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Abstract

Most of the worldwide deaths in patients with non-communicable diseases are due to 
cardiovascular and metabolic diseases, which are determined by a mix of environmental, 
genetic and epigenetic factors, and by their interactions. The aetiology of most cardio-
vascular diseases has been partially linked with in utero adverse conditions that may 
increase the risk of developing diseases later in life, known as Developmental Origins 
of Health and Disease (DOHaD). Perinatal hypoxia can program the fetal and postnatal 
developmental patterns, resulting in permanent modifications of cells, organs and sys-
tems function. In spite of the vast evidence obtained from human and animal studies 
linking development under adverse intrauterine conditions with increased cardiovas-
cular risk, still few is known about the specific effects of intrauterine oxygen deficiency 
and the related pathogenic mechanisms. Currently, the most accepted processes that pro-
gram cellular function are epigenetic mechanisms which determine gene expression in 
a cell-specific fashion. In this chapter we will review the current literature regarding the 
perinatal exposure to chronic hypoxia and Fetal Growth Restriction (FGR) in humans 
and animals and how this impinges the cardiovascular physiology through epigenetic, 
biochemical, morphologic and pathophysiologic modifications that translate into dis-
eases blasting at postnatal life.

Keywords: hypoxia, programming, vascular function, oxidative stress, epigenetics, 
chronic diseases

1. Introduction

The worldwide prevalence of cardiovascular diseases (CVDs) and metabolic syndrome ranges 

between 20 and 40%. These figures are likely to rise over the next decades [1, 2]. Genetic 

changes associated with the traits of the metabolic syndrome and cardiovascular diseases are 
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able to explain a small proportion of cases [3], suggesting the presence of other contributory 

factors in these conditions. Epidemiologic studies in the late 1980s in the UK revealed a strong 

correlation with perinatal and fetal growth patterns. Fetal growth restriction (FGR) is thus 
associated with an increased risk of developing adult cardiometabolic diseases [4]. Multiple 

reports from across the world have documented the association between intrauterine growth 

mediators in early life with lifelong health. These are now recognized to be important risks 

in the development of non-communicable diseases in adult life. This concept so-called “Fetal 

Programming” has evolved into “Developmental Origins of Health and Disease” (DOHaD), 

which we refer as Intrauterine Programming (IUP) [5] for the purpose of this chapter. The 

present efforts in this field are focused on unveiling the physiological and molecular mech-

anisms, which drive IUP, and exploring opportunities to prevent or revert the long-term 

consequences. The physiologic and biochemical changes that explain IUP relate to the tim-

ing and stage of development when the insult takes place; the earlier in development, the 

stronger the long-term effects [5]. Conversely, the long-term consequences of IUP and repro-

ducibility of the related phenotypes suggest that epigenetic mechanisms may underlay the 

altered “cell programming” [6].

2. Fetal growth restriction

Fetal growth restriction (FGR) is clinically defined by a fetal weight below the 10th percen-

tile of normal for gestational age, but in a generic manner, FGR is a condition in which the 

potential growth of the fetus is negatively influenced by environmental and maternal fac-

tors [7]. The short-term consequences of FGR are LBW and the corresponding phenotype, 

which is associated with increased perinatal morbidity and mortality [8]. The long-term 

effects include a two- to threefold increase in the risk of developing cardiovascular disease 
(hypertension and coronary heart disease) in adult life [9]. The higher CVD risk in adults 

resulting from FGR can be traced back to a reduced arterial compliance in pre-pubertal sub-

jects [10] and a decreased peripheral endothelial-dependent vascular relaxation at birth [11]. 

Moreover, studies in human placentae show that FGR-related endothelial dysfunction can 

also be detected in chorionic and umbilical arteries [12, 13]. Notably, we have recently dem-

onstrated the presence of functional and epigenetic markers of endothelial dysfunction in 

systemic and umbilical arteries from FGR guinea pigs. The presence of these comparable 

markers suggests that umbilical artery endothelial cells (ECs) may be useful to explore the 

endothelial function of the fetus. The etiology of FGR in humans is not fully understood; 

however, there are known maternal risk factors such as living at high altitude, malnutrition, 

smoking, stress, and vascular dysfunction [14] which induce placental dysfunction and con-

sequently fetal growth restriction. Presently, oxygen, glucose, free radicals, amino acids, and 

hormones have been shown to play an important role in modulating fetal growth and devel-

opment. These factors are dynamically regulated throughout gestation [15]. In the earlier 

stages, limitations in oxygen supply promote trophoblast proliferation; however, persistence 

in a hypoxic environment as occurs in FGR harms trophoblast invasion and the transforma-

tion of spiral arteries leading to a vascular dysfunction of the placenta and impaired fetal 

growth. Thus, chronic hypoxia and oxidative stress have an important role in the placental 
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dysfunction observed in FGR [15]. Several studies on humans confirm the presence of molec-

ular markers of oxidative stress in the FGR placentae, the fetus, and the mother [16–19]. 

