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Abstract

One of the possible approaches to achieve more than Moore's law with signal process‐
ing circuits is to inspire from functioning of human brain to mimic neural functions by 
exploring emerging technologies such as memristor circuits. While fast Fourier transform 
(FFT) implementations are largely based on CMOS gates, they are limited by the com‐
putation speed and availability limits on the number of Boolean variables it can handle 
at a given time. Biological neurons and networks on the other hand are generalized in 
nature and can handle both analogue and digital signals. Through this chapter, memris‐
tor‐based resistive threshold logic family of gates that inspire from brain‐like large vari‐
able logic functions is introduced. This logic consists of a memristors acting as weights 
to the inputs followed by threshold operations emulating neuronal synapse. Using this 
Boolean logic, a processing unit that can compute Fourier transform of a given set of 
inputs was developed. Various comparisons of the circuit are found to be advantageous 
in implementing neuromorphic circuits. The existing logic families were carried out and 
the proposed logic family was found too advantageous in many ways.

Keywords: memristors, threshold logic, circuits, Fourier, FFT

1. Processing in brain

Human brain is the processing centre of human nervous system. Average adult human brain 

weighs about 1.5 kg and [1, 2] is composed of about 10 billion nerve cells or neurons. On aver‐

age, each neuron is connected to other neurons through about 10,000 synapses. The brain's 

network of neurons forms a massively parallel information processing system.

On the other hand, approximates arithmetic, such as the ability to calculate whether ‘26 + 32’ 

is closer to 60 or 75, is not processed in the same manner or in the same part of your brain. 

Memorization of the results of operations such as multiplication tables reduces the need to 

use complex cognitive processing, such as going through the learning processes every time 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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the task is given. The idea of storing for long‐term retrieval is supported by the long‐term 

memories in the human brain, where the retrieval of results from the memory reduces the 

effort on cognitive processes.

The ability of the brain to process computational operations in real time is reflective of an 
active working memory. In many of the mental calculations, one makes on a day‐to‐day basis 

can be analysed by looking into the activities in the prefrontal cortex (see Figure 1). The stud‐

ies using neuroimages indicate 10 separate regions in the brain that contribute to even simple 

task of subtraction of two numbers. The main areas of activation for this simple task include 

fusiform gyrus, parietal cortices, lateral and medial parts of the temporal lobe and inferior 

parts of the frontal lobes.

The interconnections between the modules and the way they interact with each other for 

different set of arithmetic operations are different. It is also found that there is a separate net‐
work for estimation (bilateral inferior parietal cortex) as opposed to computation (left parietal 

and frontal cortices). These features point out the fact that there is one specific unit for per‐

forming computation; instead it is a collaborative effort between various regions in the brain.

Figure 1. Functional units in brain.
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These features of brain are similar to the normal CPU architecture—a separate unit for arith‐

metic and logic functions, with a difference in the mode of operation. Instead of doing algo‐

rithmic approach, the brain works based on what it learned or we can say that the patterns it 
has learned. If we can implement this key feature of brain in hardware, then we can have a 

brain‐like fast processing unit.

In the brain the basic functional unit is a cell, called neuron. For each function, there will be 

separate set of neuron cells, which are learned to do that particular task. If we can develop a 

neuromorphic circuit for the neuron cell and can make it learn to do particular tasks, we can 

use it to develop a brain‐like processing unit, that is what is achieved through this project 

work.

2. Neurons

Neurons are the basic building blocks of the nervous system, which includes brain, spinal 

cord and peripheral ganglia. Neurons are electrically excitable cells and they process and 

transmit information through electrochemical signals. Neurons connect together to form 

what is known as neural networks.

The basic structure of a biological neuron is shown in Figure 2. It consists of a cell body, den‐

drites and axons. Cell body or the soma is bulbous in shape and contains the nucleus. The 

cell body or the soma contains many cell organelles, including Nissl granules that are the site 

of protein synthesis. Nissl granules contain endoplasmic reticulum and free polyribosomes.

Dendrites arise from the cell body, branches into what is known as the ‘dendritic tree'. 

Dendrites are the branched projections of the neuron arising from the cell body and its func‐

tion is to receive the electrochemical simulations from other neurons and to conduct it to 

Figure 2. Biological neurons.
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the cell body. The electrical simulations are transmitted from one neuron to the dendrite of 
another neuron at the synaptic terminals.

Another important part of the neuron is the axon. Axon arises from the cell body at a site 

called axon hillock and extends to over 1 m in length. A neuron can have multiple dendrites, 

but only one axon. Axon is covered by a layer of dielectric material myelin, known as myelin 

sheath. Before termination, the axon gets divided into a large number of branches.

The axon terminals of one neuron connect to the dendrites of another neuron through syn‐

apses. Electrochemical signals are transmitted from one neuron to another through synapses. 
Chemicals known as neurotransmitters are released from the presynaptic neuron, which 
binds to the receptors located at the dendrites of the postsynaptic neurons. These neurotrans‐

mitters are initially present in small bag‐like structures known as synaptic vesicles that are 
found at the axonic terminals of the neurons. These synaptic vesicles, when excited, migrate 

towards the synapse and get attached to the synapse and release the chemical ions through 
the semipermeable membrane of the synapses.

