarchy where the accesses to vector

x occur. With bs, bd (and, consequently, nzr) fixed, increasing the row density rd necessar-

ily implies a reduction in the problem dimension (and vice versa).

All these parameters will vary row-wise (bd and rd), and block-wise (bs). Several averaging

techniques can be used to extract a single triplet (bs, bd, rd) from an entire nonuniform

(irregular) sparse matrix.

4.2. Classification of matrices

We establish here a simple classification for SpMV (and thus for sparse matrices) with respect

to the parameters previously defined, as well as according to performance metrics. We define

a reference training set made of sparse matrices, with a uniform (though sparse) nonzero

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

141



structure. In detail, the matrices in this set have a constant number of nonzeros per row nzr

for all the rows, a fixed block size bs for all the blocks, and therefore the same number of

blocks per row bd
− 1, even though the position of the blocks inside each row is different and

randomly assigned, with the only constraint that two blocks must be separated by at least

one null entry.

To cover the full range of cases up to the memory capacity, while limiting the number of

matrices in the set, we distribute the matrix instances equally in the log2 space:

• bs = 20, 22, 24,… up to 212 on BG/Q and 214 on P775,

• bd = 20, 2− 2, 2− 4,… down to 2−12 on BG/Q and 2−14 on P775,

• rd = 20, 2− 2, 2− 4,… down to 2−24 on BG/Q and 2−28 on P775.

Given that bs ≤ nzr ≤ n, we have a total of 118 samples on the IBM BG/Q and 175 samples on the

IBM P755. Figures 7 and 8 illustrate a compact 3-D representation of the training set, where

each matrix is identified by a different point (bs, bd, rd) in the 3-D space.

This coarse training set gives enough variability to characterize sparse matrices from real

applications. Nevertheless, we recognize that there exists a clear balance between training cost

and accuracy.

We now classify the matrix instances of the training set into four groups, discriminating

the training samples where the data fits into last level cache (LLC) from those that have to

rely on DDR memory, while keeping the executions with one and four threads per core

separated. Using a k-means clustering algorithm [20] (in the following we use k = 2), we

establish a classification into k clusters per group for time, power, and energy. All mea-

sures are normalized a priori with the standard deviation because the algorithm relies on

Euclidean distances.

The left-hand side graphs in Figures 9 and 11 illustrate the correlation between time and net

power/energy. The resulting classification, summarized in Table 1, demonstrates that the k-

means method is able to identify behavioral patterns in the time-power-energy triangle. At the

Figure 7. Matrix classification with respect to the triplet coordinated (bs, bd, rd) on the IBM BG/Q.

ICT - Energy Concepts for Energy Efficiency and Sustainability142



same time, Figures 7a and 8a show that the four classes are clustered into precise regions in the

3-D space defined by the triplet coordinates (bs, bd, rd). As we can see the classification holds

with respect to the parameterization introduced in Section II and, in consequence, it can be

leveraged to obtain a fast, qualitative prediction of low/medium/high time-power-energy

behavior for any sparse matrix, as a function of few pattern information. In addition, we note

that the same classification holds independently with respect to the number of threads per

core.

We can also observe that from the point of view of performance: There is a vertical separation

(both in power and energy) between the classes, depending on whether the problem data fits

into the LLC or not. This is due to the additional energy required to move data to/from the

DDR. The use of 4 threads per core increases the power but reduces the energy (mainly for the

DDR cases). Energy increases linearly (in a log scale) with respect to time, while power

generally decreases linearly. Inspecting Figures 7a and 8a, we notice that, although real

Figure 8. Matrix classification based on time, power, and energy measures on the IBM BG/Q. The position of the centroid

of each is marked with a big crossed circle.

Figure 9. Matrix classification with respect to the triplet coordinated (bs, bd, rd) on the IBM P755.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

143



Figure 10. Percent of average net power consumption vs. net energy on the IBM BG/Q. Colors and centroids according to

the matrix classification in Figure 10.

Figure 11. Percent of average net power consumption vs. net energy on the IBM P755. Colors and centroids according to

the matrix classification in Figure 12.

ICT - Energy Concepts for Energy Efficiency and Sustainability144



matrices have a similar power vs. time behavior, energy performance is rather different. This

hints to the fact that the FLOPS/W metric used in the Green500 with Linpack, is actually

inappropriate to represent energy efficiency of general algorithms [21, 22]. Finally, Figures 10

and 12 show a direct view over the power vs. energy consumption relation; here, the impor-

tance of the net power (especially on the P755) with respect to the overall power consumption

is highlighted.

4.3. Validation

We evaluate our classification using the entire University of Florida Sparse Matrix Col-

lection [23]. From this benchmark of real applications, we exclude complex and

nonsquare matrices, as well as matrices with empty rows and the cases that do not fit

in the target architectures due to DDR capacity restrictions. The resulting number of

matrices available for validation consists of 1193 and 1202 samples for IBM BG/Q and

IBM P755, respectively.

