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Abstract

The findings from our studies on licorice phenolics are summarized here. The following 
types of flavonoids, i.e., flavones, flavonols, flavanones, chalcones, isoflavones, isofla-
vanones, isoflavans, 3-arylcoumarins, coumestans, pterocarpans, 2-benzyldihydroben-
zofuran-3-ones, benzyl phenyl ketones, 2-arylbenzofurans, and others, were identified 
by the structural studies. Among them, licochalcone A (chalcone), isolicoflavonol (fla-
vonol), glycycoumarin (3-arylcoumarin), and glycyrrhisoflavone (isoflavone) displayed 
antihuman immunodeficiency virus effects, and also 8-(γ,γ-dimethylallyl)-wighteone 
(isoflavone) and 3′-(γ,γ-dimethylallyl)-kievitone (isoflavanone) showed potent antibac-
terial effects on methicillin-resistant Staphylococcus aureus (MRSA) strains. Licoricidin 
(isoflavan) suppressed the oxacillin resistance of the MRSA strains noticeably. Effects of 
phenolics with related structures isolated from Psoralea corylifolia were also examined, 
and bakuchiol (meroterpene), isobavachalcone, and corylifol B (chalcones) also showed 
potent effects on MRSA strains. Some licorice phenolics such as licoricidin (isoflavan), 
8-(γ,γ-dimethylallyl)-wighteone (isoflavone), and gancaonin I (2-arylbenzofuran) also 
showed potent antibacterial effects on vancomycin-resistant Enterococcus (VRE) strains. 
The potency of the effects largely depended on their structures including the lipophilic 
prenyl or related substituents and also phenolic hydroxyl groups. Inhibitory effects of 
licorice phenolics on oxidative enzymes, in addition to their radical-scavenging effects, 
are also shown. The methods used in the structural studies and high-performance liq-
uid chromatographic analysis of licorice extracts are described shortly, too.
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1. Introduction

Licorice (liquorice), the underground portion of Glycyrrhiza species, has been used as a remedy 
for various types of stress, inflammatory diseases, digestive organ disorders, and pain in tra-
ditional medicine in Asian and European countries [1, 2]. The main constituent, glycyrrhizin, 
and the associated aglycone, glycyrrhetinic acid, are also used in modern medicine, whereas 
the phenolic constituents have been implicated in promoting improved health, particularly 
with regard to stomach ulcers [2]. Therefore, several research groups have investigated the 
phenolic constituents of licorice [3] and found that it has beneficial effects for health, including 
antimicrobial properties [4, 5]. In this chapter, we summarize our studies on phenolic con-
stituents and some of their pharmacological effects, including those linked to drug-resistant 
bacteria.

2. Findings from our research

Our research on licorice constituents began with an investigation of tannin-like substances 
in licorice, because tannins and related constituents in medicinal plants have remarkable 
antioxidant effects, in addition to their fundamental property of binding with proteins, 
which is related to its various pharmacological effects [6–8]. In fact, licorice extracts of vari-
ous origins contain tannin-like substances and show protein-binding properties [9]; our 
additional studies revealed that some phenolic constituents related to flavonoids contribute 
to this property. Therefore, we investigated these flavonoids and related compounds as dis-
cussed below.

2.1. Purification of licorice phenolics

Although classic column chromatography using silica gel has been applied to the separation of 
phenolic plant constituents, the irreversible adsorption of phenolic constituents (particularly, 
tannins or tannin-like substances) has limited ability to effectively separate these compounds. 
Because countercurrent distribution (CCD) does not use solid supports for separation, it can 
be applied to solve the problem of irreversible adsorption. Thus, centrifugal partition chroma-
tography (CPC) and droplet countercurrent chromatography (DCCC), which were devised as 
effective methods for CCD, in addition to simple CCD using separatory  funnels, were applied 
to purify the licorice phenolics in our studies. The solvent system chloroform-methanol-water 
(7:13:8, by volume) was primarily used for the separation of licorice phenolics derived from 
Glycyrrhiza inflata [9, 10] and those derived from G. uralensis [11–16] in these CCD processes. 
Combinations of column chromatography on a silica gel, ODS-gel, and/or polystyrene gel 
(MCI-gel CHP-20P) with CCD also afforded satisfactory separation [17, 18]. High-performance 
liquid chromatography (HPLC) was applied for final purification and to establish the purity of 
the isolated compounds [18, 19]. However, the CCD systems using the solvent systems ethyl 
acetate-n-propanol-water, n-hexane-ethanol-water-ethyl acetate, and chloroform-methanol-
n-propanol-water, in addition to chloroform-methanol-water, were also useful for separating 
various types of phenolic constituents [17, 20].
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2.2. Structural study on licorice phenolics exploring the diversity of their skeletons