The major ions that are involved in the process are sodium, potassium, chlorine and calcium. 

Once released, these ions diffuse through the semipermeable membrane and binds to the 
receptors which are present on the dendrites of the post‐synaptic neurons. The basic structure 

of a synapse is shown in Figure 3.

Due to the ion exchange between neurons, a gradient in the ion concentration arises on either 

side of the semipermeable membrane. Due to this ion concentration difference, a potential will 
be generated, known as Nernst potential. Changes in the cross‐membrane voltage between the 

intra‐cellular and extra‐cellular potential will alter the function of the voltage‐ dependention 

Figure 3. Structure of synapse.
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channels. As the difference in ion concentration increases, the resultant Nernst potential also 
increases and when this potential reaches a particular threshold value, the post‐synaptic neu‐

ron fires and an action potential is generated which moves from cell body to the next neuron 
through the axon. This is how a biological neuron transmits signals.

There are several differences between the processing in human brain and processing in a com‐

puter. One of the most important differences is that brain is analogue whereas the computers 
are digital. The computers work with 0's and 1's whereas neuron signals are not bi‐state. But 

we can find a superficial similarity between neurons and digital circuits in the aspect that neu‐

rons fire an action potential when they reach a threshold value. In computers, information in 
memory is accessed by polling its precise memory address. This is known as byte‐addressable 

memory whereas brain uses content‐addressable memory.

Human brain can be considered as a massively parallel machine, where different functions 
are carried out simultaneously in different parts of the brain. Brain has got several dedicated 
modules for carrying out different functions. But if we consider the case of computers, the 
processing is in modular and serial in nature.

The brain has got a body at its disposal. This may seem to be trivial, but this is a major differ‐

ence which gives the humans a clear advantage over the computers. Once the brain takes a 

decision based on the input signals, the brain directs the body to respond to the signals. But in 

computers, although it can take decisions based on the input signals, there is no body so that 

it can respond to the stimulus.

Although there are several other differences, one of the most important differences between 
brain and computing processors is that there exists no distinction between memory and pro‐

cessing architecture in brain. These two important activities are not separable. As the neurons 

process information, they also modify their synapses that are the substrate of memory. But in 

computers there exist a clear distinction between processor and memory.

3. Memristor

Memristor is considered to be the fourth fundamental electronic component. The basic state 

variables in any circuit are voltage (V), current (I), charge (q) and flux ( φ ). The state variables 

and relations between them are shown in Figure 4. Prior to the 1970s, only resistor, capacitor 

and inductor were known. No component showing the property of memristance was known 

to the scientific community. It was in 1971 that Leon Chua gave the scientific and logical 
basis for the existence of a two terminal circuit element called memristor (memristor is the 

shortened form of ‘memory resistor') [3]. He reasoned the existence of the fourth element 

through symmetry arguments. Although he showed that the memristor has many interesting 

and valuable circuit properties, he was unable to implement the memristor in the form of a 

physical device without an internal power supply.

The six different mathematical relations connect the four fundamental circuit variables: volt‐
age (V), current (I), charge (q) and magnetic flux ( φ ). These relations are indicated in Figure 4. 
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Since there were no devices that reflected a relation for long between the charge and flux, the 
memristor was referred to as the missing element, with memristance (M), with  dφ = Mdq .

One of the most advertised and commercially inclined versions of the memristor was develop 

by HP Labs that was based on a thin film of titanium dioxide [4, 5]. The main reason that 

gained attention for this device was the possibility to scale the device beyond the traditional 
CMOS limits. While, there is debate on the charge transport mechanisms and resistance 

switching behaviours, the hypothesis is that the hysteresis requires some sort of atomic rear‐

rangement that modulates the electronic current. The HP memristor device consists of a thin 

film of titanium dioxide (TiO
2
) sandwiched between two platinum electrodes, with one side 

of the titanium dioxide doped with oxygen vacancies, TiO
2‐x

 (see Figure 5).

The undoped region is insulated and has higher resistance than the doped region. The effec‐

tive resistance within the memristor is determined by the boundary between the doped and 

Figure 4. Relation between various state variables in an electronic circuit.

Figure 5. Memristor modelled by HP.
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undoped regions. Let D be the total width of the TiO
2
 layer and W be the width of the doped 

region. Then the effective resistance of the device is given by   M  
eff

   = (W / D )  R  
ON

   + (1 − (W / D ) ) R  
OFF

   , 

where   R  
ON

    is the resistance of the device if it is completely doped and   R  
OFF

    is the resistance of 

the device if it is completely undoped, see Figure 6.

Under the situation, when a positive voltage at the side of the doped region and negative volt‐

age at the side of the undoped region, the oxygen vacancies move from the doped side to the 

undoped side, thus, increasing the width (W) of the doped region. This results in the overall 

resistance of the memristor.