Figure 12. Matrix classification based on time, power, and energy measures on the IBM P755. The position of the centroid

of each class is marked with a big crossed circle.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

145



For both architectures, we have measured time, power, and energy of the entire collection. This

is displayed in the right-hand side plots of Figures 10 and 12 (see also Figures 7b and 8b for a

3-D representation), where colors (classes) have been assigned using the same k-means classi-

fication applied to the training sets (indeed, note that the centroids are the same in the left- and

right-hand side images). The cross comparison of colors (i.e., classes) and values (i.e., time-

power-energy measures) between the left and right graphs demonstrates that our classification

strategy (based on coarse regular training sets) accurately captures a broad range of matrices

from real applications for both architectures under investigation. In other words, the classifi-

cation in Table 1 offers a cheap, reliable, fast, and simple strategy to qualitatively determine

time, power, and energy consumption for SpMV.

4.4. Conclusions

HPC supercomputers, and particularly cloud computing centers, can tremendously benefit

from the existence of automatic tools to administer and optimize execution performance and

cost of continuous and large stream of parallel tasks (from many different users). We have

devised a systematic machine learning algorithm to classify and predict the performance costs

of the SpMV kernel. The validity, accuracy, and robustness of our strategy have been demon-

strated over a wide database of real matrices. More importantly, behind all the technical

details, this approach actually represents a first concrete step towards the development of a

global tool, which is able to characterize and capture the features of any sparse linear algebra

operation (with a straight-forward extension to the dense case), thus covering a significant

percentage of existing scientific computing kernels.

5. General-purpose multi-core servers: energy-aware runtimes for (sparse)

linear algebra

Linear algebra operations and, in particular, sparse linear systems are a fundamental building

block in many scientific and engineering applications. It is not surprising, therefore, that

Class Color Memory Time Power Energy

IBM BG/Q

1 Cache Low Medium Low

2 Cache Medium Low-medium Medium

3 DDR Low-medium Medium-high Medium-high

4 DDR High Medium High

IBM P755

1 Cache Low Low-medium Low

2 Cache Medium Medium Medium

3 DDR Low-medium Medium-high Low-medium

4 DDR High Low-medium High

Table 1. Qualitative behavior of each class of matrices.

ICT - Energy Concepts for Energy Efficiency and Sustainability146



considerable effort has been spent by the scientific and high performance community towards

the design and optimization of numerical methods for the solutions of these sparse problems,

which can exert significant impact on the efficient solution of the applications that are built

upon them.

The conjugate gradient (CG) method is among the most effective Krylov subspace solvers

for sparse symmetric positive definite (SPD) linear systems [8, 9]. Furthermore, when the

problem features only a few right-hand side vectors, the method has been also proven to be

highly competitive for the solution of dense linear systems [21]. In this section, we illustrate

the positive effects of integrating energy efficiency techniques into numerical software for

linear algebra by considering the solution of sparse linear systems via ILUPACK (incom-

plete LU package) [24] as a workhorse. ILUPACK is a numerical software based on Krylov-

based iterative methods that implements multilevel ILU preconditioners for general, sym-

metric indefinite, and Hermitian positive definite systems, in combination with inverse-

based ILUs and Krylov subspace solvers. In other words, ILUPACK provides an implemen-

tation of the CG method (for sparse SPD linear systems) furnished with a very sophisticated

preconditioner.

5.1. Energy-efficient processor technology

Current processors have adopted tools and technologies, originally designed for embedded

systems and the mobile market in order to improve the energy efficiency. As of today, most

processors adhere to the advanced configuration and power interface (ACPI) standard [25],

which allows to configure the system state depending on the workload, and thus offers a tool

to tune the power usage to the actual needs. Concretely, the CPU defines two types of energy-

related states, which are reviewed next.

P-states. The ACPI standard defines a collection of operating voltage-frequency pairs for the

processor, referred to as the performance states (P-states). The number of P-states and their

granularity (processor vs. core) depends on the specific processor architecture. For example,

for some architectures, the P-states can only be set for all cores in the socket (e.g., Intel Xeon

E5504), but in others each core can be set to a distinct P-state (AMD 6128).

Table 2 shows the voltage-frequency pairs associated to the different states available in two

recent multi-core processors. As a general rule, increasing the frequency of compute-bound

operations reduces the execution time. For memory-bound operations, tampering with the

frequency could be expected to have no effect on the execution time. However, in some pro-

cessors (e.g., the AMD 6128), the memory bandwidth is connected with the processor fre-

quency, and increasing/reducing the frequency can actually have an analogous effect in the

execution time.

C-states. The ACPI standard also defines the processor or CPU power states (C-states). This

energy-saving mechanism determines the conditions to turn off certain parts of the processor.

