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Abstract

The Dystrophin-Associated Protein Complex (DAPC), known as the Dystrophin–
Glycoprotein Complex (DGC), comprises an array of glycoproteins that are essential 
for the normal function of striated muscle, in which they were first described, and for 
many other tissues, including blood. Understanding the role that these molecules play in 
muscle function has increased over the last decade, and some of the knowledge derived 
can be applied to other biological systems. However, there is no doubt that to date, some 
progress has been achieved in blood cells. 
Multiple interactions have been described among the proteins comprising the DGC, it 
is now well established that the DGC possesses a crucial role for numerous signaling 
pathways, recruiting and regulating various signaling proteins into a macromolecular 
complex. The aim of this chapter is to summarize the current state of knowledge regard-
ing DGC processing and assembly, mainly in muscle tissue and in blood cells, with a 
primary focus on the dystroglycan heterodimer and associated proteins, including ion 
channels and membrane lipids. In addition, and due to increasing evidence involving 
dystroglycan proteins in the pathophysiology of solid tissue cancer, Duchenne muscular 
dystrophy, and leukemia, current information on these topics will be included.

Keywords: DGC, dystroglycan, intermediate filaments, leukemia cells, adhered 
platelets

1. Introduction

Dystrophin-associated glycoprotein complex, known as the DGC, is a multimeric and multi-

faceted protein complex located in the plasma membrane and mediates interactions among 
the cytoskeleton, cell membrane, and extracellular matrix (ECM) of the muscle and nonmus-

cle tissues. Therefore, the DGC is involved in signaling pathways that regulate the structural 
organization of specialized membrane-contact zones, and on the basis of its different bio-

chemical characteristics and localization, the DGC can be divided into the following three 
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subcomplexes: the dystroglycan (Dg), the sarcoglycan, and the cytoplasmic, dystrophin-con-

taining complex.

The dystroglycan subcomplex comprises α- and β-dystroglycan. α-Dystroglycan is the extra-

cellular component that binds to α-laminin and to other components of the basal lamina 
(ECM), while β-dystroglycan is the transmembrane component. Both attach the intracellular 
cytoskeleton to the ECM, a task that is widespread in all human tissues and cells [1].

The sarcoglycan subcomplex is a multimember complex that, in association with dystrogly-

can, stabilizes interactions with the extracellular and transmembrane components of the DGC, 
as well as with dystrophin and its associated proteins. To date, six sarcoglycan genes have 
been identified that give rise to their respective proteins α-, β-, γ-, δ-, ε-, and ζ-sarcoglycan, 

which are organized in a tetrameric arrangement; however, it has been hypothesized that the 
six sarcoglycans can be arranged in an exameric structure [2].

The dystrophin subcomplex can form a mechanically strong bond with any costameric pro-

tein, forming a mechanically strong link between the sarcolemma and the costameric cytoskel-
eton through interaction with γ-actin filaments. Additionally, based on its structure, protein 
interactions, and the membrane defects associated with its absence or abnormality in dystro-

phic muscle, the dystrophin complex provides mechanical stabilization of the sarcolemmal 
membrane against the stresses imposed upon it during muscle contraction or stretch [3].

Therefore, the DGC appears to play both mechanical and nonmechanical roles in skeletal 
muscle and in nonmuscle cells, although neither the DGC structure nor the functions are 

completely understood at present.

This chapter focuses on recent insights into the specific roles of the DGC in different tissue 
cells, including blood cells, with special focus on dystroglycan biology and its feasible patho-

physiologic implications in human leukemia cells and dystrophies.

2. Dystrophin–glycoprotein complex

Dystrophin is the protein that plays a central role in trans-sarcolemmal linkage between the 
basement membrane and the intracellular actin cytoskeleton, and is the product of the largest 
identified gene in the human genome [4].