If the polarity of applied voltage is reversed, that is, positive potential is applied to the undoped 

side and negative potential is applied to the doped side, then the width of the undoped region 

increases, thereby increasing the effective resistance of the device.

When input voltage is withdrawn or when there is no potential difference between the termi‐
nals, the memristor maintains the boundary between the doped and undoped region, since 

the oxygen ions remain immobile after removal of the input voltage. Thus, the resistance will 

be maintained at the same value before withdrawing the input voltage.

The resistance of the memristor increases when current flows through it in one direction and 
the resistance value decreases when the current flows through it in the opposite direction. It 
can retain the resistance value it had at that point of time, if the current is stopped.

Figure 6. Working of a memristor.
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We can see from  i = v / M(q )  that when there is no voltage difference across the memristor, there 
is no current through the memristor. When the potential applied is reversed, the width of the 

undoped region increases resulting in an increase in effective resistance. The high resistance 
blocks any reverse leakage current and adding more inputs, the collective current does not 

increase significantly as the effective resistance remains constant.

The V‐I characteristics of the memristor are shown in Figure 7. Generally, indicative of a 

pinched hysteresis effect [3, 4, 6], the changes in the slope indicate the switching behaviour, 

with each of the switch having at least two resistance states. With change in operating fre‐

quencies, the resistance values of the state become equal at high frequencies. The frequency 

dependence of memristor is shown in Figure 7.

Figure 7. The V‐I characteristics of the memristor device.
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Over the years, there have been several efforts to manufacture memristors. The various 
attempts include polymeric or ionic memristors, resonant tunnelling diode memristors, 
manganite memristors and spintronic memristors. In addition to the memristor devices, 

there are circuits that emulate the memristor behaviour, generally referred to as memristive 

systems.

The crossbar architecture with memristor is used to build ultra‐dense memory cells (RRAM—

resistive random‐access memory). Another application is the use of memristor for emulating 

neural circuits that can help develop a range of hardware‐based machine learning methods. 

The memristors can be also used to implement multilevel memories [7, 8] and analogue mem‐

ories [9]. They also find application in configurable logic arrays [10].

4. Resistive threshold logic

Resistive threshold logic [11, 12] is a new logic family based on a resistive voltage divider 

and threshold logic, which is the hardware implementation of the neuron cell by configur‐

ing the cognitive memory network [13]. This circuit is capable of doing all Boolean logic 

[14, 15].

Two‐input basic resistive threshold logic cells are shown in Figure 8. For a straight forward 

approach, we started by using semiconductor resistors for the resistive divider. The input to 

the resistive divider is voltage levels that can be equated to the logic inputs [10] of a digital 

logic gate. Based on the logic functionality required, predefined threshold levels will be used 
in the thresholding part.

Figure 8. Two‐input basic resistive threshold logic cell.
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An  N ‐input resistance divider circuit consist of  N  input resistors   R  
i
    and one reference resistor   

R  
0
   . The output voltage   V  

0
    for  N ‐input voltages   V  

i
    is shown in Eq. (1),

   V  
0
   =   

 ∑  
i=1

  N     
 V  
i
  
 ___ 

 R  
i 
  
    
 __________ 

(  1 __ 
 R  

0
  
   +  ∑  

i=1
  N     1 __ 
 R  
i
  
   )
    (1)

We keep equal values to   R  
i
   's and   R  

0
   = m  R  

i
   , which results in:

   V  
0
   =   

 ∑  
i=1

  N    V  
i
  
 ______ 

  1 __ m   + N
    (2)

The inverter with a threshold   V  
th

    and a two‐input resistive divider is used to implements the 

NAND and NOR gates shown in Table 1. Given that,   V  
dd

   = 1V,    V  
H
   = 1V,    V  

L
   = 0V , (see Table 1), 

when the threshold voltage of the inverter is set between 0 and 1/3 V, the cell functions as 

NOR logic, while between 1/3 and 2/3 V the cell functions as NAND logic. This implies that 

varying the threshold voltage of the inverter a single cell structure can be used to implement 

NAND and NOR logic.

In general, the range of threshold voltage,   V  
th

    of NOR gate is    
Nm  V  

L
  
 

______
 1 + Nm   ≤  V  

th
   ≤   

( V  
H
   +   (  N − 1 )    V  

L
   ) m
  

_____________
 

Nm + 1    and 

NAND gate is,   
m( V  

L
   +   (  N − 1 )    V  

H
   )
  

_____________
 

Nm + 1   ≤  V  
th

   ≤   
mN  V  

H
  
 

______
 

Nm + 1   .

To find the  m  value in Eq. (2), the lower limit of NAND gate threshold range    
m( V  

L
   +   (  N − 1 )    V  

H
   )
  

_____________
 

Nm + 1    is 

equated to    
 V  
H
   +  V  

L
  
 

______
 2   . And to solve the equation   V  

L
    is taken as 0 V. So we get the  m  value as    1

 
____

 
N − 2   . 