State C0 corresponds to a processor that is in normal mode of operation. Compared with this,

in all other states (C1, C1E, C2…), power is shut down for certain components such as the

lower levels of the memory hierarchy. A deeper C-state will surely save power, but also

increases the latency to transition back to the active C0 state. The programmer can only set

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

147



the appropriate conditions in the application so that, when the processor is idle, the operating

system promotes it to an energy-efficient C-state.

For the examples in Table 2, the AMD 6128 presents three C-states: C0, C1, and C1E; the Intel

Xeon E5504 has four C-states: C0, C1, C3, and C6.

5.2. Task-parallel runtimes for linear algebra operations and general applications

In recent years, a number of runtimes have been proposed to alleviate the burden of program-

ming multi and many threaded platforms. Concretely, OmpSs, StarPU, Mentat, Kaapi, and

Harmony, among others, have followed the approach pioneered by Cilk, offering implicit

parallel programming models with dependence analysis. When applied to dense linear alge-

bra (DLA) operations, SMPSs (a precursor of OmpSs), StarPU, Quark, and SuperMatrix have

demonstrated the advantage of extracting task-parallelism using this “runtime approach”. The

idea underlying these runtimes to leverage the task-parallelism of a DLA operation consists in

decomposing the computations into a collection of tasks connected via data dependencies. In a

subsequent stage, the runtime issue these tasks for execution following an out-of-order sched-

ule that maximizes concurrency, while taking into account the dependencies; for example, see

Ref. [26] for details. These ideas have been proven useful and the new OpenMP standard has

integrated some preliminary primitives in order to integrate task parallelism [27].

5.3. Parallelizing ILUPACK on multicore processors

A potential approach to tackle the solver underlying ILUPACK consists in exploiting task

parallelism via a runtime, yielding a dynamic schedule of the work to the cores, with numeric

properties similar to those of the sequential ILUPACK. This approach is similar to those

employed in DLA, but considerably more difficult due to the irregular data structures that

are involved in an iterative sparse linear system solver.

Figure 13 reports the algorithm for the preconditioned conjugate gradient (PCG) method.

There, the computation of the preconditioner, M, is the initial step of the solver (O0). The

iteration, after this first step, is composed of a sparse matrix-vector product (SpMV, O1), the

application of the preconditioner (O5), and several vector operations (dot products, axpy-like

updates, 2-norm; in O2–O4 and O6–O8). For simplicity, we regard both the computation of the

Intel E5504 (4 cores) AMD 6128 (8 cores)

Voltage (V) Frequency (GHz) Voltage (V) Frequency (GHz)

P0 1.04 2.00 1.23 2.00

P1 1.01 1.87 1.17 1.50

P2 0.98 1.73 1.12 1.20

P3 0.95 1.60 1.09 1.00

P4 n.a. n.a. 1.06 0.80

Table 2. P-states of two recent processors, from Intel and AMD.

ICT - Energy Concepts for Energy Efficiency and Sustainability148



preconditioner and its application as “black boxes”. In practice, these are by far the most

difficult operations.

The concurrency implicit in the iterative solver underlying ILUPACK, can be explicitly

exposed by applying nested dissection to the adjacency graph associated with the sparse

coefficient matrix of the linear system. Concretely, by recursively applying a divide-and-con-

quer strategy to this graph, we can obtain a hierarchy of subgraphs that reveals the concur-

rency of the operation. The parallelism enabled by this splitting is in practice captured as a

(directed) task-dependency tree, with nodes representing tasks and arcs specifying the depen-

dencies between pairs of them, as shown in Figure 14.

The multithreaded execution of the task tree implicit in ILUPACK, on a multicore processor,

can be then left in the hands of a runtime which dynamically maps tasks to threads (cores),

taking into consideration the dependencies. The runtime can aim to improve different criteria,

including, e.g., balancing the workload distribution during the computation of the ILU

preconditioner and the subsequent solution of the triangular linear systems involved in the

PCG (see Figure 13). The runtime keeps track of the ready tasks (i.e., tasks with all their

dependencies fulfilled), which initially contain those tasks corresponding to the independent

subgraphs (leaves of the tree). The threads update this information as they complete the

execution of tasks allocated to them. From the implementation perspective, this information is

maintained in shared data structures, and the concurrent access is carefully controlled via

lightweight synchronization system calls.

In addition to the concurrency intrinsic to the calculation and application of the

preconditioner, the operations that appear in the iterative PCG solve define a partial order

Figure 13. Algorithmic formulation of the preconditioned CG method.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

149



which enforces a strict execution order. In the actual implementation, one can eliminate the

explicit barriers between these operations by instead relying on a runtime which can accom-

modate the nested parallelism exhibited by the task/subtask dependencies. In such scenario,

the nested variant defines O1 + O2, O3 + O4, O5, O7, and O6 + O8 as five coarsegrain tasks, and

offloads the complete detection and control of the dependencies to the runtime. In addition,

these five macrooperations can be further divided into fine grain subtasks, and merge pairs of

them as described above.