The complexity of Duchenne muscular dystrophy (DMD) gene expression, which results 

in multiple transcripts and protein isoforms, has hampered understanding of the func-

tions of individual dystrophin protein isoforms. The transcription of human DMD is con-

trolled by the following three independent promoters, brain (B), muscle (M), and Purkinje 
(P) promoters, which indicate the tissue distribution of dystrophin expression, as well as 
four internal promoters (R for retinal, B for brain, S for Schwann cells, and G for gen-

eral), which give rise to shorter transcripts encoding for the truncated COOH-terminal 
isoforms formed from the alternative splicing that generates dystrophin isoforms of 260 

kDa (Dp260), 140 kDa (Dp140) [5], 116 kDa (Dp116) [6], and 71 kDa (Dp71) [7, 8]. When 
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these COOH-terminal dystrophin submembrane cytoskeletal proteins interact with a large 
macromolecular protein complex, they constitute the dystrophin-associated protein com-

plex (DAPC). The crucial structural role of this complex is based on its strategic localiza-

tion, spanning the plasma membrane and linking with the ECM and the actin cytoskeleton. 
Since the original discovery of the dystrophin-glycoprotein complex (DGC) [9], a large 

number of studies have characterized the various components involved in dystrophin [10]. 
Dystrophin-associated proteins can be divided into sarcolemmal proteins (β-dystroglycan, 
α-sarcoglycan, β-sarcoglycan, γ-sarcoglycan, and δ-sarcoglycan, sarcospan), cytosolic pro-

teins (dystrobrevins, syntrophins, neuronal nitric-oxide synthase [nNOS]), and extracellu-

lar proteins (α-dystroglycan and laminin) [11]. Several DGC components are also found in 
two or more isoforms, which are either generated by alternative splicing of a single gene or 
originate from distinct genes [12, 13].

The large, multi-subunit DGC is found in the sarcolemma of striated muscle fibers, and this is 
essential for maintaining the structural integrity of these fibers during contraction; therefore, 
the generally accepted role for the DGC is its acting as a molecular shock absorber and stabi-
lizing the plasma membrane during muscle contraction. However, its role goes beyond that 
solely of a passive scaffold among the elements of the complex, anchoring these near sites-
of-action or important partners, since genetic disruption of any of the DGC elements causes 

mislocalization, destabilization, and the loss-of-function of the cell [14].

As evidence of DGC signaling capacity, it has been reported that nNOS is associated with the 
DGC via α-dystrobrevin, and that there is a loss of nNOS from the sarcolemma in Duchenne 
muscular dystrophy (DMD) [15]. Additionally, the DGC promotes the mechanical activation 
of cardiac nNOS by acting as a mechanosensor in the regulation of AMP-activated protein 
kinase AMPK activity [16].

The complex also constitutes a scaffold for signaling molecules based on its association with 
several signaling proteins, including Grb2-Sos1 [17], MEK and ERK [18], heterotrimeric G 

protein subunits [19], archvillin [20], and nNOS [21].

3. Dystrophin-related proteins

Dystrophins share structural homology with a range of paralog proteins denominated the 

dystrophin-related proteins (DRP), such as utrophin, DRP2, dystrobrevin, and dystrotelin 
[22].

The utrophin gene possesses internal promoters and shorter protein products and is also 

modulated by alternative splicing [23]. Transcription of full-length utrophin (Up395) is driven 
by two independent promoters: Utrn-A and Utrn-B. The Utrn-A protein is the main isoform 
in adult skeletal muscles, in contrast with Utrn-B, which is found in the vascular muscle endo-

thelium [24].