Now we can say that the threshold voltage of NAND gate must be between    
 V  
H
   +  V  

L
  
 

______
 2    and    

mN  V  
H
  
 

______
 

Nm + 1   .

But there are certain drawbacks in using semiconductor resistors for building the voltage 

divider. One of the most important factors is the large leakage current of the semiconduc‐

tor resistors. When the number of inputs increases the problem of leakage current becomes 

prohibitively high. Another drawback of using semiconductor resistor is that a change in the 

resistance value of the resistor due to second‐order implementation effects, such as improper 
junctions and defects. This change in the resistance value is generally termed as the tolerance 

Input voltage (  V  
i
   ) Output voltage NAND NOR

  V  
1
     V  

2
     V  

0
   

   

 V  
L

   +  V  
H

  

 
______

 
3
   <  V  

th

   <   

2  V  
H

  

 
____

 
3
      

2  V  
L

  

 
___

 
3
   <  V  

th

   <   

 V  
L

   +  V  
H

  

 
______

 
3
   

  V  
L

     V  
L

   
   

2  V  
L

  

 
___

 
3
   

  V  
H

     V  
H

   

  V  
L

     V  
H

   
   

 V  
L

   +  V  
H

  

 
______

 
3
   

  V  
H

     V  
L

   

  V  
H

     V  
L

   
   

 V  
L

   +  V  
H

  

 
______

 
3
   

  V  
H

     V  
L

   

  V  
H

     V  
H

   
   

2  V  
H

  

 
____

 
3
   

  V  
L

     V  
L

   

Table 1. Truth table of two‐input resistive divider for NAND and NOR gates.

Fourier Transforms - High-tech Application and Current Trends104



value of a resistors, which is usually  ∓ 10% . This change in the resistance value may not cre‐

ate any problem when we are considering two‐input or three‐input circuits. But in practical 

implementations having a large number of inputs, these changes in the resistance value will 

have an adverse effect on the output of the circuit.

To overcome these drawbacks, semiconductor resistors were replaced with memristors 

developed by HP, which had negligible leakage current. Thus, the logic gate was modified as 
shown in Figure 9. The advantage of using op‐amp in the circuit is that it can act as a buffer 
and isolates the inputs from output of the circuit thus enabling realistic implementations of 

a large number of inputs per gate. As the number of inputs shown in Figure 8 increases, the 

threshold voltage will change. This change can affect the functionality of the gate. This prob‐

lem can also be avoided by using the circuit shown in Figure 9. Here, the op‐amp will boost 

the signal before applying it to the inverter. Thus, it offers the advantage of scalability over 
the number of inputs.

The op‐amp reference voltage for NOR logic,   V  
REF

    is fixed as   V  
L+Δ

    and for NAND logic,   V  
REF

    is 

fixed as   V  
H−Δ

   , where  Δ  is a small voltage defined to ensure the bounds of   V  
th

   . The op‐amp shifts 

the voltage to a high value or low value depending on the input voltage,   V  
0
   .

The universal gate circuit using resistive threshold logic is shown in Figure 10. For the cell to 

work as a NAND logic, the switches S1 and S4 are closed and the output is taken from   V  
out

   . To 

implement AND logic, the switches S1 and S3 are closed and the output is taken from   V  
out

   . If 

the switches S2 and S4 are closed, we get a NOR logic from   V  
out

   . If both S2 and S3 are closed, 

OR logic can be implemented.

Figure 11 shows the circuit diagram of an N‐input resistive threshold logic gate. Here 

   {    V  
1
  ,  V  

2
  ,  V  

3
  , … ,  V  

N
   }     represents the inputs to the cell.   {    M  

1
  ,  M  

2
  ,  M  

3
  , … . M  

N
   }     represents the input 

memristors. Depending on the values of the inputs, a potential   V  
A
    is generated which is given 

Figure 9. Resistive threshold logic.

Memristor Threshold Logic FFT Circuits
http://dx.doi.org/10.5772/66583

105



Figure 11. N‐input resistive threshold logic gate.

Figure 10. The universal gate structure that implements NAND, NOR, AND, OR and NOT logic functions.
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to the non‐inverting terminal of the op‐amp. To the inverting terminal of the op‐amp, a   V  
REF

    

is given depending upon which the cell acts as either N‐input NOR gate or N‐input NAND 

gate. If the   V  
REF

    is fixed at   V  
L
   + Δ  then the circuits acts as NOR gate and for NAND logic,  V  

REF
    is 

fixed as   V  
H
   − Δ , where  Δ  is a small voltage defined to ensure the bounds of   V  

th
   . Thus, an N‐input 

logic gate can be implemented using memristor‐based resistive threshold logic. Here, as the 

number of inputs increase, only the number of memristors increases. The area consumed by 

a memristor is very small. Hence, even a very large input logic gate can be implemented in a 

very small area using the proposed resistive threshold logic.