Impaired placental vascular function has also been proposed to play a role in FGR, condi-

tioned by augmented synthesis and response to vasoconstrictors [20] and limited action of 

vasodilators [13], as well as by an increased inhibition of endothelial-dependent relaxation 

mediated by prooxidants [21].

Appropriate maternal nutrient supply to the fetus is key for its development. Several 

approaches limiting maternal supply (i.e., diet restriction) and placental nutrient transfer 

have been used to alter the normal fetal growth rate and development. In order to address 

this issue, various animal models (sheep, rat, rabbit, and guinea pig) have been developed, 

where placental dysfunction is induced by a reduction in uterine blood flow [22, 23]. We have 

recently developed a novel model of FGR in guinea pigs, by a progressive bilateral occlu-

sion of the uterine arteries during the second half of gestation that gradually alters placental 

vascular resistance [24]. Several aspects suggest that this model is relevant to human clini-

cal significance. For instance, guinea pigs present a decreased fetal abdominal growth and 
impaired placental blood flow adaptation during gestation, with a preserved brain blood 
flow and development, translating into an asymmetric FGR. Additionally, higher resistance 
to blood flow in the umbilical arteries can be observed. These are relevant clinical markers 
of FGR. However, most of mammalian models that develop placental insufficiency present a 
mixed effect of undernutrition, hypoxia, and oxidative stress [22]. Therefore, complementary 

models on chick embryos have been used to isolate the unique fetal effects of hypoxia during 
development from maternal responses [22]. Interestingly, the follow-up of the chickens ges-

tated under hypoxia has shown important insights into the pathophysiological mechanisms 

that impair the cardiovascular function. For instance, Tintu et al. showed that developmental 

hypoxia induces cardiomyopathy associated with left ventricular dilatation, reduced ven-

tricular wall mass, and increased apoptosis [25]. These responses were coupled with pump 

dysfunction, decreased ejection fractions, and diastolic dysfunction, which persisted in adult-

hood. Further, Salinas et al. showed marked cardiovascular morphostructural changes in 

high-altitude chicks, which were reverted either by incubation at low altitude or by oxygen 

supplementation [26]. Notably, Herrera et al. followed up these chicks to adulthood describ-

ing cardiac impairment in the capacity to response to pressor challenges [27]. In addition 

to the cardiovascular system, several organs/functions are affected during developmental 
hypoxia such as central nervous system, lung, and systemic metabolism. As well as in mam-

malian physiology, it seems that oxidative stress might be key in establishing the impairments 

induced by developmental hypoxia [28].

2.1. Hypoxia and oxidative stress in FGR

Hypoxia is defined as a limited oxygen (O
2
) supply relative to the physiological demands of 

a tissue, organ, or organism. This is a restrictive condition frequently seen in the hypobaric 

environment (hypoxia of high altitude) or by a diminished oxygen delivery. At lowlands, 

hypoxia is a restrictive condition often faced during fetal life, either by maternal, umbilical-

placental, or fetal conditions. Placental insufficiency leads to fetal growth restriction due to 
a chronic decrease in fetoplacental perfusion. This situation affects simultaneously O

2
 and 
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nutrient supply to the fetus [29], overlapping conditions that become difficult to isolate in 
order to assess the specific effect of O

2
 deficiency in determining vascular impairment. Using 

avian models of FGR has served to establish that chronic hypoxia, independent of nutrition, 

plays a crucial role in vascular programming [30, 31]. Studies of vascular function during 

fetal life show remarkable similarities between the effect of hypoxia in chick embryos and 
placental insufficiency in mammals [26, 28]; they have also served to assess the long-term 

consequences [27]. In both cases (chick embryos and mammalian fetuses), the presence of 

endothelial dysfunction and vascular remodeling is observed mainly in peripheral arter-

ies. The mechanism by which hypoxia induces cell damage in either case is the result of an 

increased generation of reactive oxygen species (ROS) due to an incomplete reduction of 

oxygen [15, 32].