G-utrophin, or Up113, was the first short product identified as a structural homolog of Dp116, 
while Up140 and Up71 are homologous to the short dystrophins Dp140 and Dp71,  respectively; 
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these short utrophins do not possess actin-binding sites in the N-terminal domain of the mol-
ecule [25]. Up71 is detected in nonmuscle tissues such as lung, kidney, thymus, liver, and brain, 
while Up140 is found in lung, muscle, kidney, thymus, liver, testes, and brain. Full-length 
utrophins are also detected in nonmuscle tissues, such ass those of the central nervous system 

(CNS), peripheral nerves, testes, kidney, spleen, liver, and lung, and in small arteries and veins 
[26, 27]. In 1995, utrophin was described as a component of the platelet cytoskeleton, participat-
ing in its reorganization [28], while in hematopoietic stem/progenitor cells, Up400 and Up140 
comprised the main gene products [29]. In addition, Up71 has been described in platelets [30], 

as well as in neutrophils [31].

It has long been considered that utrophin and dystrophin share comparable functions dur-

ing fetal development and adulthood, maintaining utrophin expression in adult dystrophic 

tissues, compensating for dystrophin loss, as has been observed in mdx skeletal and cardiac 
muscles [24, 32]. However, spontaneous upregulations also occur in nonmuscle tissues, such 
as in Dp71-deficient platelets [33] and, most importantly, in the brains of DMD mouse models 
[34]. However, their expression in distinct structures, as compared with dystrophin, may not 
reflect functional compensation [24].

4. Dual role of the Dp71 isoform

Dp71 (70–75 kDa) is the first product of the DMD gene detectable in pluripotent embryonic 
stem cells (ESC) during development. It decreases in differentiated ESC cultures and tumors 
[35] and is the major dystrophin expressed in nonmuscle cells, such as neural tissue [36], 

glia [37], spermatozoa [38], and astrocytoma cells [39]; in platelets, its participation has been 
suggested in cytoskeletal reorganization and/or signaling, and in thrombin-mediated platelet 
adhesion [28].

The variation in the molecular mass of Dp71 transcripts is consistent with the expression 

of Dp71 isoforms derived from transcripts alternatively spliced for exons 71 and/or 78 [40]. 
The splicing product of exon 78 produces the isoform known as Dp71d, which preserves the 

C-terminal, while Dp71f is the product of the absence of exon 78. Two other gene products 
resulting from an alternative splicing at exons 71–74 and/or 78 transcripts, Dp71Δ110a and 

Dp71Δ110m, respectively, with a relative mass of 55 kDa, have been recently characterized 
[40, 41].

In 2005, Dp71d/Dp71Δ110m~DGC and Up400/Up71~DGC were described as participating 
with structural roles associated with the actin cytoskeleton in the formation of membrane 
scaffolds. They were probably involved in defining platelet shape, substrate adhesion, and 
granule migration, as well as possessing a signaling role, participating in signaling triggered 

by adhesion to glass and by interaction with agonists such as thrombin [30].

The presence of Dp71 and some DGC elements that form a nuclear complex at the plasma 

membrane and in the nucleus of muscle cells suggested their participation in nuclear struc-

ture and in the modulation of nuclear processes [42].
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The neuronal cell line PC12 expresses at least two different Dp71 protein isoforms gener-

ated by the alternative splicing of exon 78 [43, 44]. The splicing isoform of Dp71 (Dp71d) 
contains 13C-terminal amino acids encoded by exon 78, which are replaced by 31 new amino 
acids encoded by exon 79 in the Dp71f isoform upon removal of exon 78 [40]. Depletion of 
total Dp71 protein levels gives rise to impairment in nerve growth factor (NGF)-induced neu-

rite outgrowth [45] and in the cell adhesion activity of PC12 cells [46], indicating that Dp71 

is required for these neuronal functions. Dp71f assembles an adhesion complex comprising 
talin, α-actinin, paxillin, focal adhesion kinase (FAK), and actin, but not vinculin, contributing 
to cell stability [47].