5. Fast Fourier transform circuits

The chapter summaries our previous work on the use of threshold logic in developing a hard‐

ware implementation of Fast Fourier transform [16]. Fast Fourier transform/inverse fast Fourier 

transform (FFT/IFFT) is widely used algorithm to compute the discrete Fourier transform and 

its inverse of a given set of inputs. FFT/IFFT is mainly used in digital signal processing applica‐

tions such as communication systems including orthogonal frequency division multiplexing 

(OFDM), spectrum analysis, DSL modems, speech coding, HDTV etc. Due to the large number 
of applications, it is important to design a FFT circuit which can handle large number of inputs 

and at the same time it should be small in area and should not become too complex.

The basic equation of four‐point DFT is

  X  (  k )    =     ∑  
i=0

  
3

   x(n )  e     
−j2πk

 _____ 
4
   ,  k = 0, 1, 2, 3  (3)

Eq. (3) can be rewritten as an N‐by‐N multiplication as

  X = Wx  (4)

Eq. (4) can be expanded in matrix form as given below.

    

⎡

 ⎢ 

⎣

   

X(0 )

  
 

X(1 )
  

 
X(2 )

  
X(3 ) 

 
  

⎤

 ⎥ 

⎦

    =   

⎡

 ⎢ 

⎣

   

1

  

 1  1  1 

  
 
1
  1  

1
 
  

   

− j
  − 1  

j
     

− 1
  1  

− 1
     

j

  1  
j
   
  

⎤

 ⎥ 

⎦

      

⎡

 ⎢ 

⎣

   

x(0 )

  
 

x(1 )
  

 
x(2 )

  
x(3 ) 

 
  

⎤

 ⎥ 

⎦

     (5)

In the above matrix multiplication,  X  (  k )   ,  k = 0, 1, 2, 3  are the DFT outputs whereas  x  (  k )   , k = 0, 1, 2, 3  

are the inputs. Using this matrix equation, we can represent the signal flow graph of four‐point 
DFT, as shown in Figure 12. The exponential term   e     

−j2πnk
 

______
 4    = ±1 or ± j . Since multiplications 

with  ±1  and  ±j  are trivial, no multipliers are needed to implement them, i.e. they can be simply 

realized with bypass, inversion, and/or swap for 2's complement numbers. Hence, it does not 
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require any multiplier to construct a butterfly element for a four‐point DFT (radix‐4 butterfly). 
From Figure 12, it can be seen that we can implement the processor using adders and inverters.

Implementation of the FFT processor can be done, as shown in Figure 13 where x(0), x(1), x(2) 

and x(3) are the inputs and X(0), X(1), X(2) and X(3) are the outputs of the FFT circuits. The 

circuits are capable of handling complex numbers and the complex numbers are separated into 

real and imaginary part and are given into the circuit. All the inputs to the circuit are 8 bits long.

All the FFT units take in four inputs and give the corresponding FFT output. Inputs are given 

to the FFT units according to Figure 12. From the signal flow graph of the four‐point FFT, we 
can see that FFT outputs are obtained by equations of the form

  X  (  k )    = a + b + c + d  (6)

or

  X  (  k )    = a + b − c − d  (7)

So it is understood that certain inputs need to be subtracted in order to get the Fourier transform 

output. In digital circuits, subtraction is carried out by taking the 2's complement of the subtra‐

hend and then adding it to the minuend to get the difference. For obtaining 2's complement of 
a number, first of all, 1's compliment of the number has to be found out and then add one to it.

From Figure 12, it can be seen that the real and the imaginary part of the first output, i.e. X(0), in 

four‐point FFT is obtained by computations of the form Eq. (6). So it requires addition operations 

only. Hence, the inputs to the first two FFT units are not complimented, as shown in Figure 13.

Figure 12. Signal flow graph of a four‐point FFT.
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However, all other outputs of the four‐point FFT are obtained by computations of the form 

Eq. (7), see Figure 12. So it consists of addition as well as subtractions. In order to implement 

subtraction, two's complement of the inputs is taken and is added. For taking 2's complement, 

first of all, the signals need to be inverted. This is obtained by the inverters shown in Figure 13. 

Figure 13. General block diagram of a four‐point FFT circuit.
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Since all the inputs are of 8‐bit length, 8‐bit inverters are used in the circuit. The output of these 

inverters will be the 1's compliment of the input signals. To get 2's complement one must be 

added to the 1's compliment. Since two signals are to be complimented according to Eq. (7), 

two must be added to their sum. It is equivalent to adding one be the (LSB + 1)th place of their 
sum. This is done inside their corresponding FFT units, see Figure 14.