For current NUMA architectures, the application records where (i.e., the socket) each task was

executed on during the initial calculation of the preconditioner to achieve that tasks which

operate on the same data that was generated/accessed during the preconditioner calculation

and the PCG solve are mapped to the same socket [28]. This strategy ensures that, during the

PCG iteration, a task is always executed on (any core of) the same socket that computed the

corresponding task during the computation of the preconditioner.

For manycore processors, such as the Intel Xeon Phi, a critical aspect is how to bind the

application threads to the hardware threads/cores of the systems, in order to attain a balanced

distribution of the workload.

5.4. Optimizing energy consumption for linear algebra operations via the runtime

In general, optimizing energy consumption strongly requires the optimization of performance

as a first step. This requisite particularly holds for DLA operations and especially the solution

of sparse linear systems. For ILUPACK, though, it is possible to improve the energy efficiency

of a runtime-based parallelization, with negligible impact on performance, by tuning the

runtime itself to be aware of the ACPI C-states and P-states.

Figure 14. Nested dissection applied to the adjacency graph associated with a sparse matrix and corresponding task

dependency tree.

ICT - Energy Concepts for Energy Efficiency and Sustainability150



In a runtime-based parallelization, an idle runtime thread can rely on either polling or blocking

policies upon encountering no task ready to be executed. For example, the prototype of

SuperMatrix enforced a “busy-wait” for idle threads, till a new task is available. Unfortunately,

this option impedes the transition of the corresponding core to a power-saving C-state because

the thread is active (though doing useless work). From the positive point of view, this

approach favors an immediate reaction of the thread to the creation of a new task. Alterna-

tively, a power-aware version of the runtime can enforce an “idle-wait” (blocking) for idle

threads.

The exploitation of the P-stages can also yield some potential energy savings if correctly

adjusted from the runtime. Unfortunately, in some platforms, the use of the P-states is

constrained by the operation of this mechanism at the socket level (i.e., it is not possible to

change the P-state of a single core; instead, the change must be applied simultaneously for all

cores of the socket). A second limiting factor for the P-states is the interplay between the

frequency and memory bandwidth for some processor architectures, which implies that a

reduction of the former negatively affects the latter as well. In consequence, exploiting this

mechanism is far more delicate than doing so with the C-states. In particular, as energy

consumption equals the product of time and power dissipation, the use of a lower P-state that

reduces the frequency, and in principle, also the power draft, can result in a longer execution

time that blurs the benefits from the point of view of energy consumption. In other words,

reducing of power consumption is beneficial only if it does not increase the execution time that

destroys the positive effects on energy consumption.

6. Energy-efficient techniques for multigrid methods on distributed

memory platforms

Multigrid solvers belong to the most efficient numerical methods for solving symmetric posi-

tive definite linear systems. The computational complexity is O(n) for sparse systems with n

unknowns. To introduce the multigrid methodology, we revisit the definition of an iterative

linear solver. Let x(k) be the approximation to the solution x resulting from the k-th iteration of

the solver. The (unknown) error is denoted as e(k) = x − x
(k) and the residual vector is defined as

r
(k) = b − Ax

(k). Note that e(k) solves the error equation Ae
(k) = r

(k) and x
(k) = x⇔ e

(k) = 0⇔ r
(k) = 0.

The abstract solution scheme stated in Algorithm 1 is known as iterative refinement. This

scheme offers full flexibility for choosing a method to solve the error equation in step 4.

Convergence of the approximation to the solution is guaranteed if the correction is sufficiently

accurate since r
(k + 1) = r

(k)
− Ac

(k). The idea of multigrid methods is to compute the error

correction in step 4 of the iterative refinement scheme, not in the same space where the final

solution is sought, but in a space of smaller dimension. The theoretical basis of multigrid

methods is formulated in terms of “subspace correction” methods, see Refs. [29, 30]. Two

prototypical variants of multigrid methods can be distinguished: the algebraic multigrid

(AMG) variant is based on a purely algebraic problem formulation by means of a linear system

of equations [31]. In contrast, the geometric multigrid (GMG) variant is based on the

discretization of the underlying model equations on several grid refinement levels [32]. Both

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

151



multigrid variants use a hierarchy of grid levels, either derived from the algebraic problem

formulation or resulting from the discretization of the model equations on different computa-

tional grids. The process of constructing the hierarchy from the finest level is called “coarsening”.