Although the structures of aforementioned licorice phenolics were characterized based on the 
1H and 13C nuclear magnetic resonance (NMR) spectra, including various 1D and 2D methods, 
the following spectroscopy methods were also key in establishing the structures. Electron 
impact mass spectrometry (EI-MS) is a useful method for obtaining structural information 
using fragment ions [16]. On the other hand, fast-atom bombardment (FAB) and electrospray 
ionization mass spectrometry (ESI-MS) are applicable to the ionization of phenolics, including 
phenolic glycosides. Notably, the high-resolution FAB and ESI-MS have been used to deter-
mine their molecular formulae [17]. Ultraviolet-visible (UV-Vis) spectroscopy was useful for 
discriminating between phenolic skeletons even if the 1H NMR spectra were quite similar 
to each other, as was the case for 3-arylcoumarins and the corresponding isoflavones [16]. 
Electronic circular dichroism (ECD) spectroscopy was effective not only for identifying the 
configuration of asymmetric carbons (e.g., those in flavanones, isoflavans, and isoflavanones 
[9, 15, 17]) in the flavonoid skeletons but also for explaining the spatial relationship between 
the chromophores in acylated flavonoid glycoside molecules [17]. Based on the data obtained 
by the aforementioned spectroscopy methods, we uncovered new compound structures and 
identified known ones isolated from licorice, which can be classified into subgroups based on 
their structural skeletons as shown in Table 1.

As shown in Table 1, various types of phenolics have been found in licorice, in addition to 
the major phenolics (liquiritin, isoliquiritin, and related ones) [21], and their pharmacological 
properties differ depending on their structures. The strength of the order of the effects also 
differs depending on the properties examined. Especially, their phenolic hydroxyl and prenyl 
substituents and also their skeletons related to the molecular flexibility should be considered 
for their respective properties.

2.3. Properties of licorice phenolics in relation to their health effects

Polyphenols have been linked to antioxidant effects, and some polyphenols such as tannins 
have protein-binding effects. Interaction of tannins with protein molecules is regarded to be 
based on hydrophobic interaction and hydrogen bonding and also covalent bonding in some 
cases [22]. Although some researches focused on the participation of proline residues of pro-
teins in the complexation [23], the modes of complexation are largely dependent on the struc-
tures of tannins and proteins/peptides [24–27]. Therefore, further studies using various types 
of polyphenols should be conducted in order to clarify the complexation. Thus, we examined 
the binding and antioxidant effects of licorice phenolics.

2.3.1. Protein-binding and antioxidant effects

Among the isolated compounds found in large quantities in licorice materials, licochalcone 
B from Sinkiang (Xinjiang) licorice (mainly collected in the Xinjiang Uyghur Autonomous 
Region of China) showed the most potent binding activity with proteins, followed by glyc-
yrrhisoflavone from Si-pei (Xi-bei) licorice [9]. Tannins displayed different binding effects 
depending upon their structures, and licochalcone B and glycyrrhisoflavone (Figure 1) showed 
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binding effects more potent than, or comparable to, those of some hydrolyzable tannins such 
as pedunculagin or corilagin [9, 28].

Then, we examined phenolic radical-scavenging effects on 1,1-diphenyl-2-picrylhydrazyl 
(DPPH) radicals. Again, licochalcone B displayed the most potent scavenging effects on the 
DPPH radicals among the examined compounds; licochalcone A showed weaker effects, and 
isoliquiritigenin and liquiritigenin had negligible effects. The order of potency was as follows: 

Subgroup Compounds Origin a

Flavones 4′,7-Dihydroxyflavone [9] G. inflata

3′,4′,7-Trihydroxyflavone [17] G. uralensis

Flavonols Isolicoflavonol [9], kaempferol-3-O-methyl ether [12], licoflavonol, topazolin 
[16], kaempferol [18], fisetin, glycyrrhiza-flavonol A * [20]

G. uralensis

Flavanones 6″-Acetylliquiritin; naringenin [15]; 3′-prenylnaringenin [16]; licorice-glycosides 
C1 *, C2 *, D1 *, D2 *, and E *; liquiritin apioside [17]; liquiritigenin; liquiritin [21]