Let the four inputs to an FFT unit be denoted as w, x, y and z. All these inputs are 8‐bit long. So 

the input w can be represented as   w  
8
    w  

7
    w  

6
    w  

5
    w  

4
    w  

3
    w  

2
    w  

1
   . Similarly, x, y and z can be represented 

as   x  
8
    x  

7
    x  

6
    x  

5
    x  

4
    x  

3
    x  

2
    x  

1
   ,   y  

8
    y  

7
    y  

6
    y  

5
    y  

4
    y  

3
    y  

2
    y  

1
    and   z  

8
    z  

7
    z  

6
    z  

5
    z  

4
    z  

3
    z  

2
    z  

1
   , respectively. For the FFT units 

that are computing real and imaginary parts of  X(0 ) , namely   X  
re

  (0 )  and   X  
im

  (0 ) , only additions 

are involved. Hence w, x, y and z need to be added to get  X(0 ) . Addition of four binary num‐

bers can be done using (4, 2)‐counters or (4, 2)‐compressors. So in order to implement a FFT 

unit, eight (4, 2)‐counters are required.

The basic block diagram of a (4, 2)‐counter is as shown in Figure 15. This circuit takes in four 

inputs and gives 3 outputs ‐ sum, carry and carry out. A parallel arrangement of eight such 

(4, 2)‐counters are needed to implement a single FFT unit. As seen from Figure 15, these (4, 2)‐

counters are implemented using the basic logic gates. All these logic gates are implemented 

using the proposed memristor‐based resistive threshold logic.

The OR gate presented in Figure 15 is implemented as shown in Figure 16, where A and B repre‐

sent the inputs,   V  
L
   + ΔV  represent the reference voltage and   V  

OUT
    represents the output of the gate.

AND gate can be obtained either from inverting the output of the NAND gate or by giving 

inverted inputs to the NOR gate. Figure 17 shows the AND gate, used in Figure 15 which is 

obtained by giving inverted inputs to the resistive threshold NOR gate.

XOR logic gate is implemented as shown in the circuit diagram of Figure 18. It is imple‐

mented using NOR logic. Thus, by using the circuits of Figures 16–18, a (4, 2)‐counter can be 

implemented. By using a parallel implementation of eight such (4, 2)‐counters, a single FFT 

unit can be implemented. For implementing a full FFT circuit, we require eight FFT units, four 

for the real parts and four for the imaginary parts of the outputs.

Figure 14. General block diagram of a FFT unit.
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But while implementing the FFT units for real and imaginary parts of outputs X(1), X(2) 

and X(3), the implementations involve subtraction. For subtractions, 2's complement of the 

subtrahend is taken and added. For taking 2's complement, first of all, the signal is inverted 
and then one is added. Inversion of the signal is carried out using an 8‐bit inverter, as 

shown in Figure 13. The addition of one is done inside the FFT unit. Since two signals are to 

be subtracted per FFT unit, one has to be added twice which is equivalent to adding two or 

in binary terms, adding one to the (LSB+1)th position. This addition is shown in Figure 14.

Figure 15. Block diagram of a single (4, 2)‐counter.

Figure 16. Circuit diagram of OR gate using memristor‐based resistive threshold logic.
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6. Results and discussion

The proposed resistive threshold logic and FFT computing architecture have been tested 

and compared with corresponding CMOS [14], dynamic MOS and pseudo‐NMOS circuits. 

Propagation delay, total harmonic distortion, area, power dissipation and leakage power 

were compared. For the fairness in comparison the technology, sizes of all components in the 

circuit are kept same.

Comparisons of the memristor‐based resistive threshold logic with other logic families were 

carried out. Tables 2 and 3 give the comparison results of propagation delay of NAND and 

NOR gates, respectively, implemented using various logic families. Comparison of resistive 

threshold logic with CMOS, pseudo‐NMOS and dynamic‐MOS logic families was carried 

out. The experiment was carried out for various numbers of inputs. The general trend in the 

Figure 18. Circuit diagram of XOR gate using memristor‐based resistive threshold logic.

Figure 17. Circuit diagram of AND gate using memristor‐based resistive threshold logic.
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existing logic family is that the propagation delay of a gate increases as the number of inputs 

increases. This is due to the fact that the increase in the number of inputs means the increase 

in the number of input transistors. More transistors in the path lead to increase in the propa‐

gation delay of the gate.

But in the case of resistive threshold logic, this problem can be avoided. This is due to the fact 

that when the number of inputs increases, the number of memristors increases, but in a paral‐

lel fashion. This does not increase the path between input and output. Thus, the increase in 

the number of inputs does not affect the propagation delay of the overall circuit. This leads to 
lower propagation delay in the resistive threshold logic compared to other logic families, as 

the number of inputs increases. Comparison of propagation delay is shown for both NAND 

and NOR gates (see Tables 2 and 3).

Another comparison that shows the advantage of the proposed logic family is that of total 

harmonic distortion (THD). The total harmonic distortion gives the measure of harmonic dis‐

tortion present in a circuit. Consider a signal of frequency x, the harmonics of the signals are 

signals containing frequencies 2x, 3x, 4x and so on. These harmonics cause distortion in the 

output of the circuit. The total amount of distortion caused by the harmonics is measured 

as total harmonic distortion. It can be defined as the ratio of powers of all harmonics to the 
power of the fundamental frequency.