The imbalance between endogenous antioxidant defenses and reactive oxygen species, 

where ROS overwhelms the antioxidant capacity, has been termed “oxidative stress” [33]. 

ROS includes a wide variety of highly reactive molecules, such as superoxide anion (∙O
2
-), 

hydrogen peroxide (H
2
O

2
), ∙NO, peroxynitrite (ONOO-), organic hydroperoxide (ROOH), 

hypochlorous acid (HOCl), and hydroxyl (∙OH), alkoxy (RO∙), and peroxy radicals (ROO∙) 

[34]. Superoxide is the main ROS acting at the vascular level; it derives from the enzymatic 

activity of NOX (NADPH oxidases), XOR (xanthine oxidases), mitochondrial complexes I 

and III, uncoupled eNOS, and iNOS. In the case of NOS, ROS generation can occur because of 

reduced L-arginine (substrate) or BH
4 
(cofactor) availability [33], uncoupling eNOS enzymes. 

Consequently, NOS-derived ∙O
2
- rapidly reacts with NO generating ONOO-, which reduces 

NO levels and modifies the structure of proteins, lipids, and DNA, causing endothelial dys-

function. Thus, increased oxidative stress exerts a negative effect on eNOS activity and NO 
bioavailability at multiple levels [33].

In FGR, compelling data show that oxidative stress in parallel to chronic hypoxia con-

tributes to vascular dysfunction in the mother, placenta, and fetus [14]. In fact, short-term 

hypoxia induces eNOS expression and activation in human umbilical artery endothelial cells 

(HUAECs) [35], while in FGR HUAEC, there is reduced eNOS activation [13]. Conversely, 

FGR subjects present at birth increased levels of lipid peroxidation and decreased the activ-

ity of antioxidant enzymes and circulating mediators [36]. Additionally, markers of oxida-

tive stress have been positively associated with increased umbilical artery pulsatility index, 

particularly in pregnancies affected by FGR [37]. We recently addressed the role of oxidative 

stress in FGR by treating pregnant guinea pigs with N-acetyl cysteine, a glutathione precur-

sor, during the second half of gestation. Our results show that maternal treatment with NAC 

restores fetal growth by increasing placental efficiency and reverses endothelial dysfunction 
in FGR guinea pigs [38]. Similarly, in ovo melatonin administration to chronic hypoxic chick 

embryos reduces the levels of oxidative stress markers (i.e., lipid peroxidation and protein 

nitration), by increasing the expression of glutathione peroxidase (GPx), an antioxidant 

enzyme [28]. This effect is associated with improved endothelial function and reversal of 
fetal hypoxia-induced vascular remodeling; however, melatonin does not prevent FGR. Even 

more, in a chronic hypoxic sheep model, melatonin decreased maternal oxidative stress but 

 simultaneously enhanced fetal growth restriction [39]. In summary, these data suggest that 

hypoxia and oxidative stress participate in the genesis of FGR-induced vascular dysfunction. 
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However, there is a need for further studies addressing the precise molecular mechanisms 

and effective treatments for hypoxic FGR and IUP.

At a molecular level, transcription factors nuclear factor kappa B (NFκB) [34] and nuclear 

factor E2-related factor 2 (Nrf2) implicated in oxidative stress [34, 40] participate in pro-

moting and reducing cellular oxidative stress, respectively. Interestingly, Nrf2 presents the 

suggested properties of an oxidative stress sensor. Nrf2 is normally bound to Keap1, which 

targets the complex to proteasome degradation; however, a prooxidant milieu induces the 

oxidation of two cysteine residues in Keap1 and the release of Nrf2 that subsequently trans-

locate to the nucleus [34]. The antioxidant response triggered by Nrf2 includes the expres-

sion of NAD(P)H dehydrogenase quinone 1 (NQO1), heme-oxygenase (HO), and other 

antioxidant enzymes [40]. Studies show that Nrf2-induced expression of NQO1 and HO-1 

improves endothelial dysfunction increasing eNOS efficiency. However, there is no infor-

mation addressing whether changes in the expression of genes involved in the antioxidant 

defense are present in early stages of endothelial dysfunction in FGR and whether they can 

be modulated during gestation.