G. uralensis

Chalcones Licochalcones A and B [9] G. inflata

Echinatin [15]; isoliquiritin apioside; licorice glycosides A * and B *; 

neoisoliquiritin [17]; licochalcone B; tetrahydroxy methoxychalcone * [20]; 

isoliquiritigenin; isoliquiritin [21]

G. uralensis

Isoflavones Glycyrrhisoflavone * [9]; glisoflavone * [12]; genistein; glicoricone * [14]; 

8-(γ,γ-dimethylallyl)-wighteone; gancaonin G; isoangustone A; isowighteone; 
semilicoisoflavone B [15]; allolicoisoflavone B; 7-O-methylluteone; orobol [16]; 

glycyroside [17]; 5,7-di-O-methylluteone *; 6,8-diprenylorobol; formononetin; 
licoricone [18]; calycosin; glycyrrhiza-isoflavones A *, B *, and C * [20]

G. uralensis

Isoflavanones Glycyrrhisoflavanone * [9], 3′-(γ,γ-dimethylallyl)-kievitone, glicoisoflavanone *, 
glyasperin F, licoisoflavanone [15], glisoflavanone * [16], glyasperin J, glyasperin 
J trimethyl ether [19]

G. uralensis

Isoflavans Glyasperin C, glyasperin D, licoricidin, (3R)-vestitol [15], (3R)-vestitol-7-O-

glucoside* [17]

G. uralensis

3-Arylcoumarins Glycycoumarin [9], licopyranocoumarin * [11], licoarylcoumarin * [12], glycerin 
[15], isoglycycoumarin, licofuranocoumarin * [16], 3-(p-hydroxyphenyl)-7-
methoxycoumarin [18], isolicopyranocoumarin * [20]

G. uralensis

Coumestans Glycyrol, isoglycyrol [15], isotrifoliol * [16], dimethylglycyrol * [18] G. uralensis

Pterocarpans Demethylhomopterocarpan [19] G. uralensis

2-Benzyldihydro-
benzofuran-3-ones

Carpusin [17] G. uralensis

Benzyl phenyl ketones Glicophenone *, licoriphenone [15] G. uralensis

2-Arylbenzofurans Licofuranone * [14], licocoumarone [15], gancaonin I [18], glycybenzofuran, 
4′-O-methylglycybenzofuran *, neoglycybenzofuran * [19]

G. uralensis

Benzoic acids p-Hydroxybenzoic acid [20] G. uralensis

aThe origins were assigned accordingly: G. uralensis [Tong-pei licorice and Si-pei (Xi-bei) licorice] and G. inflata [Sinkiang 
(Xinjiang) licorice].

*New compounds.

Table 1. Classification of isolated licorice phenolics.
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licochalcone B > licochalcone A >> isoliquiritigenin > liquiritigenin. This order of the scaveng-
ing effects was the same as that of the reported suppressive effects on lipoxygenase products 
in arachidonate metabolism [29]. Because stable radical formation was correlated with potent 
radical-scavenging effects, we examined the formation of radical species from two chalcones, 
licochalcone B and tetrahydroxy methoxylchalcone (Figure 2). As expected, they showed sta-
ble electron spin resonance (ESR) signals attributable to their radicals formed by air oxidation 
in alkaline DMSO solutions [20].

On the other hand, we reported that several licorice phenolics showed inhibitory effects on 
xanthine oxidase and monoamine oxidase. Licocoumarone, a 2-arylbenzofuran, showed the 
most potent inhibitory effects on xanthine oxidase, followed by the effects of licochalcone B, 
licochalcone A, and glycyrrhisoflavone [12]. Two 2-arylbenzofurans, licocoumarone and lico-
furanone, also showed potent inhibitory effects on monoamine oxidase (Figure 3), followed 
by glycyrrhisoflavone and genistein [14].

The role of xanthine oxidase in the catalysis of the reaction of xanthine into uric acid has 
been linked to gout and also correlates with the generation of superoxide anion radicals, 
a reactive oxygen species (ROS). Thus, we examined the effects of licorice phenolics on 
superoxide generation because ROS have been linked to various kinds of oxidative damage 

Figure 1. Licorice phenolics with protein-binding activity.

Figure 2. Licorice phenolics forming stable radicals in alkaline DMSO.