The transition between two grid levels is defined by means of grid transfer operators, namely

restriction and prolongation. Smoothing methods are used in order to make the unknown error

from a fine grid representable on a coarser grid, where the correction shall be computed. The

smoother is applied to the approximation on the fine grid and has the implicit effect of removing

high frequency contributions from the error. The multigrid cycle is stated in Algorithm 2.

It is a recursive algorithm with its recursion basis on the coarsest grid level, where the error

equation is solved with high accuracy in step 2. On all finer levels, only smoothers, residual

Algorithm 2 Cycle(Ah, xh, bh, γ)

1: if h = H then

2: xh←A
−1
h
bh (coarse grid solution)

3: else

4: xh← Sh(Ah, xh, bh) (presmoothing)

5: rh← bh − Ahxh (residual computation)

6: b2h←R
h

2hrh (restriction)

7: x2h← 0

8: for k = 1, 2, …, γ do

9: Cycle(A2h, x2h, b2h, γ) (recursion)

10: end for

11: ch←I
h

2hx2h (prolongation)

12: xh← xh + ch (correction)

13: xh← Sh(Ah, xh, bh) (postsmoothing)

14: end if

Algorithm 1 Iterative refinement

1: Set initial solution x
(0), tolerance δ > 0, iteration counter k = 0.

2: Compute initial residual r(0) = b − Ax
(0).

3: while ‖r
(k)
‖ > δ do

4: Solve error equation Ae
(k) = r

(k) approximately by means of a correction c
(k)

≈ A
− 1

r
(k).

5: Update solution x
(k + 1) = x

(k) + c
(k).

6: Compute residual r(k + 1) = b − Ax
(k + 1).

7: k← k + 1.

8: end while

ICT - Energy Concepts for Energy Efficiency and Sustainability152



computation, and grid transfer operators are used. The typical choices for the recursion

parameter γ = 1 or γ = 2 lead to the V- or W-cycle, respectively, depicted in Figure 15. The

solution is sought on the finest grid level where one expects the highest accuracy. The problem

size in terms of number of variables is the largest on the finest grid level, and becomes

subsequently smaller on the coarser levels. Standard smoothing methods include classical

relaxation schemes like Jacobi, (symmetric) Gauss-Seidel or (symmetric) successive over-relax-

ation, and many other smoothing methods have been developed for specific fields of applica-

tion. The smoother and grid transfer operator computations on fine grid levels usually only

employ vector operations, sparse matrix-vector multiplications or element-wise operations in

the grid. Only on the coarsest level, a direct or iterative method is used to solve the error

correction equation with high accuracy. In the following paragraphs, we briefly introduce

distributed memory platforms, the domain decomposition parallelization, which is often used

on such platforms, and some implications on the numerical linear algebra routines.

6.1. Distributed memory platforms

Distributed memory means the separation of the available memory in distinct address spaces.

This may be inherent to the computer platform, e.g., the computer units, or nodes, in

interconnected clusters often have their own memory address space which is not accessible

from other nodes. A distributed memory setup may also be induced by the coexistence of

several host processes with individual private address spaces within the same computer. This

is a fundamentally different situation compared to shared memory platforms, where all host

processes or threads can access the same memory using a common address space. Note that

there exist techniques which create a shared memory view of actually distributed memory

platforms, but this is not discussed here. Parallelism on distributed memory platforms can be

exploited by means of the “single instruction multiple data (SIMD)” or “multiple instruction

multiple data (MIMD)” paradigm. It means that the problem data is split into pieces and

distributed, while program replica (SIMD) or individual programs (MIMD) work on the data

pieces in parallel. The processes which constitute the kind of parallel scientific application

which we consider, may run on separate compute nodes in an interconnected cluster, possibly

with several processes per node. Unless the application is “embarrassingly parallel”, which

denotes a situation without any dependency between the processes, a technique for making

Figure 15. V-cycle (left) and W-cycle (right) across four grid levels. Small dots indicate the execution of the smoother,

residual computation and grid transfer operators, while large dots indicate the solution of the coarse grid error equation.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

153



data from one process available to other processes is needed. The widely used standard

technique in HPC is explicit data transfer between processes using the message passing

interface (MPI) [33].

6.2. Domain decomposition parallelization and its implications on linear algebra routines

The distributed memory parallelization technique used for many numerical simulations of

physical processes is based on domain decomposition. Using a number p of processes, the

computational grid Ωh is divided into a corresponding number of subdomains Sq ⊂ Ωh,

∪
p
q¼1 Sq ¼ Ωh. In practice, graph partitioner tools can be used to achieve a balanced decompo-

sition. Figure 16 shows an example of a domain decomposition of a flow channel with an

obstacle into eight subdomains.

