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Abstract

In this chapter, the usage of slow electromagnetic waves in several application domains
is deeply discussed. Starting from an outline of the classical Cerenkov effect, various
related topics are presented in detail, namely the generation of electromagnetic waves
by the Cerenkov effect, the Cerenkov free-electron laser, pickup and kickers in accelera-
tors, pulse compression in radar and linac, and compact components and waveguides in
the microwave region.

Keywords: slow electromagnetic waves, propagation, pulse compression, electron
beam pickup and kicker

1. Introduction

The pioneering work of Pavel Alekseyevich Cerenkov [1] reports the existence of a visible

radiation from pure liquids and solids when electrons go through the medium with a velocity

greater than that of light. The radiation, not observed until then, had characteristics that the

physical processes responsible for its production were not any of the usual ones associated

with atomic or molecular changes. During his studies Cerenkov showed that the radiation was

not fluorescent, and that it was polarized with the electric vector parallel to the direction of the

electron beam. In a later work [2], he showed that the radiation depended uniquely on the

refractive index of the medium and had the unusual property of being emitted asymmetrically.

In [3], a theoretical explanation has been given on this phenomenon which is entirely classical,

but in agreement with the qualitative observations of Cerenkov. A striking feature of this

theory is that it describes a new process for the production of radiation.

In recent years, the research interest in Cherenkov radiation has arisen due to progress in its

new applications such as biomedical imaging, photonic structures, metamaterials, and beam
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physics. These new applications require Cherenkov radiation theory of short bunches to be

extended to rather more complicated media and structures.

The effect of Cerenkov electromagnetic radiation is similar to that of a sonic boom when an

object moves faster than the speed of sound; in this case, the radiation is a shock wave set up in

the electromagnetic field.

In this chapter, we report techniques for the excitation of slow waves in guiding structures

highlighting classic and new applications, namely:

• Generation of electromagnetic waves by the Cerenkov effect;

• Cerenkov free-electron laser;

• Pickup and kickers in accelerators;

• Pulse compression in radar and linac;

• Compact components and waveguides in microwave region.

2. Outline of Cerenkov radiation

We consider a charged particle traveling at a uniform velocity in a dielectric medium and the

electromagnetic field close to the particle that polarizes the medium along its track.

In this process, the atoms are not excited by the charged particle and neither are they removed

from their bound states (ionization). It is true that there is in addition ionization, when the

impacts are sufficiently close, but the process with which we are concerned here arises from

only very small displacements by a very large number of electrons.

Now, when the particle is slow, less than the velocity of light in the considered medium, the

radiation from these displaced electrons is not observed, owing to destructive interference. If,

however, the velocity of the particle in the medium is faster than the phase velocity of light in

the medium, the waves are in phase with one another on a wavefront inclined to the direction

of the track, and a coherent electromagnetic radiation is then observed.

If a particle travels a distance AB (Figure 1) inside a dielectric medium [4], at a high velocity βc,

where c is the velocity of light in a vacuum, and we denote, as sources of spherical waves, the

points P1,P2,P3, then the resulting wave front will lie along the line BC, and the direction of

emission of the radiationwill be along the line AC, at right angles to BC. The distance the particles

travels, in a time Δt, will be AB = βcΔr; at the same time, the waves will have traveled a distance

AC = (c/n)Δtwhere n is the refractive index of the medium. From these relations, we obtain

cosθ ¼

1

βn
(1)

Eq. (1) is a fundamental relation between the velocity of the particle, the refractive index of the

medium, and the angle at which the light is emitted. This relation is known as the Cerenkov

relation.
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The quantity β is related to the kinetic energy E of the particle, and to its rest mass m, by the

equation:

E ¼ mc
2 1

ffiffiffiffiffiffiffiffiffiffi

1−β2
q −1

2

6

4

3

7

5
(2)

Two special conditions are included in Eq. (1) for limiting cases. First, there is a threshold

condition, namely when β = l/n and θ = 0. This implies a kinetic energy for the particle below

which no radiation takes place. Second, there is a maximum angle at which the light may be

emitted, when the particle is traveling at ultrarelativistic velocities. This arises when β − > 1, in

which case θmax− > cos −1ð1=nÞ.