Let the power of the fundamental frequency signal be   P  
1
   . Let the powers of the harmonics be   

P  
2
  ,  P  

3
  ,  P  

4
  , …  P  

∞
   . Then the total harmonic distortion can be expressed as Eq. (8).

  THD =   
 ∑  
i=2

  ∞    P  
i
  
 ______ 

 P  
1
  
    (8)

So higher the THD value means higher the distortion caused by the harmonics. When com‐

paring the values in Table 4, it can be seen that the total harmonic distortion of the proposed 

Logic family 3i/p 10i/p 100i/p

CMOS logic 0.50 µs 0.52 µs 0.66 µs

Pseudo NMOS 0.51 µs 0.58 µs 0.72 µs

Dynamic MOS 0.51 µs 0.58 µs 0.75 µs

Resistive threshold logic 0.60 µs 0.60 µs 0.60 µs

Table 3. Comparison of propagation delay of NOR gate various logic families.

Logic family 3i/p 10i/p 100i/p

CMOS logic 0.47 µs 0.54 µs 0.65 µs

Pseudo NMOS 0.48 µs 0.60 µs 0.85 µs

Dynamic MOS 0.48 µs 0.51 µs 0.75 µs

Resistive threshold logic 0.45 µs 0.45 µs 0.45 µs

Table 2. Comparison of propagation delay of NAND gate various logic families.
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memristor‐based resistive threshold logic is less when compared to other existing logic fami‐

lies. Thus, it can be seen that the proposed logic family has several advantages when com‐

pared to the existing logic families. Various comparisons were carried out for the fast Fourier 

transform circuits of Figure 13. Table 5 gives the comparison of area of the FFT circuit imple‐

mented using different logic families.

The area comparison clearly shows that the circuit implements using the proposed logic fam‐

ily require less area compared to most of the other existing logic families. Another comparison 

was carried out regarding the power dissipation of the circuit, the results of which are shown 

in Table 6.

The proposed logic family consumes less power when compared to other logic families. In 

Table 6, the power dissipation of the circuit using dynamic MOS is much less compared to 

other logic families owing to the fact that the dynamic MOS is a clocked logic family.

Now, Table 7 shows the comparison of the FFT circuit implemented using various logic gates, 

in respect of their leakage power. The slight increase in the leakage power of the circuit using 

proposed logic family is due to the presence of op‐amp in the circuit.

Logic family THD of NAND (%) THD of NOR(%)

CMOS logic 71.2091 107.4098

Pseudo NMOS 76.2288 97.9864

Dynamic MOS 51.0608 146.7818

Resistive threshold logic 61.7043 85.2743

Table 4. Comparison of total harmonic distortion of NOR and NAND gate various logic families.

Logic family Area (µm2)

CMOS logic 83.5200

Pseudo NMOS 53.0496

Dynamic MOS 58.4852

Resistive threshold logic 58.1292

Table 5. Comparison of the total area of FFT circuits using various logic families.

Logic family Power

CMOS logic 19.3842 µW

Pseudo NMOS 14.6467 µW

Dynamic MOS 03.9515 nW

Resistive threshold logic 13.7932 µW

Table 6. Comparison of thetotal power dissipation of FFT circuits using various logic families.
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As mentioned earlier, each of the FFT unit takes in four inputs, each of which is 8‐bit long. Figure 19 

shows the 8th bit of the four inputs to a single FFT unit. The outputs of each FFT unit will be 10‐bit 

long. Figure 20 shows the LSB of the outputs of FFT unit for inputs shown in Figure 19.

Figure 19. Eighth bit of the four inputs to a FFT unit.

Logic family Leakage power

CMOS logic 8.5377 nW

Pseudo NMOS 1.0629 mW

Dynamic MOS 4.8410 nW

Resistive threshold logic 11.1378 nW

Table 7. Comparison of leakage power of FFT circuits using various logic families.
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7. Discussion

In order to maintain practical relevance of the approach, all the results mentioned in the pre‐

vious section are based on device parameters from 90 nm TSMC process. HP memristor mod‐

els with   R  
ON

   = 100 Ω  and   R  
OFF

   = 100 k Ω  were used and all the simulations were carried out 

using LTSpice VI.

From the results shown in the previous section, it can be seen that the proposed logic 

family is clearly of advantage when we are trying to implement large input circuits. The 

comparison of propagation delay of the logic gates showed that the memristor‐based resis‐

tive threshold logic family can be used to implement brain‐like large input logic functions. 

Moreover, it gives a clear advantage in terms of the total harmonic distortion also. After 

the successful implementation of the new logic family, it was used to implement a circuit 

that could compute the fast Fourier transform of the given set of inputs. A four‐point FFT 

circuit was implemented. It can take in four inputs at a time and give four FFT outputs. 

The circuit can handle complex numbers and the complex inputs were separated into real 

and imaginary part for the easy computation. All the inputs considered in this project 

were 8‐bit long.