3. Epigenetics and endothelial programming in FGR

Alteration in fetal development and IUP results in permanent changes in the physiological 

responses to different stressors across the life course. Undoubtedly, this represents a poten-

tial “handicap” for long-term health. Growing evidence in humans from individuals with 

altered fetal growth, and from animal models associated with the development of later car-

diometabolic alterations, confirms the presence of epigenetic markers in different cell types 
[41]. Epigenetics can be considered as “chromosome-based mechanisms that modify the phe-

notypic plasticity of a cell or organism” [6]. Development itself is controlled by epigenetic 

mechanisms, which regulate cell differentiation and record environmental signals under 
physiologic [42] and/or pathologic conditions [43]. These epigenetic mechanisms include 

DNA methylation, a plethora of histone posttranslational modifications (PTM) (acetylation, 
methylation, phosphorylation, and others), ATP-dependent chromatin modifications, and 
noncoding RNAs [44].

3.1. DNA methylation

In higher animals, DNA is methylated via an enzymatic activity that transfers a methyl group 

to the 5’ position of cytosine ring on CpG dinucleotide generating 5-methyl-cytosine, a reaction 

catalyzed by two different families of DNA methyltransferases (DNMTs), named DNMT1 and 
DNMT3 (DNMT3a and DNMT3b) encoded by three different genes [45]. The role of DNMT1 

is to preserve the DNA methylation pattern after DNA replication during mitotic cell division 
as well as after fertilization [46], a process guided by the presence of hemi-methylated CpGs, 

which are recognized by DNMT1 in dsDNA [47]. Additionally, DNMT3a and DNMT3b cata-

lyze de novo methylation allowing the establishment of new DNA methylation patterns during 
gametogenesis, embryonic development, and cell differentiation [46, 48]. Interestingly, the 

genome of different cell types from a single subject presents a high DNA methylation density; 
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however, larger differences occur in the promoter regions of genes representing less than 5% 
of the total genomic DNA methylation [49]. Nonetheless, these subtle differences are likely 
controlling most cell-specific proteins expression at the whole organism level [50]. It is com-

monly accepted that DNA methylation represents a hallmark of reduced gene expression and 

long-term gene silencing [51, 52]; however, it is worth noting that growing evidence suggests 

a more dynamic role for this mechanism in the regulation of gene expression [51].

3.2. Histone posttranslational modifications

The protein structural unit of the chromosomes, the nucleosome, is formed by two copies of 

four histones proteins named H2A, H2B, H3, and H4. Additionally, these proteins present a 

globular domain to interact with other histones, and a flexible tail that participates actively 
in the interaction with DNA. Unlike DNA methylation, histone posttranslational modifica-

tions (PTMs) are more dynamic and do not give a straight idea regarding gene silencing or 

activation [52]. Moreover, histone PTMs are closely related with the context in which they 

take place and the presence of additional PTMs, suggesting the existence of a “histone code.” 

Up to date, more than 50 enzymes that catalyze diverse histone modifications have been 
identified and classified according to the reaction they carry out [53]. Histone acetylation 

occurs in lysine residues (K) and involves the transference of an acetyl group from acetyl-

CoA. In mammals, this reaction is carried out by three families of histone acetyl-transferases 

(HAT) named GNAT, MYST, and CBP/p300 [54]. This modification is considered an activator 
of gene expression, due to the fact that it stabilizes the positive charge of the lysine in the 

histone, reducing its affinity for DNA, avoiding the formation of highly compacted chro-

matin. The best characterized acetylations are those that take place in lysine 9 (K9), K14, 

K18, and K56 in histone 3 (H3) and K5, K8, K13, and K16 in H4 [55]. At least four types of 

histone deacetylases (HDAC I, II, III y IV) have been identified, which catalyze the reverse 
reaction of that done by the histone acetyl-transferase. This enzymatic reaction is related to 

gene silencing, progression of cell cycle, differentiation, and the response induced by DNA 
damage [56]. HDAC activity can be induced in response to DNA methylation, once repressor 

proteins that bind CpGs (MCP) are recruited. The latter have a site of interaction with several 
HDACs, suggesting that gene silencing could result from a combined action of DNA and 

histone modifications [51, 57].