The situation depicted in Figure 1 has been drawn in one plane. In practice, the light is emitted

over a conical surface, the axis of which coincides with that of the particle, and the semiapex

angle of which is the angle θ, which is shown in Figure 2. The polarization of the electric vector

E is always at right angles to the direction of propagation of the light, and the magnetic vector

H is always tangential to the surface of the cone, as shown in Figure 2.

Figure 1. The coherent nature of Cerenkov radiation.
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3. Cerenkov radiation in the microwave region

A charged particle of velocity v is a potential source of electromagnetic waves which has an

infinite and uniform spectrum [5]. It is well know that if it is traveling in an infinite dielectric

medium of index of refraction n(f), function of frequency f, we get an electromagnetic radiation

for all frequencies satisfying the following equation:

nðf Þv > 1 (3)

So we have conical waves at which have an angle ϑwith respect to the axis of motion for which

Eq. (1) holds.

We wonder now what would be the behavior of the electromagnetic radiation in the case when

the dielectric has a cylindrical indefinite hole of radiation d parallel to the motion. This hole is

necessary for the passage of intense beams. As first guess, if the hole is sufficiently small, it is

an irrelevant perturbation for the Cerenkov radiation. Now, we must refine the concept of

small or large hole. The particle sees the dielectric by means of its harmonic contents for those

wavelengths such that

Figure 2. Cerenkov cone of radiation.
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λ ≥ d (4)

So that Cherenkov radiation occurs only below certain frequencies (low pass filter behavior).

So that, if the radius d is of the order of centimeter, we expect this will occur at frequencies of

the order of GHz.

We understand also that radiation in the optical range is possible only if the dimensions of the

hole are of the order of microns.

If in addition, the dielectric is limited and surrounded by an infinite metallic cylinder

(Figure 3), becoming a partially loaded waveguide, we get a cutoff frequency, so the whole

system behaves as passband filter.

A quantitative analysis can be conducted by using the mode expansion of the electromagnetic

field in the waveguide matched to the Fourier expansion of the source current [6].

The configuration of this device gives an additional phenomenon, which can be exploited in

the microwave range in order to enhance the intensity of radiation. In fact, the Cherenkov

wave is trapped in the dielectric and therefore it is possible to pump power in it.

We can understand this trapping by considering the wave number in the dielectric and in the

vacuo. They must satisfy the following triangular relations:

k2x þ k2y þ k2z ¼ k20 (5)

ðkdxÞ
2 þ k2y þ k2z ¼ n2k20 (6)

From Eqs. (5) and (6), taking into account that kdx ¼ nk0 sinθ, we have

k2x ¼ ð1−n2 cos 2
θÞk20 (7)

If relation (3) holds, kx is pure imaginary. The wave is evanescent toward the vacuum. There is

no power flux in the transverse direction because the wave in the dielectric is in condition of

total reflection. The wave is trapped, because of the multiple reflections on the metallic walls

and the interface between the dielectric and the vacuum. Accordingly, there is the possibility to

increase the power flux with waves with an adequate phase relation among them when the

particle beam has a sinusoidal density modulation.

Figure 3. Cherenkov radiation in partially filled waveguide.
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4. Cerenkov free-electron laser

Laboratories around the world have realized free-electron laser (FEL) sources, emitting in

spectral regions where conventional laser sources are not easily available (e.g., UV, FIR, and

millimeter-wave). FEL facilities have been realized in the United States, Japan, China, and

Europe. The European FEL sources emit in complementary spectral regions and, altogether,

cover a wide spectral range from the UV to the millimeter wave region. The region between

150 and 1 mm is particularly attractive, when continuous tunability and high brightness at the

same time are allowed, because conventional laser sources usually do not satisfy these require-

ments. Small size, moderate cost FEL can be built at such wavelengths. There are a variety of

phenomena that can be studied in this region in a solid-state and biological samples with

Figure 4. Coupling scheme for the C-FEL (a) and the G-FEL (b). The e-beam passes above the surface of a dielectric film,

or of a metal grating, respectively, exciting TM-like surface waves.

Figure 5. FEL facility developed at the ENEA Research Center in Frascati.
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particular respect to their nonlinear response. Moreover, a FEL utilizing as a driver, a radio-

frequency (RF) accelerator (Figure 4) is a unique source capable of providing picosecond

pulses of coherent radiation at such wavelengths (Figure 5).