Figure 1. Schematic diagram of the dystrophin–glycoprotein complex (DGC) composed of Dp71 (left) and utrophin 
(right) in adhered platelets. Dystrophin is a linker between the cytoskeleton and the extracellular matrix (ECM). Dp71 
and utrophin are associated with the dystroglycan complex and the dystrobrevin/syntrophin complex (α-Db/α-Syn). 
α-Dystroglycan (α-Dg) binds to ECM proteins and β-dystroglycan (β-Dg); β-Dg binds to the dystrophin, completing 
the link between the actin cytoskeleton and the ECM. Focal adhesion (magnified at the bottom of the figure) clusters the 
α- and β-integrin receptors and induces recruitment of focal adhesion proteins vinculin (Vin), talin (Tal), and α-actinin 
(α-Act), which connect directly with microfilaments and short dystrophins (Dp71) and indirectly with microtubules and 
intermediate filaments. The adhesion complex activates integrin-associated signaling cascades, including focal adhesion 
kinase (FAK). Dystroglycan plays a scaffold role, modulating the cytoplasmic protein kinases, and is in close association 
with integrin β1.
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During the platelet adhesion process, short dystrophins (Dp71d/Dp71Δ110m) and utro-

phins (Up400/Up71) have demonstrated potential association with the integrin β-1 fraction 
and with focal adhesion system that includes α-actinin, vinculin, and talin. Apparently, in 
order to fulfill this hemosatic role, the coexistence of the DGC composed of short dystro-

phins or utrophins plays both a structural role in participation in stress-fiber assembly and 
in the centralization of cytoplasmic granules, and a regulatory role, incorporating FAK into 
the complex. The coexistence of dystrophin and utrophin complexes indicates structural and 
signaling mechanisms that are complementary to the actin network during the adhesion 

 process [48] (Figure 1).

5. DGC components

The findings described in systematic proteomic studies indicate that dystrophin interacts 
closely with core members of the dystrophin-associated glycoprotein complex, such as dys-

troglycans, sarcoglycans, syntrophins, dystrobrevins, and sarcospan, but that it also forms 
indirect linkages with a large variety of other protein species, including tubulin, vimentin, 
desmin, annexin, and collagens [49].

5.1. Dystrobrevins

Dystrobrevins are proteins among dystrophin-related proteins that are encoded by two dif-
ferent genes, α and β and that possess significant homology to dystrophin. α-Dystrobrevin is 

expressed predominantly in muscle and brain, whereas β-dystrobrevin is expressed in nonmus-

cle tissues, which is abundant in brain, kidney, lung, and liver. Dystrobrevins have also been 
involved in intracellular signaling in muscle and nonmuscle tissues, either directly or through 

interaction with syntrophin, another element of the DGC. In humans, Sadoulet-Puccio et al. 
[50] found six isoforms of dystrobrevin (designated α-, β-, γ-, δ-, ε-, and ζ-dystrobrevin), 
which ranged in size from 22 to 80 kDa.

Human α-dystrobrevin and its few isoforms are expressed in the cytosol and the nucleus of 
the promyelocytic HL-60 cell line. A distinct distribution pattern of α-dystrobrevin, includ-

ing colocalization with actin, was described in HL-60 promyelocytes, differentiated mature 
granulocytes, and in human neutrophils, supporting a signaling role [51]. In adhered plate-

lets, it was suggested that actin filaments and microtubules contribute to α-granule and dense 
granule mobilization in adhered platelets, identifying α-dystrobrevins as part of the plate-

let transport machinery that is closely associated with the ubiquitous kinesin heavy chain 
(UKHC), this system is depicted in Figure 2 [52].

5.2. Sarcoglycans

The sarcoglycan complex (SGC) is composed of α-, β-, γ-, and δ-sarcoglycan isoforms encoded 
by separate genes, and of sarcospan. Sarcoglycans are single transmembrane glycoproteins 
with the N-terminus oriented extracellularly for α-sarcoglycan and intracellularly for β-, 
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γ-, and δ-sarcoglycans [53]. Contrariwise, sarcospan is composed of four transmembrane-
spanning segments that are homologous to the tetraspanin family. The function of the SGC 
is not fully understood, but it appears to strengthen the interaction of β-dystroglycan with 
α-dystroglycan and dystrophin, as well as to play a role in intracellular signal transduction 
for sarcoglycan [54]. Sarcospan, a 25-kDa transmembrane protein, improves the cell-surface 
expression of the three major laminin-binding complexes, i.e., the dystrophin– and utrophin–
glycoprotein complexes, as well as of an α7β1 integrin [55].