Figure 3. Licorice phenolics with inhibitory effects on oxidative enzymes.
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including human organ damage. Licorice phenolics showed suppressive effects on super-
oxide anion radical generation, both in the enzymatic and nonenzymatic systems exam-

ined. In addition to a combination of xanthine oxidase and xanthine (from the enzymatic 
system), a combination of phenazine methosulfate (PMS) and a reduced form of nicotin-
amide adenine dinucleotide hydride (NADH) (from the nonenzymatic system) were used 
for the generating system. On the other hand, detection of the superoxide anion radical was 
performed using nitroblue tetrazolium and cytochrome c [30]. Three experimental systems 
composed of the generating and the detection systems indicated that licochalcone B and 
glycyrrhisoflavone showed potent suppressing effects on superoxide anion radical genera-
tion, which are comparable to those of a specific representative flavonoid (quercetin) and a 
tannin (pedunculagin).

2.3.2. Antihuman immunodeficiency virus effects and suppressive effects on human 
immunodeficiency virus promoter activity

Further investigation of licorice phenolics revealed that licochalcone A, isolicoflavonol, glycy-
coumarin, and glycyrrhisoflavone had antiviral effects on human immunodeficiency virus 
(HIV) (Figure 4). HIV causes a “giant cell” in the infected cells OKM-3T (= OKM-1) due to 
the cytopathic effects of the virus. The aforementioned compounds had inhibitory effects on 
giant cell formation of a cell line infected with HIV [11, 30]. The mechanisms underlying these 
antiviral effects may be different from those observed for tannins [31].

Suppressive effects of licorice phenolics on HIV promoters have also been revealed. 
12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced HIV promoter activity in transfected 
Jurkat cells was suppressed by glycyrrhisoflavone (isoflavone), tetrahydroxymethoxychal-
cone, licochalcones A and B (chalcones), glycycoumarin, licopyranocoumarin (3-arylcou-
marins), and licocoumarone (2-arylbenzofuran). Although tannins also showed suppressive 
effects in this experimental system, the effects of licorice phenolics were more potent [32]. On 
the other hand, licorice phenolics did not show suppressive effects on the cytomegalovirus 
promoter activity in an analogous experimental system [32].

Figure 4. Licorice phenolics with anti-HIV effects.
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2.3.3. Effects on drug-resistant bacteria

2.3.3.1. Polyphenols are effective against methicillin-resistant Staphylococcus aureus

Based on these studies, we pursued structural studies of licorice phenolics and also investi-
gated the effectiveness of the licorice phenolics on drug-resistant bacteria. Surveillance under 
the Ministry of Health, Labour and Welfare within the Japanese government indicated that ca. 
18,000 cases caused by methicillin-resistant Staphylococcus aureus (MRSA) in 2014 was reported 
for about 480 designated hospitals in Japan [33]. Since there are limited antibiotics and drugs 
(e.g., vancomycin and linezolid) available for the infectious diseases caused by MRSA, develop-
ing new candidates as remedies is essential. Indeed, hydrolyzable tannins such as tellimagrandin 
I and corilagin (in addition to an astringent constituent (-)-epicatechin gallate in green tea leaves) 
reportedly suppress the oxacillin resistance of MRSA strains. Therefore, we investigated licorice 
phenolics as candidates for new types of antibacterial drugs. Because acute toxicity is well under-
stood for natural drug materials used in traditional medicine, low toxicity of their constituents 
is expected with some exceptions. Licorice has been widely used in traditional medicine, and its 
adverse effects (called pseudohyperaldosteronism) are ascribed to its main constituent glycyr-
rhizin. As such, its phenolic constituents could be candidates for developing novel remedies.

We examined the antibacterial effects of the phenolics isolated from licorice on four clinical 
isolates of MRSA (OM 481, OM505, OM 584, and OM 623) in addition to those of Escherichia 

coli and Pseudomonas aeruginosa. Although all of the examined phenolics did not show anti-
bacterial effects on E. coli and P. aeruginosa, several compounds showed potent or moderate 
antibacterial effects on MRSA as shown below [15]. The compounds with a minimum inhibi-
tory concentration (MIC) ≤ 32 μg/mL for the four MRSA strains are shown in Table 2. The 
following relationships were observed for both the structures and the antibacterial proper-

Subgroups Compound names (MIC) Substituents

Chalcones Licochalcone A (16 μg/mL) α,α-Dimethylallyl × 1, OH × 2

Isoflavones 8-(γ,γ-Dimethylallyl)-wighteone (8 μg/mL)
Gancaonin G (16 μg/mL)
Isowighteone (32 μg/mL)
Isoangustone A (16 μg/mL)