It is known [7] that the rate of energy exchange between flowing charges and a wave, Figure 4,

is given by the integration of the product J�E over the volume of the region of space where the

interaction occurs (Section 6).

The energy exchange will only occur between corresponding components of the electron

current density and the wave electric field. In general, the longitudinal component of the

current density due to the drift motion of the electrons will not couple to an electromagnetic

wave propagating in the free space, since the latter one has zero longitudinal electric field

component. However, in a waveguide or in a suitable loaded structure like the traveling wave

tube (TWT) TM modes can be excited, which have a longitudinal component of the electric

field. Cerenkov free-electron lasers and orotrons or grating rely on this type of coupling

scheme [7].

In Section 6, a general theory is proposed to study the coupling between an electron beam and

a hybrid waveguide.

5. Cherenkoscopy imaging

When charged particles travel through dielectric media, such as biological tissue, faster than

the speed of light, Cherenkov radiation exists.

Detection of this radiation can allow a new approach to superficial dose estimation, functional

imaging, and quality assurance for radiation therapy dosimetry. The first in vivo Cherenkov

images of a real-time Cherenkoscopy have been recently presented [8]. The imaging system

consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial

lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only

during the 3.25μs radiation bursts. Images of a tissue phantom under irradiation show that the

intensity of Cherenkov emission is directly proportional to radiation dose.

Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during

planned, Institutional Animal Care and Use Committee approved, conventional (therapeuti-

cally appropriate) irradiation. Coregistration between photography and Cherenkoscopy vali-

dated that Cherenkov photons were detected from the planned treatment region. Real-time

images correctly monitored the beam field changes corresponding to the planned dynamic

wedge movement, with accurate extent of overall beam field, and expected cold and hot

regions.

The experimental configuration is shown in Figure 6. The external beam irradiator was a

Varian Clinic 2100CD linear accelerator (LINAC, Varian Medical Systems, Palo Alto, CA). A

time-gated intensified charge coupled device (ICCD) camera was set up on a tripod to image

the entrance region of the treatment beam on tissue phantoms or tissue. The LINAC delivers

radiation in a pulsed mode and the ICCD camera was synchronized to the 3.25μs radiation

bursts, detecting Cherenkov emission effectively and rejecting most of the ambient light. This

Slow Electromagnetic Waves: Theory and New Applications
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imaging system was first tested by imaging Cherenkov emission from a slab 30304 cm3

phantom made of opaque water equivalent plastic while irradiating it with a 6 MV square

1010 cm2 2 photon beam at a dose rate of 600 monitor units per minute. Cherenkov images for

different delivered doses at dmax were acquired [8].

6. General pickup theory

The extension of stochastic cooling to SPS accelerator of CERN needs high sensitivity pickup

(PU) and kickers. To achieve this goal the author, during a period spent a CERN, introduced a

new class of pickup and kickers [9]: synchronous PU. The main concept is to use the synchro-

nism between the beam and a slow wave propagating in a structure in which the phase

velocity of the wave coincides with the beam velocity. In a metallic rectangular waveguide,

the phase velocity is always larger than the velocity of light. However, if we change the surface

impedance of two opposite walls of the guide slow waves (waves with a phase velocity lower

than the velocity of light) propagate in the inhomogeneous waveguide. We have several

possibilities to change the surface impedance. The following two solutions will be examined:

dielectric slabs and metallic corrugation.

The modes propagating within an inhomogeneous waveguide are a combination of TE and

TM modes (hybrid modes). They are classified [10] as LSE (longitudinal section electric) and

LSM (longitudinal section magnetic). The component of the fields can be derived from scalar

Hertzian potential: the electric type ПE for LSM modes and the magnetic type ПH for LSE

modes.

Figure 6. (a) The treatment plan shows incident of the beam and dynamic wedge. (b) Field view of the treatment region.

(c) Cherenkoscopy of the treatment region while irradiation progresses. (d) Cherenkoscopy overlaid on the white-light

images of the treatment field and sequence of Cherenkoscopy showing the beam field changing while a wedge is moved

into the beam. From Ref. [8].