5.3. Syntrophins

Syntrophins are a multigene family of intracellular membrane-associated adaptor proteins 
and consist of five homologous isoforms: α1-syntrophin, β1-syntrophin, β2-syntrophin, 
γ1-syntrophin, and γ2-syntrophin; they possess a different cellular and subcellular localiza-
tion, suggesting a distinct functional role [56]. In human platelets, a 54-kDa band correspond-
ing to α-syntrophin is well expressed [30].

The pleckstrin homology (PH) and PDZ domains of syntrophins were shown to bind various 
proteins, including nitric oxide synthase (NOS), and have been implicated in the regulation of 
various plasma membrane ion channels, such as voltage-operated sodium channels and other 
nonvoltage gated channels, such as mechanosensitive Na+ channels [57].

Figure 2. Platelet distribution of cytoskeleton elements. Schematic diagram of actin filaments, microtubules, and 
intermediate filaments in adhered platelets. Plectin is the protein that acts as a link among the three main components 
of the cytoskeleton.

Dystrophin–Glycoprotein Complex in Blood Cells
http://dx.doi.org/10.5772/66857

111



5.4. Dystrolglycans

The single dystroglycan gene encodes for a precursor protein that undergoes posttransla-

tional proteolytic cleavage, which in turn produces two noncovalant DGC subunits: α- and 
β-dystroglycan. α-Dystroglycan is a dumbbell-shaped protein that binds to the laminin G 
domain in ECM components such as laminins, agrin, and perlecan. β-Dystroglycan (β-Dg) 
possesses a single transmembrane domain spanning the plasma membrane and an extracel-
lular amino-terminal extracellular domain binding to the carboxy-terminal globular domain 
of α-Dg [58].

5.4.1. Dg involved in the signaling process

The β-Dg dual role (structural and signaling) has been demonstrated in various cell types 
and tissues. Examples of the former role are represented by the participation of β-Dg in 
cytoskeleton remodeling, where it is associated with actin [59, 60], while its signaling role is 

represented by its association with the extracellular signal-related kinase-mitogen-activated 
protein (ERK-MAP) kinase cascade [18], or with integrins modulates myoblast anchorage and 
migration [61]; this latter process is critically regulated by Src-mediated phosphorylation of 
β-Dg at tyrosine 890 [62].

Grb2–β-Dg interaction could facilitate the transduction of signals between the DGC and extra-

cellular proteins and other signaling pathways [62]. However, when Dg is localized at the tips 
of dynamic filopodia, it directs local Cdc42 activation and recruits the guanine nucleotide 
exchange factor (GEF) Dbl to generate actin protrusions [60].

Dystroglycan is also a multifunctional adaptor or scaffold capable of interacting with compo-

nents of the ERK-MAP kinase cascade, including MEK and ERK [18]. However, it has been 
established that integrin α6Aβ1 and dystroglycan play antagonistic roles in signaling to the 
Ras-Raf-MEK-ERK pathway in response to laminin [63].

5.4.2. Dg promoter of the adhesion process

Since 1995, dystroglycan-associated proteins, such as utrophin, have been considered resi-
dents of focal adhesions in nonmuscle cells [59, 64, 65] and, after direct interaction of the cyto-

plasmic tail of β-Dg with F-actin was described [66], Dg has been implicated in cell adhesion 
and spreading.

Dg was identified in podosomes at the early stages of myoblast spreading; these structures 
contain a regulatory complex comprising dystroglycan, Tks5, and Src [67]. Myoblast spread-

ing occurred in relation to dystroglycan expression levels, which in turn altered the size and 
number of focal contacts, focal adhesions, and fibrillar adhesions. Dystroglycan-mediated cell 
adhesion and spreading took place through indirect interaction with vinculin by binding to 
the vinculin-binding protein vinexin [61], while an adhesome was made up of by laminin-Dg-
myosin IIA, crucial for maintaining the shape of notochordal cells [65].