The domain decomposition implies a distribution of the discrete variables since these are

associated to certain locations in the grid. Usually one uses a process-wise enumeration of

the variables, so that the vectors and matrices of the discrete system are distributed in

contiguous blocks among the processes. The usual technique to account for couplings of

variables across subdomain boundaries is the addition of a “ghost layer” or “halo” of grid

cells. The ghost layer replicates cells with coupling variables from the subdomains of other

processes. The replicated variables are also called “ghost variables”, and they are used in

read-only mode for contributions of remote processes to the computations of the local

process. Therefore, if the computation of a process relies on recent contributions from other

processes, all affected ghost variables need to be updated by means of a data transfer. The

communication pattern for a ghost update is determined by the neighborhood relation of

the subdomains and the couplings of the variables. The local nature of the couplings,

resulting from the discretization techniques described above, maintains the locality of the

Figure 16. Domain decomposition of the computational grid of a flow channel with an obstacle into eight subdomains.

ICT - Energy Concepts for Energy Efficiency and Sustainability154



communication pattern of each individual process, i.e., it comprises only the subdomain

neighbor processes. To illustrate the effect of the domain decomposition parallelization on

the actual computations using distributed matrices and vectors, we introduce some dedi-

cated notation. The local part of a vector v that comprises the variables associated with the

subdomain of the process q is denoted as vlocq , and the ghost variables of process q form the

ghost vector part v
ghost
q . Accordingly, the distribution of a matrix A yields a matrix block on

the diagonal Adiag
q , whose entries represent couplings among the local variables of process q,

and an off-diagonal block Aoff−diag
q , which comprises couplings of the local variables of

process q with variables from other processes, i.e., with ghost variables. Figure 17 shows a

distributed matrix with diagonal and off-diagonal blocks, and a distributed vector with local

parts. The ghost vector parts are not shown in this graphic.

6.3. Parallel setup of some linear algebra routines

We can now formulate the distributed memory parallel version of some of the most important

linear algebra routines, which are often used in numerical solvers. The scaling and addition of

vectors can be done independently by each process for its local vector part, without using the

ghost part:

∀ 1 ≤ q ≤ p : αvþ wð Þlocq ¼ αvlocq þ wloc
q ; (10)

where α is a scalar, and v and w are distributed vectors.

The matrix-vector multiplication uses the ghost vector part and therefore needs a ghost

update:

Figure 17. Distributed matrix with diagonal and off-diagonal blocks, and distributed vector local parts.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

155



∀ 1 ≤ q ≤ p : Avð Þlocq ¼ Adiag
q vlocq þ Aoff−diag

q vghostq : (11)

The ghost update needs to be completed before the off-diagonal matrix part is multiplied with

the ghost vector part. However, the contribution from the diagonal matrix block multiplied

with the local vector part is independent from other processes. This offers the opportunity to

use a nonblocking communication mechanism for overlapping communication and computa-

tion, according to the following scheme:

1. Start nonblocking communication for the ghost vector update.

2. Compute wloc
q ← Adiag

q vlocq .

3. Wait for completion of ghost vector update.

4. Compute wloc
q ← wloc

q þ Aoff−diag
q v

ghost
q .

In this scheme, the computation for step 2 potentially overlaps with the communication for the

ghost update. This is advantageous since computation and communication may happen con-

currently, thus accelerating the routine. However, it depends on the compute node and net-

work hardware and system software to what degree the overlapping actually happens. If the

node architecture is able to delegate the communication to the system, and meanwhile con-

tinue with the computation for the local contribution, a benefit for the overall performance can

be expected. Ideally, the data transfer would happen entirely in the background, thus being

completely hidden behind the computation overlap, without any communication overhead

degrading the parallel efficiency. Of course, this can only be realized if the ghost update is

completed before the computation for the local contribution finishes, so that there is actually

no waiting necessary in step 3 of the scheme.

Without involving the ghost vector part, but nevertheless different from scaling and vector

addition, and also from matrix-vector multiplication is the computation of scalar products and

norms:

v � w ¼ ∑
p

q¼1
vlocq � wloc

q , ∥v∥k ¼ ∑
p

q¼1
∥vlocq ∥kk

 !1=k

for 1≤k < ∞; (12)

∥v∥∞ ¼ max
1≤q≤p

∥vlocq ∥∞ (13)

The difference from scaling, vector addition, and matrix-vector multiplication is that the result

has a global nature. Scalar product and norms require a global reduction operation such as

global sum or global maximum. All processes must contribute to the result, and this result

must be available on all processes. Therefore, scalar product and norm computations imply a

global synchronization of all processes. Communication libraries such as MPI often provide

routines with an optimized routing strategy, e.g., using tree-based routing algorithms of

logarithmic complexity with respect to the number of processes, to implement global reduc-

tion operations.

ICT - Energy Concepts for Energy Efficiency and Sustainability156



6.4. Energy-efficient techniques for multigrid methods

Opportunities for making multigrid solvers more energy-efficient can be sought in all building

blocks of the method including the smoother, grid transfer operators, and coarse grid solver.