Wave Propagation Concepts for Near-Future Telecommunication Systems116



The solution of the equation for the potential ПE or ПH is a superposition of an even and odd

solution with respect to the transverse dimension. The odd solution for П involves an even

dependence of EzðmnÞ and suggests the use as a longitudinal pickup because the hybrid mode is

excited by the beam placed in the center of the structure. On the other hand, the even solution

forП (odd for EzðmnÞ) is excited when the beam is off-center in the waveguide and this suggests

to use this solution for a transverse pickup.

6.1. The reciprocity theorem

To establish the fundamental relations between the input-output, we use a simple representa-

tion of the pickup, or kicker (Figure 7): a black box connected to the vacuum chamber where

the beam circulates along the z-axis having an output port terminated by a matched load. For a

given beam current traveling through the pickup, we want to calculate the complex voltage on

the output termination.

The PU is divided into two parts:

• Synchronous part AA′-BB′ where the phase velocity of the EM field is approximately the

same as that of the particles.

• A transition part BB′-CC′ where the EM field excited in AA′-BB′ is transformed into a wave

propagation in the output waveguide.

We assume that there is a perfect coupling that is all power flowing in the part AA′-BB′ is

transformed into power flowing into the output part. This means that no field propagates

along the beam pipe. The coupling between the beam and the transition region where there is

no synchronism is also neglected.

Figure 7. Pickup structure.
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In order to apply the reciprocity theorem, we consider the electromagnetic fields Eb and Hb

generated by the beam with a current density Jb, and the fields E and H in the PU structure

produced by another current source having a current density J.

The Lorentz reciprocity theorem states

∯
S

ðEb ·H−E ·HbÞ � n̂ds ¼ ∭
V

½E � Jb−Eb � J� dv (8)

In Eq. (8), V is the volume enclosed by the surface S, where there is interaction between the

beam and the slow wave structure, n̂ is the unity vector normal to S.

To evaluate the r.h.s. of Eq. (8) we assume that the fields E andH are generated by an ordinary

current source I0 connected to the output port. In this case, Eq. (8) reduces to

∭
V

E � Jbdv ¼ I0V (9)

where V is the voltage induced by the beam on the output termination R0.

6.1.1. Longitudinal and transverse sensitivities

To evaluate the volume integral, we describe the beam by a current line along z:

Jb ¼ Jbe
j
k0
βp
z

h i

δðx−x0Þδðy−y0Þẑ (10)

Where k0 is the propagation constant in free space, βp is the relative beam velocity, x0 and y0 are

the transverse coordinates of the beam.

Assuming that the wave excited by I0 in the structure is a pure traveling wave, of the form

Ezðx;y;zÞ ¼ Ezðx;yÞe
j
k0
βw
z

h i

(11)

βw being its phase velocity, Eq. (9) transforms into

V

Ib
¼

Ezðxo;yoÞ

Ib
L sinc k0

L

2

1

βp
−

1

βw

 !( )�

�

�

�

�

�

�

�

�

�

(12)

where L is the pickup length, Ib is the Fourier component of the beam current and sinc the

sin x/x function.

This wave carries the power PT given by

PT ¼
1

2
∬
Σ

ExH�n̂dΣ (13)

The current source I0, which generates PT, is split in two equal parts: I0=2 flows into the PU

load Ro and I0=2 in the PU itself. It follows:
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PT ¼
1

2
R0

I0
2

� �2

(14)

In the longitudinal case, the PU sensitivity (or transfer impedance) defined as S ¼ V=Ib is

obtained simply by combining Eqs. (12) and (13).

S ¼
1

2

ffiffiffiffiffiffiffiffi

R0

2PT

r

Ezðx0;y0ÞL

�

�

�

�

�

sinc k0
L

2

1

βp
−
1

βw

 !( )�

�

�

�

�

(15)

For a transverse PU, the sensitivity SΔ, for the transverse direction x, is defined as

SΔ ¼
1

Ib

∂V

∂x

�

�

�

�

x¼x0

(16)

leads to

SΔ ¼
1

2

ffiffiffiffiffiffiffiffi

R0

2PT

r

∂Ezðx;y0Þ

∂x

� �

x¼x0

L

�

�

�

�

�

sinc k0
L

2

1

βp
−
1

βw

 !( )�

�

�

�

�

(17)

We have to evaluate PT, using Eq. (14), for a given field supported by the structure. We

consider an even mode, for Ez, in the case of a longitudinal PU and an odd mode for a

transverse PU.