In addition to a specific role in the maintenance of muscle integrity, Dg plays a more ubiq-

uitous role in cell adhesion, signaling, and polarity. During embryogenesis, the follicle-cell 
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 epithelium (FCE) maintains the cell polarity promoted by the association between perlecan 
and Dg [68], while in astrocytes, end-feet in brain laminin induced a dramatic, polarized 
redistribution of cell-surface clusters or macrodomains, which colocalized extensively with 
β-Dg and AQP4 [69].

The cytoskeletal polymers—actin, microtubules, and intermediate filaments—are interlinked 
by coordinated protein interactions to form a complex three-dimensional (3D) cytoskeletal 
network; these components are depicted in Figure 3. Although these systems are composed 
of distinctly different proteins, they are in constant and intimate communication with each 
another and with intermediate filaments, and their associated proteins are important compo-
nents in mediating this crosstalk [70].

In platelets, two members of type-III intermediate filament (IF) proteins, desmin and vimen-
tin, maintain a close relationship with DGC components, such as β-dystroglycan [β-dg], 
α-syntrophin [α-syn], and α-dystrobrevin [α-db], and are codistributed at the granulomere 
zone, participating in α-granule distribution [71].

The epithelial sodium channel (ENaC) is associated with IF and with dystrophin-associated 
proteins (DAP) via α-syntrophin and β-dystroglycan. ENaC is apparently dispensable for 

Figure 3. Schematic diagram of microtubules and actin filaments participating in the transport of alpha and dense 
granules in the platelet adhesion process, during which α-dystrobrevins are the regulatory and adaptor proteins for 
governing trafficking events.
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migration and alpha- and dense-granule secretion, whereas Na+ influx through this channel 
is fundamental for platelet collagen activation [72]. This channel is overexpressed in platelets 
from hypertensive subjects in relation with control subjects, and β-Dg is a scaffold for the 
organization of ENaC and associated proteins [73].

5.4.3. Dg and its posttranscriptional modifications

Posttranscriptional modifications in the Dg protein possess important implications in cellu-

lar functions. The transmembrane β-subunit, which interacts with α-Dg extracellularly and 
which also connects with several different cytolinker proteins intracellularly, is addition-

ally subject to altered N-linked glycosylation [74]. Additional modifications to β-Dg, how-

ever, include phosphorylation on tyrosine [75, 76] and specific proteolytic cleavage events. 
Tyrosine phosphorylation of β-Dg serves as a molecular switch to regulate the binding of 
different cellular-binding partners [77], but it is also a signal of the internalization of Dg from 
the plasma membrane [78, 79] and may mediate some proteolytic events and nuclear trans-

location [80, 81].

β-Dg is subject to proteolysis at several key sites: matrix metalloproteinase (MMP)-mediated 
cleavage liberates the extracellular portion of β-Dg, MMP-9-mediated proteolytic cleavage of 
the β-Dg, and it has been implicated in dendritic outgrowth and arborization in primary hip-

pocampal neurons [82]. The remaining 31 kDa transmembrane stub and cytoplasmic domain 
can be detected with antibodies at the carboxy terminus of the cytoplasmic domain. As yet 
unknown proteases generate smaller fragments corresponding to the cytoplasmic region of 

β-Dg [83, 84], most typically observed as a 26-kDa fragment, but occasionally as a 17-kDa 
fragment.

In hematopoietic stem/progenitor cells, a 50-kDa β-Dg is the main product, while in differ-

entiated cells, such as neutrophils and platelets, the characteristic glycosylated 43 kDa band 
is present [29, 31]. A 65-kDa band was also observed in neutrophils; perhaps this molecular 
weight (MW) is due to a posttranscriptional modification such as SUMOylation.