Prenyl × 2, OH × 3
Prenyl × 1, OH × 2
Prenyl × 1, OH × 2
Prenyl × 2, OH × 4

Isoflavanones 3′-(γ,γ-Dimethylallyl)-kievitone (8 μg/mL)
Licoisoflavanone (32 μg/mL)

Prenyl × 2, OH × 4
Dimethylpyran × 1, OH × 3

Isoflavans Glabridin (16 μg/mL)
Glyasperin C (16 μg/mL)
Glyasperin D (16 μg/mL)
Licoricidin (16 μg/mL)

Dimethylpyran × 1, OH × 2
Prenyl × 1, OH × 3
Prenyl × 1, OH × 2
Prenyl × 2, OH × 3

3-Arylcoumarins Glycycoumarin (16 μg/mL)
Licoarylcoumarin (32 μg/mL)

Prenyl × 1, OH × 3
α,α-Dimethylallyl × 1, OH × 3

2-Arylbenzofurans Licocoumarone (16 μg/mL) Prenyl × 1, OH × 3

Benzyl phenyl ketones Glicophenone (32 μg/mL)
Licoriphenone (16–32 μg/mL)

Prenyl × 1, OH × 4
Prenyl × 1, OH × 3

Table 2. Licorice phenolics effective on MRSA strains.
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ties of these compounds. All of these compounds had two or more phenolic hydroxyl groups 
and at least one prenyl (γ,γ-dimethylallyl) or equivalent (α,α-dimethylallyl or dimethylpyran) 
group. Comparisons of the anti-MRSA properties of the chalcones examined indicated the 
importance of a prenyl (or equivalent) group such as licochalcone A (MIC 16 μg/mL) > echi-
natin (MIC 64 or 128 μg/mL), licochalcone B (MIC 128 μg/mL), liquiritigenin (MIC 128 μg/
mL), and tetrahydroxymethoxychalcone (MIC >128 μg/mL). Indeed, isoflavones with two 
prenyl groups (8-(γ,γ-dimethylallyl)-wighteone [MIC 8 μg/mL] and isoangustone A [MIC 16 
μg/mL]) showed more potent anti-MRSA effects than those with one prenyl group (isowigh-
teone [MIC 32 μg/mL], glycyrrhisoflavone [MIC 32 or 64 μg/mL], and glisoflavone [MIC 64 μg/
mL]). Together with 8-(γ,γ-dimethylallyl)-wighteone, an isoflavanone with two prenyl groups, 
3′-(γ,γ-dimethylallyl)-kievitone had the most potent anti-MRSA effects (MIC 8 μg/mL) among 
the examined compounds (Figure 5). Similarly, isoflavans with prenyl or equivalent group(s) 
(i.e., glyasperins C and D, glabridin, and licoricidin) showed more potent anti-MRSA effects 
(MIC 16 μg/mL) than those without a prenyl group ((3R)-vestitol [MIC 128 μg/mL]). The role 
of the prenyl group was tied to its affinity for the bacterial cell membranes. On the other hand, 
methylation of phenolic hydroxyl (OH) groups on the same structural skeleton weakened the 
anti-MRSA properties: glycycoumarin (MIC 16 μg/mL) (1 × OMe) > glycyrin (MIC 128 μg/mL) 
(2 × OMe) > glycyrin permethyl ether (MIC >128 μg/mL) (4 × OMe). Comparing the MIC of 
glycycoumarin with that of the corresponding coumestan, glycyrol [MIC >128 μg/mL] sug-
gested that skeleton flexibility is also a factor impacting the anti-MRSA effects.

We further examined the suppressive effects of licorice phenolics with relatively potent 
anti-MRSA effects on the oxacillin resistance of the MRSA strains [15]. We compared MICs 
of oxacillin on MRSA strains with and without phenolics at half the MIC concentration or 
lower. For example, the addition of 16 μg/mL isowighteone (MIC 32 μg/mL) decreased 
oxacillin MIC to 1/8–1/4 of those without the addition (e.g., from 512 to 64 μg/mL and from 
64 to 16 μg/mL) for the four MRSA strains (Figure 6). Similarly, the addition of 8 μg/mL of 
isoangustone A (MIC 16 μg/mL) decreased oxacillin MICs to 1/4–1/2, and the addition of 16 
μg/mL of glicophenone (MIC 32 μg/mL) decreased oxacillin MIC to 1/8–1/2. Most notably, 
the addition of 8 μg/mL of licoricidin caused a decrease of oxacillin MIC to lower than 
0.5 μg/mL (lower than 1/1024–1/8). Even the addition of 4 μg/mL licoricidin decreased 
oxacillin MIC to 1/32–1/8 of those without the addition. Five of the other 6 phenolics, lico-