3.3. Noncoding RNAs

The idea that noncoding RNAs could regulate the expression of genes was first proposed in 
the early 1960s [58], with a substantial progress in this field during the last decade. Less than 
5% of the transcribed RNA encodes proteins; thus, most of them correspond to noncoding 

RNAs (ncRNAs) involved mainly in the regulation of gene expression [59, 60]. "Long" ncRNA 

(lncRNA), small interfering RNA (siRNA), and micro-RNA (miRNA) are the main regula-

tory ncRNAs. The lncRNA regulates the expression of a specific gene complementary either 
through chromatin remodeling, alternative mRNA processing (splicing), or siRNA generation 

[59]. Conversely, siRNA and miRNAs are interference RNA-based epigenetic  mechanisms, 
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which silence genes via noncoding RNAs of ~21 bp. To date, more than a thousand noncoding 

miRNAs have been reported. These are transcribed by the RNA polymerase II and encoded 

by specific genes (~70%) or, in lesser amounts, within the intronic regions of gene encoding 
proteins. Micro-RNAs are transcribed as pre-miRNA and initially processed in the nucleus by 

the DROSHA-DGCR8 complex. Subsequently, they are exported to the cytoplasm for miRNA 

maturation by the action of the complex formed by the DICER1 protein and RNase IIIa IIIb 

[61]. This processing leads to a single-strand RNA, which is incorporated into the "protein-

induced silencing complex miRNA" (miRISC), which binds to a complementary region in a tar-

get mRNA. It has been proposed that a full complementarity between the miRNA and mRNA 

leads to degradation of the mRNA, while partial complementarity suppresses translation [62]. 

Notably, a single miRNA can regulate the expression of multiple mRNAs often associated sig-

naling pathways or metabolic processes, while several miRNAs may converge in the regulation 

of a single mRNA constituting a complex mechanism for gene expression regulation [61, 62].

3.4. Epigenetics in endothelial physiology

Vascular development and endothelial differentiation and function require a fine epigenetic 
tuning, suggesting that epigenetic mechanisms play a key role in the IUP-associated vas-

cular dysfunction [6]. The first stages of vascular development are determined by genetic 
factors, while the next processes that take place (i.e., blood vessel structure, identity, and 

function) are influenced/determined by hemodynamic factors, ROS, and oxygen levels [63, 

64]. Considering that the effect of endothelial-specific transcription factors such as KLF2 and 
HoxA9 does not explain the protein expression levels present in this cell type [65], an “endo-

thelial epigenetic code” regulating the expression of crucial genes has been suggested [52, 

66]. Growing evidence shows that DNA methylation, histone PTM, and miRNAs [67] play an 

important role in the embryonic origins of endothelial cells (EC), as well as their homeostasis 

during life. The epigenetic regulation of NOS3 gene has been extensively studied in EC and 

non-EC, showing that ECs have a distinctive pattern of DNA methylation and histone PTMs 
[65]. Conversely, the decreased expression of eNOS in HUVEC exposed to acute hypoxia is 

controlled by the overexpression of a natural cis-antisense noncoding RNA called sONE [68] 

and changes in histone PTM which occur specifically at the promoter of eNOS [69]. Similarly, 

in the endothelium, hypoxia and oxidative stress regulate the expression of several miRNAs 

that modify the expression of eNOS and other enzymes related to its short- and long-term 

function [70]. In support of this notion, we have recently demonstrated that eNOS-induced 

NO enhances arginase-2 expression by epigenetic modifications in the histones residing at 
ARG2 gene promoter [71]. In summary, these data show that EC-specific eNOS expression, 
as well as other genes related with the L-arginine/NO pathway, is effectively controlled by 
multiple epigenetic mechanisms which are strongly influenced by hypoxia.

3.5. Epigenetics and endothelial dysfunction

Diverse studies show that epigenetic mechanisms can increase the risk or directly par-

ticipate in the development of vascular diseases. In humans, ECs from atherosclerotic 
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plaques have decreased levels of estrogen receptor-β along with increased DNA meth-

ylation at the  promoter region of this gene, compared with nonatherosclerotic plaques 

cells [72]. Further studies in mice [73] and swine [74] have demonstrated that disturbed 

flow induces genome-wide changes in the DNA methylation of EC in vivo and in vitro, 
an effect that would be dependent on DNMT1 expression and that mainly affects genes 
related to oxidative stress. Conversely, abrogation of Nos3 promoter DNA methylation 

increases basal eNOS mRNA expression in vitro and protects against hind limb ischemia 

injury in vivo [75]. Similarly, growing evidence suggests a central role of miRNAs in the 

genesis of cardiometabolic dysfunction, also proposed as sensitive molecular markers of 

vascular disease [76]. In fact, we recently reported that circulating levels of miRNA Let-7 

and miR-126 are associated with different traits of cardiometabolic dysfunction in chil-
dren as well as have a predictive value for metabolic syndrome in these subjects [77]. 