Ezrin is able to interact with dystroglycan through a cluster of basic residues in the juxtamem-

brane region, and appears to be responsible for dystroglycan-mediated formation of filopo-

dia [18]. Colocalization of endogenous dystroglycan with ezrin at the cleavage furrow and 
midbody during cytokinesis not only affords dystroglycan a role in organizing the contractile 
ring through direct or indirect associations with actin, but also can modulate the cell cycle by 
affecting extracellular signal-regulated kinase levels [85]. Recent experiments have demon-

strated β-Dg trafficking from the cytoplasm to the nucleus by ezrin-mediated cytoskeleton 
reorganization, the latter dependent on IMPα2/β1 [86].

Due to the presence of a conventional nuclear localization sequence (NLS)-/Imp-dependent 
nuclear import pathway in the cytoplasmic juxtamembrane region of β-Dg [87], β-Dg and 
proteolytic fragments containing the nuclear localization signal can be targeted to the 
nucleus via an importin-dependent pathway [88], where it can exert effects on nuclear archi-
tecture [89].
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5.4.4. Dg in the differentiation process

The expression has been described as the major components of DAPC visceral and subcuta-

neous rat adipose depots that are regulated during adipogenesis and by ECM components, 
suggesting an important role in adipocyte differentiation [90].

The human myeloid leukemia cell line HL-60 achieves increasing cessation after its exposure 
to all-trans-retinoic acid (ATRA) and dimethyl sulfoxide (DMSO) and becomes differenti-
ated into granulocytes, evoking the biology of the disease in vitro [91, 92]. Recently, it was 
demonstrated that dystroglycans actively participate in the differentiation process, in that the 
expression levels of α-Dg (160 kDa), β-Dg (42kDa), and β-DgpY892 (42 kDa) were increased in 
differentiated compared with nondifferentiated cells. Additionally, low levels of β-Dg in dif-
ferentiated HL-60 cells are accompanied by reducing actin-based protrusions, such as in filo-

podia and lamellipodia extrusion, avoiding motility or phagocytic capabilities, respectively 
[93]. Similar changes were also observed when HL-60 cells were transfected with a shRNA 
directed to dystroglycan; therefore, a direct consequence of the reduction in dystroglycan 
exerted a direct effect on actin cytoskeletal dynamics, either on its direct or indirect interaction 
with actin, but also interfering with actin regulatory pathways [66].

The Kasumi-1 cell line is a model system of acute myeloid leukemia (AML) with t(8;21) trans-

location and the corresponding functional consequences of the AML1–ETO fusion oncogene 
on myeloid differentiation [94]. In vitro, macrophages differentiated from myelomonocytic 
cell lines exhibited downregulation of adhesion molecules after tissue plasminogen acti-
vator (TPA) treatment [95]. The biochemical analysis of cytoplasmic or nuclear Kasumi-1 
cell extracts revealed bands of 50, 38, and 30 kDa present in the nucleus of the cells, while 
the majority of 43 kDa β-Dg was found mainly in the cytoplasmic compartment, with the 
38-kDa band also abundant in the cytoplasm of nondifferentiated Kasumi-1 and differen-

tiated Kasumi-1 cells. The phosphorylated 31-kDa fragment of dystroglycan is the species 
that is most translocated to the nucleus of nondifferentiated cells, while the 50-kDa fragment 
comprised the most abundant species at the nucleus of differentiated cells. The diminished 
expression levels of Dg in differentiated Kasumi-1 cells compared with nondifferentiated cells 
could facilitate cell recruitment in solid tissues; apparently, the phosphorylated species may 
be ubiquitinated and processed by the proteasome. However, a direct consequence of a reduc-

tion in dystroglycan exerts an effect on actin cytoskeletal dynamics, but does not impair the 
differentiation process [96].