However, the individual parts must usually be addressed by individual measures for optimi-

zation due to their different roles in the multigrid algorithm.

As explained above, the purpose of the smoother is to remove high frequency contributions

from the unknown error. To achieve this smoothing effect, the smoother does usually not need

to yield an accurate approximation of the solution. Moreover, it does not always need to

converge at all, as long as it has the desired smoothing properties. This gives space for the

choice and optimization of smoothers. We depict one example in the following:

Traditional smoother choices include the classical Jacobi or Gauss-Seidel iteration and their

damped variants. For a system matrix Awith nonzero diagonal elements, the Jacobi iteration

reads in component-wise form

xkþ1
i ¼ xk þ

1

aii
bi−∑

j≠i
aijx

k
j

" #

i ¼ 1, ::.; nð Þ ; (14)

where k is the iteration index. The new iterate xk + 1 relies on the previous iteration xk, thus

imposing a sequential order for the computation of the iterates. Moreover, in parallel setups,

computing iterates usually involve contributions from other processes. This requires a syn-

chronization of the processes after each iteration to make sure all needed values are updated

from the last iteration.

For smoothers, it might, however, be acceptable to relax this strictly synchronized scheme by

allowing to use also older or newer iterations in the computation. This leads to asynchronous

iterations, which can benefit from massively parallel architectures like manycore devices or

graphics processing units (GPUs). On the mathematical level, this is achieved by introducing a

shift function, s, and an update function, u, in the algorithm:

xkþ1
i ¼

xki þ
1

aii
bi−∑

j≠i
aijx

k−s jð Þ
j

" #

if i ¼ u kð Þ,

xki if i ≠u kð Þ:

8

>

<

>

:

(15)

This abstract scheme can be adapted to fit the hardware at hand, e.g., by aggregating the

components into blocks and mapping them to the cores of a multicore processor or to the

thread blocks of a CUDA GPU. Thus, the adaption of the classic, synchronized relaxation

scheme allows to efficiently exploit the parallelism of modern hardware, and in particular, it

offers an opportunity to benefit from the superior FLOPS per Watt characteristics of GPUs.

In contrast, the residual and the grid transfer usually need to be computed accurately, because

otherwise the overall convergence of the multigrid solver cannot be guaranteed. Nevertheless,

performing residual and grid transfer computations on coprocessors such as manycore accel-

erators or GPUs might still prove beneficial, but care must be taken to ensure consistency in

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

157



distributed systems. The coarse grid error correction solver is also expected to provide an

accurate result. It nonetheless offers space for optimization, both in the choice of the method

and its implementation. One usually employs Krylov subspace methods such as CG or

GMRES methods, or direct methods such as LU or QR decompositions. The coarse grid solver

can itself be subject to energy and performance optimization, and the overall multigrid solver

would then inherit the benefits.

Another direction for energy and performance optimization, which is particularly relevant for

distributed memory platforms, affects the parallel setup of the grid levels in the multigrid

hierarchy. The problem sizes in the hierarchy often differ in several orders of magnitude from

the largest problem size on the finest level to the smallest problem size on the coarsest level. A

simple parallelization, where all grid levels are distributed to all available processors, may turn

out to scale poorly for a large number of processors. This is due to the communication overhead

becoming significant and diminishing the efficiency of the computations on coarse levels with

small problem sizes. Instead, parallel setups, where coarser levels use only a subset of the

available processors, can be beneficial. Balanced setups can maintain the overall performance of

the parallelization, while reducing the communication, such that the overall efficiency is con-

served. A fraction of the available processors can be temporarily deactivated, while the multigrid

algorithm operates on coarse levels, and activated again to use the full computing power on finer

levels. It is crucial to keep communication patterns local between neighboring subdomains, both

within each grid level as well as between grid levels for the grid transfer. Well-configured parallel

setups in the multigrid hierarchy can yield substantial energy savings by deactivating processes

and reducing communication, while maintaining the overall performance.

Author details

Martin Wlotzka1*, Vincent Heuveline2, Manuel F. Dolz3, M. Reza Heidari4, Thomas Ludwig4,

A. Cristiano I. Malossi5 and Enrique S. Quintana-Orti6

*Address all correspondence to: martin.wlotzka@uni-heidelberg.de

1 Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany

2 Computing Center, Heidelberg University, Germany

3 Computer Science Department, University Carlos III of Madrid, Spain

4 Department of Informatics, Universität Hamburg, Germany

5 Cognitive Computing and Computational Sciences Department, IBM Research, Zurich,

Switzerland

6 Departamento de Ingenieria y Ciencia de Computadores, Universidad Jaime I, Castellon,

Spain

ICT - Energy Concepts for Energy Efficiency and Sustainability158



References

[1] N.S. Trudinger D. Gilbarg. Elliptic Partial Differential Equations of Second Order. Classics in

Mathematics. Springer Berlin Heidelberg, 2001.