Figure 5. Licorice phenolics with the most potent antibacterial effect on MRSA.
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chalcone A, licochalcone B, glicoricone,  glisoflavone, and 3′-(γ,γ-dimethylallyl)-kievitone, 
also showed an analogous decreasing effect on at least two of the four MRSA strains. We 
also examined the effects of the combination of oxacillin (10 μg/mL) and licoricidin (8 μg/
mL) on the bacterial growth of MRSA OM481, and the combination showed a bacteriostatic 
effect but not a bactericidal one. We also conducted a mechanistic study on the suppressive 
effects of the oxacillin resistance. The oxacillin resistance of MRSA OM481 has been attrib-

uted to the formation of a kind of protein-binding protein (PBP), PBP-2a (PBP-2′), instead 
of PBP-2. However, this formation in MRSA OM481 was not suppressed by the presence of 
licoricidin. Therefore, the suppression of the enzymatic function of PBP-2a or the binding 
to another PBP was attributed to the mechanism. On the other hand, the affinity of the lipo-

philic prenyl group to cell membranes was also supposed to be included in the mechanism, 
because all of the effective compounds have at least one prenyl (or equivalent) group.

Since the licorice phenolics with prenyl or equivalent substituents showed potent antibacte-

rial effects on MRSA, we further investigated on the natural products with analogous struc-

tures contained in the fruits of Psoralea corylifolia, which have been known to have phenolic 
constituents with prenyl or related groups [34]. The following constituents of P. corylifolia 

showed MIC < 32 μg/mL for two MRSA strains, OM481 and OM584 (Table 3).

As shown above, the major constituent of the source material bakuchiol (meroterpene) 
together with isobavachalcone and corylifol B (chalcones) showed the most potent antibacte-

rial effects among the constituents examined (Figure 7). We confirmed the importance of the 
presence of a prenyl or related lipophilic group in the molecules, suggesting that the partici-
pation of those groups is key within the bacterial membrane. Further mechanistic studies as 
shown by Refs. [35, 36] are expected.

2.3.3.2. Polyphenols are effective against vancomycin-resistant Enterococci

We further examined the effects of phenolic constituents of licorice on vancomycin-resistant 
Enterococcus (VRE) species. Most antibiotics are ineffective against VRE, and only a few drugs 

Figure 6. Licorice phenolics with suppressing effects on oxacillin resistance of MRSA.
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Subgroups Compounds (MIC) Substituents

Isoflavones 8-(γ,γ-Dimethylallyl)-wighteone (8–16 μg/mL)
Glycyrrhisoflavone (32 μg/mL)
Isoangustone A (16 μg/mL)
7-O-Methylluteone (32 μg/mL)
Semilicoisoflavone B (32–64 μg/mL)

Prenyl × 2, OH × 3
Prenyl × 1, OH × 4
Prenyl × 2, OH × 4
Prenyl × 1, OH × 3
Dimethylpyran × 1, OH × 3

Isoflavans Glyasperin C (16 μg/mL)
Glyasperin D (32–64 μg/mL)
Licoricidin (8 μg/mL)

Prenyl × 1, OH × 3
Prenyl × 1, OH × 2
Prenyl × 2, OH × 3

Isoflavanones 3′-(γ,γ-Dimethylallyl)-kievitone  
(16 μg/mL)
Glyasperin J (32 μg/mL)

Prenyl × 2, OH × 4
Dimethylpyran × 1, prenyl × 1, OH × 3

3-Arylcoumarins Glycycoumarin (16 μg/mL)
Glycyrin (16–32 μg/mL)
Licoarylcoumarin (16 μg/mL)

Prenyl × 1, OH × 3
Prenyl × 1, OH × 2
α,α-Dimethylallyl × 1, OH × 3

Coumestans Isoglycerol (32–64 μg/mL) Dimethyldihydropyran × 1, OH × 1

Pterocarpans Demethylhomopterocarpan (32 μg/mL) OH × 1

2-Arylbenzofurans Gancaonin I (8–16 μg/mL)
Glycybenzofuran (32 μg/mL)
Licocoumarone (32 μg/mL)
4′-O-Methylglycybenzofuran (32 μg/mL)
Neoglycybenzofuran (16 μg/mL)

Prenyl × 1, OH × 2
Prenyl × 1, OH × 3
Prenyl × 1, OH × 3
Prenyl × 1, OH × 2
Prenyl × 1, OH × 3

Table 4. Licorice phenolics effective against VRE.