Figure 20. LSB of the output of the FFT unit is shown as sum. Carry and Cout of the LSB are also shown.
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All the circuits and gates involved in the FFT circuit were implemented using the proposed 

memristor‐based resistive threshold logic family. The speed of operation of the circuit can be 

further increased and the area can be further reduced if low power and high speed op‐amp 

designs are developed, or an alternative thresholding circuit needs to be developed. If a bet‐

ter op‐amp can be developed, then the leakage power can also be reduced to a great extent. 

Moreover, in the proposed logic, we are not concentrating on the memory power of memristor. 

If we can use that property of memristor in our architecture to save the data, then we can imple‐

ment a memory unit also.

As a future work, the memory property of the memristor can be made use of using this prop‐

erty, a very efficient memory unit can be implemented. Since the area required for the mem‐

ristor is very small, a very compact and area‐efficient memory cell can be developed which 
can be used as an alternative for the existing memory cells. Also, only two‐state logic gates 

are considered in this project. But in the future, by making use of the memory property of the 

memristor, multi‐state logic functions can also be implemented. The op‐amps used in this 

project can be replaced by more efficient and smaller op‐amps, thereby, further reducing the 
area and leakage power and also increase the speed of operation of the circuit.

8. Summary

The concept of brain‐like processing unit was presented using resistive threshold logic. The 

proposed memristor‐based resistive threshold logic gate was used to implement circuits that 

could compute the fast Fourier transform of a given set of inputs. The proposed logic family 

was found too advantageous in many ways. However, there are certain disadvantages too, 

like the leakage power. Further development in the thresholding circuit will help to over‐

come this issue. In addition, the ability of the proposed architecture to perform brain‐like 

processing can be seen as an early step in achieving the goal of mimicking brain‐like process‐

ing unit in VLSI.

Author details

Alex Pappachen James

Address all correspondence to: apj@ieee.org

Bioinspired Microelectronic Systems Lab, School of Engineering, Nazarbayev University, 
Astana, Republic of Kazakhstan

References

[1] Zaidi ZF. Gender differences in human brain: a review. The Open Anatomy Journal. 
2010;2:37–55.

Memristor Threshold Logic FFT Circuits
http://dx.doi.org/10.5772/66583

117



[2] Borzenko A. Language processing in human brain. In: Proceedings of the First AGI 
Conference; March 1–3; Memphis. IOS Press; 2008.

[3] Chua LO. The missing circuit element. IEEE Tans. Circuit Theory. 1971;18:507–519.

[4] Williams RS. How we found the missing memristor. IEEE Spectrum. 2008;45:28–35.

[5] Williams RS, Strukov DB, Snider GS, Stewart DR. The missing memristor found. Nature. 

2008;453:80–83.

[6] Joglekar YN, Wolf SJ. The elusive memristor: properties of basic electrical circuits. 
European Journal of Physics. 2009;30:661–675.

[7] Kim H, Sah MP, Yang C, Chua LO. Memristor‐based multilevel memory. In: 12th 
International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 

2010); February 3–5; Berkeley, CA. pp. 1–6; 2010.

[8] Manem H, Rose GS, He X, Wang W. Design considerations for variation tolerant multi‐

level CMOS/Nano memristor memory. In: Proceedings of the 20th symposium on Great 
lakes symposium on VLSI; May 16; ACM; 2010. pp. 287–292.

[9] Laiho M, Lehtonen E. Arithmetic operations within memristor‐based analog memory. 
In: 12th International Workshop on Cellular Nanoscale Networks and their Applications 
(CNNA 2010); Feb 3; IEEE; 2010. pp. 1–4.

[10] Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong 
WM, Strukov DB, Snider GS. Memristor—CMOS hybrid integrated circuits for recon‐

figurable logic. Nano Letters. 2009;9(10):3640–3645.

[11] James AP, Francis LR, Kumar DS. Resistive threshold logic. IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems. 2014 ;22(1):190–195.

[12] Maan AK, Jayadevi DA, James AP. A survey of memristive threshold logic circuits. IEEE 

Transactions on Neural Networks and Learning Systems. 2016;99:1–13.DOI: 10.1109/
TNNLS.2016.2547842

[13] James AP, Dimitrijev S. Cognitive memory network. Electronics Letters. 2010;46 
(10):677–678.

[14] Petrick, S.R. A direct determination of the irredundant forms of a Boolean function from 

the set of prime implicants. Air Force Cambridge research Center, Cambridge. Techn. 

Rep. AFCRC‐TR‐56–110, 10 (1956).

[15] McGeer PC, Sanghavi JV, Brayton RK, Sangiovanni‐Vicentelli AL. ESPRESSO‐
SIGNATURE: a new exact minimizer for logic functions. IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems. 1993;1(4):432–440.

[16] James AP, Kumar DS, Ajayan A. Threshold logic computing: memristive‐CMOS circuits 
for fast Fourier transform and vedic multiplication. IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems. 2015;23(11):2690–2694.

Fourier Transforms - High-tech Application and Current Trends118