Comparable results in adults with type 2 diabetes have been reported, where increased 

levels of miR-21 and decreased levels of miR-126 correlated with cardiovascular and 

inflammatory complications [78].

In the context of IUP of endothelial dysfunction in rats, it has been shown that brief exposure 

to hypoxia at the end of gestation induces pulmonary vascular dysfunction in the newborn, 

which associates with increased eNOS expression accompanied by decreased DNA meth-

ylation in Nos3 gene promoter [79]. Similarly, we reported a few years ago for the first time 
the presence of an altered epigenetic programming of eNOS expression in EC derived from 

human umbilical arteries of FGR patients [12]. Notably, the altered expression of eNOS was 

reversed by silencing DNMT1 expression in FGR EC, which restored the DNA methylation 

pattern at NOS3 promoter, as well as the regulation of eNOS expression induced by hypoxia 

[12]. Furthermore, using a guinea pig model of FGR, we compared the eNOS expression 

and DNA methylation pattern at Nos3 promoter to clarify whether these epigenetic changes 

occurring in umbilical EC would represent changes that take place in systemic arteries (i.e., 

aorta and femoral) [38]. We found comparable changes in eNOS expression which were asso-

ciated with specific changes in DNA methylation of Nos3 promoter in the different FGR EC 
studied, suggesting the presence of a common programming of endothelial dysfunction in 

the umbilical-placental and systemic circulation. Of note, maternal treatment with an anti-

oxidant (NAC) prevented this epigenetic programming, restoring the eNOS mRNA levels 

to values observed in control fetuses. Similar studies have shown the beneficial effects of 
antioxidants during development, showing clear evidences that ROS have causal roles in 

cardiovascular programming [32]. In addition, several authors have shown that ROS may 

induce important epigenetic modifications that determined cardiovascular dysfunction later 
in life. Hypoxia and oxidative stress have been shown to be present in several conditions dur-

ing pregnancy, such as preeclampsia, placental insufficiency, and high-altitude pregnancies 
[80]. In addition, assisted reproductive technologies induce hypoxic conditions at very early 

stages of development. All of the above studies have suggested epigenetic modifications of 
the eNOS gene [80, 81]. Conversely, the response to hypoxia and oxidative stress is primar-

ily mediated by the hypoxia-inducible transcription factor (HIF), which is regulated by the 

oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG)-dependent oxygen-
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ase family. Similarly, there are demethylases from the same family modulating methylation 

levels. Both systems, a transcription factor and an epigenetic regulator, are being regulated 

by hypoxia [82]. Further, HIF-1α has been suggested as an epigenetic modulator determin-

ing chromatin remodeling of hypoxia-responsive elements (HREs) sites [83]. Interestingly, in 

this report, a marked hyperacetylation of histones H3 and H4 was observed in the placental 

growth factor (Plgf) intron in hypoxic conditions. Further studies are needed to determine 

the interaction of transcription factors and epigenetic regulation, which might be an efficient 
way of controlling gene expression.

Another epigenetic regulatory mechanism is the miRNAs in the IUP. Present evidence sug-

gests that miRNAs could be transferred across the placenta [84] with important consequences 

on fetal and maternal physiology. In humans, circulating levels of miR-21 during gestation in 

the mother positively correlate with evidence of fetal hypoxia [85] and evidence from in vitro 

studies show the participation of miR-21 in the FGR placental vascular dysfunction [86, 87]. 

By contrast, placental miR-126 levels negatively correlate with the FGR severity [88]. Studies 

in umbilical endothelium from swine fetuses have shown that the expression of miRNA that 

targets eNOS and VEGF pathways can be modulated by maternal supplementation with an 

L-arginine precursor [89]. Similarly, undernutrition decreases and programs at long term the 

expression of an anti-remodeling miRNA and this effect is prevented by the in utero inhibition 

of corticosteroid synthesis in pregnant rats [90].