Subgroups Compound names (MIC) Substituents

Flavones Corylifol C (16 μg/mL) Prenyl × 1, OH × 3

Flavanones Bavachin (32 μg/mL) Prenyl × 1, OH × 2

Isoflavones Neobavaisoflavone (16 μg/mL) Prenyl × 1, OH × 2

Chalcones Corylifol B (8–16 μg/mL)
Isobavachalcone (8 μg/mL)

Prenyl × 1, OH × 4
Prenyl × 1, OH × 3

Meroterpenes Bakuchiol (8 μg/mL) Ethenyldimethyloctadienyl × 1, OH × 1

Table 3. Phenolics from Psoralea corylifolia fruits effective on MRSA.

Figure 7. Phenolics with potent antibacterial effects on MRSA isolated from Psoralea corylifolia fruits.
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such as linezolid or daptomycin can be used for VRE. Approximately 60–120 of the infected 
cases have been reported annually in Japan [37]; thus, infection of VRE in hospitals has 
become an important issue. Therefore, we have also investigated the plant constituents that 
are effective against VRE [38, 39].

The following strains of two species of VRE, E. faecium FN-1 and E. faecalis NCTC12201, were 
used for this study on licorice constituents. Various types of licorice phenolics showed anti-
bacterial effects on these two VRE species, as shown below. The compounds that showed 
antibacterial effects on VRE with an MIC ≤ 32 μg/mL were classified into skeletons of the 
compounds (Table 4) [18, 19]. The following relationships were observed for the structures 
and the antibacterial properties of these compounds. All of the compounds have prenyl or 
equivalent groups and at least one hydroxyl group. The compound that showed the most 
potent effects on VRE was licoricidin (MIC 8 μg/mL), an isoflavan that has two prenyl and 
three hydroxyl groups. Comparisons of the isoflavans identified the following order of the 
antibacterial effects: licoricidin (with two prenyl groups) > glyasperins C and D (with one pre-
nyl group). Comparisons of the compounds with the same isoflavone skeleton revealed that 
8-(γ,γ-dimethylallyl)-wighteone and isoangustone A (both had two prenyl groups) showed 
more potent antibacterial effects on VRE (MIC 8–16 μg/mL) than glycyrrhisoflavone and 
7-O-methylluteone (MIC 32 μg/mL) (both had one prenyl group). Among the 3-arylcouma-
rins, the coumestans, and the 2-arylbenzofurans, the compound with the most potent anti-
bacterial effects is gancaonin I (MIC 8–16 μg/mL), with two hydroxyl groups and a prenyl 
group (Figure 8).

The contribution of hydroxyl groups seems to be less important in the cases of VRE than in the 
case of MRSA. For example, isoglycyrol and demethylhomopterocarpan both contained one 
hydroxyl group and showed moderate effects with MIC 32–64 μg/mL. Even for glyasperin J 
trimethyl ether, which has no hydroxyl groups, an MIC of 64 μg/mL was observed for both 
of the VRE species. On the other hand, 6,8-diprenylorobol with two prenyl groups and four 
hydroxyl groups showed weak effects (MIC 128 μg/mL). Therefore, respective structural fac-
tors or some balance of lipophilicity and hydrophilicity may contribute to the antibacterial 
effects, and this should be further investigated.

Figure 8. Licorice phenolics with potent antibacterial effects on VRE.
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2.4. High-performance liquid chromatographic analysis of licorice phenolics

HPLC analysis revealed the presence of characteristic constituents depending on the original 
plant species. The Japanese Pharmacopoeia indicates that licorice used as a medicinal material 
must be derived from the origins of G. uralensis and G. glabra. Our analytical investigation on 
licorice materials from various sources indicated that the HPLC profiles could be separated 
into the following three types depending on several major constituents [21].

Type A: Using HPLC analysis, the standard materials established as G. uralensis in China were 
found to contain three relevant compounds: glycycoumarin, licopyranocoumarin, and lico-
coumarone (Figure 9). Conversely, HPLC analysis of the standard materials of G. glabra and 
G. inflata did not indicate the presence of these three compounds. All of the materials obtained 
from Japanese markets contained glycycoumarin, licopyranocoumarin, and licocoumarone, 
and several materials from Chinese markets also showed analogous HPLC patterns.