6.2. Kicker transfer functions

The force on a charge q, moving with the velocity v ¼ vẑ, in an electromagnetic field (E, H)

dp

dt
¼ qEðtÞqμ0v

�

ŷHxðtÞ−x̂HyðtÞ
	

(18)

Integrating along the kicker length L one obtains, in frequency domain,

Δp ¼
q

v

ðL

0

½ðEþ μ0vðHxŷ−Hyx̂Þ�e
j
k0
βp
z
dz (19)

The projection of Eq. 19 along the z-axis

Δpz ¼
q

V

ðL

0

Eze
j
k0
βp
z
dz (20)

gives the kicker transfer function in the longitudinal case.

To obtain the transverse sensitivity, the projection of Eq. (20) along the x-axis is considered

Slow Electromagnetic Waves: Theory and New Applications
http://dx.doi.org/10.5772/66672

119



Δpx ¼
q

v

ðL

0

Ex−
v

jω

∂Ez

∂x
−
∂Ex

∂z

� �� �

e
j
k0
βp
z
dz (21)

For a wave propagating along z, of the form exp j k0
βp
z

h i

, Eq. (20) gives

Δpx ¼
q

v

ðL

0

Ex 1−
βp

βw

� �

þ j
βp

k0

∂Ez

∂x

� �

e
j
k0
βp
z
dz (22)

When βp = βw , i.e., at synchronism, the first term in the integral vanishes. Eqs. (22) and (17) are

then essentially the same as well as Eqs. (13) and (8) for the longitudinal case. In conclusion,

PU sensitivity and kicker transfer function are basically the same quantities, for a given

geometry or, in other words as we can expect that kickers are essentially pickup structures

working in reverse.

In Figure 8 is presented a dielectric pickup developed a CERN from the author for the

stochastic cooling of bunched beams in the SPS accelerator.

7. Corrugated waveguide

As example of waveguide supporting slow waves, we consider the corrugated waveguide

depicted in Figure 9.

The electromagnetic field inside the waveguide, when we consider the hybrid longitudinal

section electric (LSE) mode, can be described by the Hertzian potential

Π
H ¼ x̂Pðx;yÞeγnz (23)

E ¼ −jωμ0∇ ·∇·Π
H (24)

H ¼ ∇ ·Π
H (25)

The solution of Eqs. (23)–(25) gives the field components:

Figure 8. Dielectric pickup.
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ex ¼ 0 (26)

ey ¼ −ωμ0γnPðx;yÞ (27)

ez ¼ −jωμ0

∂

∂y
Pðx;yÞ (28)

hx ¼ −
∂
2

∂y2
þ

∂
2

∂z2

� �

Pðx;yÞ (29)

hy ¼
∂
2

∂x∂y
Pðx;yÞ (30)

hz ¼ −jγn

∂

∂x
Pðx;yÞ (31)

k20 ¼ γ2
n þ k2x þ α2 (32)

Inside the corrugation, we have

Ez ¼ −jωμ0B sin β
d

2
þ s−y

� �

cos
π

a
x (33)

Hy ¼
π

a
B sin β

d

2
þ s−y

� �

sin
π

a
x (34)

Hx ¼ −βB cos β
d

2
þ s−y

� �

cos
π

a
x (35)

The dispersion equation inside the corrugation gives

k20 ¼ β2 þ k2x (36)

Eqs. (32) and (36) give

β2 ¼ γ2
n þ α2 (37)

Expression (37) for slow waves (α = jq) becomes

Figure 9. Geometry of corrugated waveguide.
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β2 ¼ γ2
n−q

2 (38)

The general solution of the potential equation is a superposition of an even and an odd

solution, with respect to (y = 0). For the even solution, we have

Pðx;yÞ ¼ A cos
nπ

a
x

� �

coshðqyÞ (39)

Imposing the boundary condition for the field (Eq. (24)) on the air-corrugation interface:

ez
d

2
;x

� �

¼ Ez
d

2
;x

� �

(40)

hx
d

2
;x

� �

¼ Hx
d

2
;x

� �

(41)

the following transcendental equation is obtained

1

α
tanα

d

2
¼

1

β
cot βs (42)

In the slow wave case (α = jq), we have

tanhq
d

2
¼

q

β
cot βs (43)

The solution of Eqs. (42) and (38) gives the dispersion equation of waveguide.