5.4.5. Dg in cell membrane organization

Several structures of the cell membrane play major roles in physiological functions through 
signaling and adhesion to neighbor cells and to ECM. Generic features, such as the cytoskel-
eton meshwork, rafts, and protein complexes, which are subjected to thermal motion, contrib-

ute to building membrane structures such as focal adhesions (FA) [97] and immune [98] and 

neuronal [99] synapses. The rapid and transient association of the partners of a given signal-
ing pathway, localized in close proximity within narrow structures/domains, is a requirement 
for rapid and reliable signal transmission [100].
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The existence of “rafts” supposes that membrane lipids and proteins associate with each other 
according to their affinities, due to their hydrophobicity and geometry [101]. Rafts were ini-
tially proposed as contributing to protein sorting along the synthesis pathway, and have also 
been associated with several membrane features, including signaling platforms and adhe-

sion structures. Caveolae are cholesterol- and sphingolipid-enriched membrane invagina-

tions [102], and caveolin-1 is the primary caveolae structural protein in several cells [103]. 
Therefore, caveolae and caveolin-1 play a key role in orchestrating the activation of pathways 

that underpin cell proliferation, migration, and contraction [104]. For example, direct interac-

tion between caveolin-1 and β-Dg was demonstrated in contractile smooth muscle, where the 
distribution of caveolae is determined by their tethering to the actin cytoskeleton via caveo-

lin-1 and the DGC [105].

In this regard, cholesterol demonstrated to be essential to modulate platelet cytoskeleton reor-

ganization, while the association of caveolin-1 PY14 with intermediate filaments, as well as 
with focal adhesion proteins via vinculin, was a determinant in adhered platelets, where β-Dg 
participation was a key scaffold component for caveolin-1 and FAK [106].

In general, diseases of the DGC are incurable, in part because the majority of these give rise to 
great damage resulting from the loss of these proteins. However, there is increasing evidence 
that proteins in the DGC may play a significant role in the pathophysiology of more common 
diseases such as cancer, in which the DGC has been implicated.

Throughout these years of basic research, it has been observed that dystroglycan functional 
changes, either for posttranscriptional modifications or for deregulation of the protein, simul-
taneously affect both scaffolding and signaling roles. These changes modify cell adhesion and 
motility, MAPK signaling, or its translocation to the nuclei that, in the prostate, is associated 

with the ETV1 transcription factor, acting directly on cancer progression and the pathophysi-
ology of the disease [81]. Therefore, a complete understanding of the role of DGC elements in 
the pathophysiology of a disease would allow the identification of strategies for the develop-

ment of specific therapeutics.

Previous studies demonstrated that preventing tyrosine phosphorylation of β-Dg in mdx 
mouse alleviated the dystrophic phenotype in a genetic mouse model, ameliorating many 

of the main pathological symptoms associated with dystrophin deficiency [78]. The use of 
dasatinib was found to decrease β-Dg phosphorylation levels in tyrosine and to increase 
the relative levels of nonphosphorylated β-Dg in the sapje zebrafish, improving its physical 
condition [79].

6. Conclusion

Since 1980, the dystrophin–glycoprotein complex has been considered only as a group of 
multiproteins working together to ensure the function of muscle tissue; however, along these 
years and according to basic research, dystrophin has acquired prime status and has become 
the central component of a scaffold of proteins expressed in a variety of tissues including 
blood. Within the complex elements, dystroglycan has received the majority of our attention 

Cytoskeleton - Structure, Dynamics, Function and Disease116



and has been identified as participating in the clustering of membrane receptors, integrins, 
and ion channels, modulating cellular signal integration, such as in the differentiation process.

Despite all of these advances, it remains difficult to dissect the specific function of a particular 
protein and, given the close association and interdependence of the different elements of the 
complex, it should be difficult to define the specific contribution of each of the complex’s pro-

tein elements. However, the improvement and development of biochemical and molecular 
tolls will undoubtedly aid in elucidating novel therapies to counteract common diseases such 
as cancer.
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