Type B: Analogously, the standard materials from G. glabra identified in China contained 
glabridin and glabrene (Figure 10), whereas these two were not observed for the standard 
materials from G. uralensis and G. inflata. The materials from Russia and Afghanistan revealed 
these two constituents, which were absent in the Japanese and Chinese market products.

Type C: The standard materials from G. inflata included licochalcones A and B (Figure 11), 
which were also present in some of the materials from Chinese markets.

These results suggest that glycycoumarin, licopyranocoumarin, and licocoumarone could be 
used as markers for G. uralensis (Type A). At the same time, glabridin and glabrene could be 
used as markers for G. glabra (Type B), and licochalcones A and B could be used as markers for 
G. inflata (Type C). However, licochalcone B was later isolated from a Japanese market sample. 

Figure 9. Characteristic phenolics observed in the extracts from G. uralensis.

Figure 10. Characteristic phenolics observed in the extracts from G. glabra.
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Furthermore, licoricidin, which was isolated from G. uralensis [15], has the same skeleton as gla-
bridin. This finding suggests that glabridin might be a common constituent of G. uralensis and G. 

glabra, an assertion that is further strengthened by the fact that glabridin was recently found from 
G. uralensis [40]. Therefore, reinvestigation of marker compounds may be required, although 
glabrene and licochalcone A can be considered markers for G. glabra and G. inflata, respectively.

We performed HPLC analysis for the evaluation of crude drug materials to ascertain their 
pharmacological effects. The simultaneous HPLC analysis of eight major constituents of an 
extract from a material of a Japanese market was performed for evaluation as an anti-VRE 
material [19]. Using HPLC instruments combined with a photodiode-array detector (DAD) 
(LC-UV) or mass spectrometer (LC-MS) [19] would also effectively characterize such crude 
drug materials. Quantitative data and comparisons of the chromatographic patterns of repre-
sentative licorice extracts, including unidentified HPLC peaks, are contributable to the evalu-
ation of the materials. In addition, thin-layer chromatography (TLC) is a very useful method 
for visualizing phenolic constituents in plant extracts without special instruments [41], 
and development of high-performance (HP)TLC technique resulting in a better resolution 
of the constituent spots contributes largely in the analysis of plant constituents [42]. High-
performance size-exclusion chromatography can be applied for estimating molecular sizes or 
molecular weight distribution of tannins [43] and also for estimating sizes of supermolecular 
complexes formed from polyphenols and proteins [26]. Gel electrophoresis is applicable for 
the analyses of polyphenol-protein complexes [44], too.

3. Conclusions

Licorice extracts contain various types of flavonoids and related compounds. In addition to 
the protein-binding properties and antioxidant effects, we examined their antiviral and anti-
bacterial properties. The findings, especially those found in the studies of antibacterial phe-
nolics in licorice using MRSA and VRE, emphasize the importance of lipophilic prenyl groups 
together with phenolic hydroxyl groups, in addition to the flexibility of their structural skel-
etons. Additional studies on these plant constituents are currently in progress [45]. Because 
naturally occurring polyphenols have structural limitations based on the biogenetic capabil-
ity of plants, further studies with the aid of synthetic chemistry are expected for clarifying 
quantitative structure-activity relationship concerning their pharmacological effects and for 
optimizing candidates of new drugs.

Figure 11. Characteristic phenolics observed in the extracts from G. inflata.
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4. Notes

The author (TH) regrets that the following errors were found: (1) The concentration 1 μg/mL 
of oxacillin in the figure legend on the effects of the combination of oxacillin and licoricidin 
from Figure 2 in Ref. [15] should read 10 μg/mL as shown in the text of Ref. [15]; (2) the 
methoxyl and the hydroxyl groups in the structure of glycyrol in Refs. [18, 19] should be at 
C1 and C3, respectively, as shown in Ref. [34], and the structure of glycycoumarin in the Refs. 
[18] and [19] should be fixed as shown in Refs. [9, 15]; (3) the subgroup name 2-aryl-3-meth-

ylbenzofuran for gancaonin I in Ref. [19] is incorrect. Because gancaonin I does not have a 
methyl group on C3, it is classified in a subgroup of 2-arylbenzofuran as shown in Table 4 

in this chapter; (4) the name “reduced form of nicotinamide adenine dinucleotide phosphate 
(NADPH)” in Ref. [30] is an error and should read “NADH.”
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