8. Waveguide pulse compression

Pulsed radars can achieve high-resolution range using pulses with a very short duration. The

maximum range for the system requires a fixed pulse repetition rate that represents a reduc-

tion of mean power unless there is an increment of the peak power. A limit to the peak power

is imposed by transmitter components, so an attractive alternative consists in the use of f.m.

pulse-compression techniques.

Passive compressors for pulse consist of a passive circuit with frequency dispersion with a

phase-modulated input pulse.

As dispersive circuit, one can use a section of metallic waveguide in which group velocities

depend on the frequency. Thus, if the input microwave pulse is frequency modulated, each

component of the pulse travels with its velocity. With a linear growing frequency, one can

obtain a situation such that all parts of the pulse simultaneously arrive at the waveguide

output.

Standard metallic waveguides are strongly dispersive near the cutoff frequency which limits

the use to low power levels with short input pulse durations. More sophisticated waveguide
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can be used for better performance. The corrugated waveguide, where it is possible to excite a

slow wave, is a good candidate.

9. Slow wave compressor

From Eq. (38), the propagation constant in the corrugated waveguide is found as

γ2
n ¼ β2 þ

12

d2
−
24

βd3
cot βs (44)

From Eq. (44), it is possible to find the group velocity

vg ¼
∂ω

∂γn

(45)

We use modulated pulse with a linear swept frequency that monotonically increasing group

velocity propagating through the waveguide. This results in pulse shortening and growth in

power amplitude if the losses are small. The maximum compression ratio is obtained at the

exit of the waveguide where all the frequency components of the pulse arrive at the same time.

The compression ratio is derived from the electromagnetic wave propagating along an isotro-

pic dispersive medium

K ¼ ΔFL
1

vg1
−

1

vg2

� �

e−δL (46)

Where νg1 and νg2 are the group velocity of the beginning and the end frequencies of the

microwave pulse, L is the length of waveguide, ΔF is the frequency band, and δ is the loss factor.

Dispersion relation, group velocity, and compression ratio of a typical slow wave waveguide

are reported in Figures 10–12.

Figure 10. Dispersion of corrugated waveguide.
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Figure 11. Group velocity of corrugated waveguide.

Figure 12. Compression ratio of corrugated waveguide.
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10. Compact components and waveguide in microwave region

A slow-wave coplanar waveguide transmission lines, combining the advantages of both copla-

nar transmission lines and microstrip lines, is reported [11] to create high-performance passive

components for millimeter wave integrating circuits. To achieve a slow wave, periodical slot-

type floating shields are used to enable a reduction in a chip area while still maintaining high

performance. Slot-type floating shields also enhance the immunity of slow-wave CPW trans-

mission lines from ac noise (Figure 13).

If the length of the periodical structure is short compared to the wavelength, each segment of

signal line can be modeled by an inductance and capacitance lumped-element equivalent

circuit, where L and C are the series inductance and the shunt capacitance per unit length,

respectively. The density R of the slot-type floating shields is defined as

R ¼ SL

SLþ SS
(47)

Consequently, the phase velocity Vp with the slow-wave effect can be expressed as

Vp ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LCðnRÞ
p (48)

where n represents the increased ratio in capacitance as a result of coupling to the slot-type

shields. The slow-wave phenomenon can be explained in Eq. (48), which shows that the phase

velocity is decelerated by a factor of
ffiffiffiffiffiffi

nR
p

.

11. Conclusions

The chapter reports some applications of the interaction of slow electromagnetic waves with

dielectric or corrugated media. The thread through the chapter is the possibility of generating

electromagnetic waves from traveling particles in the considered medium or, vice versa, the

Figure 13. Slow-wave coplanar waveguide transmission line with slot-type floating shields. (a) Schematic view and (b)

electric field distribution from 3-D EM simulation. From Ref. [11].
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possibility to influence the motion of particles. An extension of this approach is the possibility

of compressing the fields for applications in radars and linacs or to think about microwave

devices and antennas of reduced dimensions for integration in the active circuits.
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