[2] L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.

American Mathematical Society, 2 edition, 2010.

[3] R.J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations. Soci-

ety for Industrial and Applied Mathematics, Classics in Applied Mathematics edition,

2007.

[4] J.L. Guermond A. Ern. Theory and Practice of Finite Elements. Springer New York, 2010.

[5] R. Herbin R. Eymard, T. Gallouete. Finite Volume Methods. In: Handbook of Numerical

Analysis, Vol. 7. Elsevier. 2000.

[6] G. Wanner E. Hairer. Solving Ordinary Differential Equations II: Stiff and Differential Alge-

braic Problems. Springer Berlin Heidelberg, 2010.

[7] G. Wanner E. Hairer, S.P. Norsett. Solving Ordinary Differential Equations I: Nonstiff Prob-

lems. Springer Berlin Heidelberg, 2008.

[8] C.F. van Loan G.H. Golub. Matrix Computations. Johns Hopkins University Press Balti-

more London, 4 edition, 2013.

[9] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, 2 edition, 2003.

[10] Towards supercomputers: Eu project Exa2Green improves energy efficiency in high

performance computing. ICT-Energy Lett., (10), 2015.

[11] S. Catalan M.F. Dolz G. Fabregat R. Mayo E.S. Quintana-Orti S. Barrachina M. Barreda.

An integrated framework for power-performance analysis of parallel scientific work-

loads. In Proceedings of the 3rd International Conference on Smart Grids, Green Communica-

tions and IT Energy-Aware Technologies (ENERGY), pages 114–119, 2013.

[12] A.D. Malony S.S. Shende. The tau parallel performance system. Int. J. High Perform.

Comput. Appl., 20, 2006.

[13] M. Jurenz M. Lieber H. Brunst H. Mix W.E. Nagel M.S. Müller, A. Knüpfer. Developing

scalable applications with vampir, vampirserver and vampirtrace. In Proceedings of the

Parallel Computing: Architectures, Algorithms and Applications Conference (PARCO), 2007.

[14] Lapack project homepage.

[15] R. Mayo E.S. Quintana-Orti R. Reyes M. Barreda, M.F. Dolz. Binding performance and

power of dense linear algebra operations. In Proceedings of the IEEE 10th International

Symposium on Parallel and Distributed Processing with Applications, pages 63–70, 2012.

Energy-Aware High Performance Computing
http://dx.doi.org/10.5772/

159



[16] The Top500 List, June 2014.

[17] The Green500 List, June 2014.

[18] B.C. Catanzaro J.J. Gebis O. Husbands. K. Kreutzer D.A. Patterson W.L. Plishker J. Shalf

S.W. Williams K.A. Yelick K. Asanovic R. Bodik. The Landscape of Parallel Computing

Research: A View from Berkeley. Technical report, Electrical Engineering and Computer

Sciences, University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183, 2006.

[19] C. Bekas A. Curioni E.S. Quintana-Orti A.C.I. Malossi, Y. Ineichen. Performance and

energy-aware characterization of the sparse matrix-vector multiplication on

multithreaded architectures. In Proceedings of the 43rd International Conference on Parallel

Processing Workshops, 2014.

[20] S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theory, 28(2):129–137, 1982.

[21] A. Curioni C. Bekas. A new energy aware performance metric. Comput. Sci. Res. Dev., 25

(3–4):187–195, 2010.

[22] P. Klavik, A.C.I. Malossi C. Bekas A. Curioni. Changing computing paradigms towards

power efficiency. Philos. Trans. Math. Phys. Eng. Sci., 372(2018), 2014.

[23] The University of Florida Sparse Matrix Collection, April 2014.

[24] Ilupack, July 2015.

[25] Acpi, July 2015.

[26] Ompss, July 2015.

[27] The Openmp Api Specification for Parallel Programming, November 2015.

[28] M. Barreda M. Bollhöfer E.S. Quintana-Orti J.I. Aliaga, R. Badia. Leveraging task-paral-

lelism with ompss in ILUPACK’s preconditioned CG method. In Proceedings of the 26th

International Symposium on Computer Architecture and High Performance Computing, pages

262–269, 2014.

[29] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34

(4):581–613, 1992.

[30] H. Yserantant. Old and new convergence proofs for multigrid methods. Acta Numer.,

2:285–326, 1993.

[31] K. Stueben. A review of algebraic multigrid. J. Comput. Appl. Math., 128:281–309, 2001.

[32] C.W. Oosterlee P. Wesseling. Geometric multigrid with applications to computational

fluid dynamics. J. Comput. Appl. Math., 128:311–334, 2001.

[33] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.0.

University of Tennessee, Knoxville, Tennessee, 2012.

ICT - Energy Concepts for Energy Efficiency and Sustainability160