4. Potential role of hypoxia-induced miRNAs, miR-21 and miR-126,  

on the endothelial dysfunction in FGR

As previously discussed, ncRNAs constitute an important epigenetic mechanism, which 

mainly regulates RNA translation; notably miR-21 and miR-126 represent two potential miR-

NAs with a crucial role in the endothelium. In fact, both miRNAs are abundantly expressed 

in cultured endothelium [91] and respond to hypoxia with a substantial increase in miR-

21 and miR-126 levels, representing ~40% of all the miRNAs present in this cell type [92]. 

In contrast to most miRNAs, miR-126 and miR-21 are encoded within the intronic region 

of genes coding for proteins. MiR-126 is encoded in the seventh intron of the gene for the 

endothelial-specific protein epidermal growth factor-like domain 7 (Egfl7) and its expression 
is partially (~30%) dependent on transcription factors that bind to the promoter region of this 

Egfl7 [93]. Additionally, miR-126 expression is regulated, independently of Egfl7, by the DNA 
methylation status of a miR-126-specific promoter located in intron 7 of Egfl7 [94], as well as 

the binding of Nrf2 to this region in response to oxidative stress [95]. Preliminary data from 

our group show that FGR human endothelial cells present increased levels of DNA meth-

ylation in miR-126 promoter, suggesting an epigenetic programming of this miRNA in FGR 

endothelium. Conversely, miR-21 is encoded in the 11th intron of the stress-induced protein 

TMEM49, but its expression is completely controlled by a specific promoter in the intron 10 
of TMEM49 with predicted binding sites for transcription factors that respond to oxidative 
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stress and inflammation [96, 97]. This suggests that the expression of miR-21 and miR-126 

could be regulated by epigenetic modifications present in their specific intronic promoters.

It has been proposed that miR-126 is an endothelial-specific miRNA which promotes angio-

genic activation in progenitor cells during early development, as well as vascular repair 

in adult subjects, while in mature endothelial cells, it has an anti-atherogenic effect main-

taining endothelial quiescence and preventing inflammation [67]. In ob/ob mice, antioxi-

dant treatment induces a miR-126-dependent anti-inflammatory and antioxidant vascular 
response [98], an effect also observed in HUVEC [99]. Both miRNAs, miR-21 and miR-126, 

are upregulated by unidirectional shear stress, protecting EC from apoptosis and increas-

ing the activation of eNOS [100]. However, in oscillatory shear stress conditions, increased 

levels of miR-21 promote the expression of pro-inflammatory mediators [101]. Thus, it 

has been proposed that miR-21 has a dual effect on vascular function: over a short time, 
it protects against hypoxia and ischemia [70, 102–104], and over the longer term, leads to 

endothelial dysfunction, apoptosis [70, 102, 105, 106], and eNOS dysfunction. The latter 
would occur by targeting the expression of antioxidant enzymes [70], as well as enhancing 

the levels of the endogenous eNOS inhibitor asymmetric dimethyl arginine (ADMA) by 

downregulating the expression of the enzyme dimethyl arginine dimethylaminohydrolase 

1 (DDAH1) [105, 107, 108]. These data suggest that the dynamic regulation of miR-21 and 

miR-126 could participate in the early defense of the endothelium to hypoxia and oxi-

dative stress; nonetheless, they prime endothelial dysfunction over the long term. Thus, 

increased levels of miR-21 and decreased expression of miR-126 observed in FGR pla-

centae at term could represent a consequence rather than a cause of the hypoxia-induced 

endothelial dysfunction.

5. Conclusions

The programming of vascular, particularly endothelial dysfunction by hypoxia in FGR 

is an important issue in fetal-maternal medicine up to date. Currently, there is a serious 

need to undercover the real impact of hypoxia as a driving force to perinatal and postnatal 

cardiovascular and metabolic diseases, pointing out the main proposed mechanisms. The 

reviewed data support the notion that epigenetic mechanisms contribute to defining and 
regulating vascular responses to pathological stimuli (leading to FGR). However, evidence 

of how fetal exposure to hypoxia and oxidative stress lead to epigenetic modifications 
remains elusive.

Therefore, new knowledge on the role of epigenetic mechanisms involved in the long-term 

vascular function is crucial to understand and put into context adequate interventions. 

The timing of the vascular adaptations and epigenetic responses is one of the most rel-

evant questions that need to be answered in order to prioritize clinical approaches to early 

diagnose and treat such perinatal conditions, limiting postnatal cardiometabolic risk in 

the progeny.
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