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Abstract

Radiation therapy (RT) is one of the major treatment modalities that are used in breast 
cancer treatment, and depending on the chest-wall anatomy, RT fields have to be cus-
tomized. Techniques used in planning have been evolving since last two decades from 
two dimensional (2D) to three-dimensional (3D), while intensity modulated radiother-
apy (IMRT), volumetric modulated arc therapy (VMAT) and even proton therapy have 
been an option in daily approach. In addition, technological hardware and software 
advances in delivery and planning systems, total treatment duration of breast RT have 
been shortened in last decades along with recent hypofractionated radiotherapy schemes 
or emerging partial-breast irradiation protocols. The other attractive approach—acceler-
ated partial breast irradiation (APBI) could be a reasonable option for highly selected 
subpopulation of early-stage breast cancer patients out of a clinical trial. Long-term 
follow-up results have emerged heart and coronary sparing with maximum safety and 
efficacy. The most important advance could be named as cardiac sparing—deep breath-
hold approach—in all the modern technique improvement.  Although most advanced 
techniques in management of breast cancer have not been verified to increase survival, 
we suggest recommending resource stratified advanced in order to provide best technical 
and clinical care in this long-term survivor candidates.

Keywords: radiotherapy, IMRT, VMAT, breath hold

1. Introduction

Radiation therapy (RT) has become an essential component of breast cancer treatment, and 

depending on the anatomic structure of the region to be irradiated (breast, chest wall or regional 

lymphatics), RT can be technically challenging and varying from one patient to another.

Breast RT has evolved from two-dimensional (2D) to three-dimensional (3D), while intensity 
modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and even proton 
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therapy have been options to discuss with our patients in daily practice. Besides technological 
hardware and software advances in delivery and planning systems, total treatment duration 
of breast RT has been changing dramatically in last decades along with recent hypofraction-

ated radiotherapy schemes or emerging partial-breast irradiation protocols. As modern RT 
allowed us a successive reduction in the treatment-related complications such as fibrosis and 
long-term cardiac toxicity in addition to improving the locoregional control rates, rationale of 
as low as possible is appealing to focus more on heart and coronary sparing with four-dimen-

sional (4D) breath-hold techniques. Modern radiotherapy techniques and fundamentals need 

to be implemented in routine clinical care with maximum safety and efficacy in order to maxi-
mize the benefit of locoregional treatment and to minimize the risks of late complications.

We aim to summarize the advances of modern radiotherapy in breast cancer through clinical 
approaches and routine treatment indications based on present knowledge and evidence-
based recommendations.

2. Simulation and immobilization techniques

2.1. Supine

Radiotherapy has been widely used as a part of breast cancer in partial or total mastectomy. 

Radiotherapy technique can be difficult and variable depending on the anatomy of the patient 
such as chest-wall concavity, depth of axilla. The first step of radiation treatment is to perform 
CT simulation to obtain a reproducible detailed anatomy for planning conformal or intensity-

modulated radiotherapy with using heart-sparing techniques such as breath hold or heart 

blocking, especially for left breast cancer patients. Adjuvant therapy for breast cancer starts 
early 4–6 weeks after surgery or after chemotherapy and was delivered with 6 or 18 MV pho-

tons using usually wedged tangent fields, or field and field, 3DCRT and IMRT at 1.8–2.67 cGy 
doses ranged from 40 to 60 Gy.

Treatment fields are a composite of adjacent whole breast or chest wall, mammaria interna, 
supraclavicular and axillary fields. The main purpose of the breast radiotherapy fields is to 
avoid hot and cold dose regions between contiguous fields while minimizing the dose of 
organs at risk such as lung and heart. RT fields have to be modified according to patient’s chest 
wall and breast anatomy due to its irregular surface, which can cause dose inhomogeneity. 

At the same time, setup has to be easily applicable and reproducible. Immobilization devices, 
specially designed for breast cancer treatments, are commercially widely available and are 
frequently used in daily practice. The best known devices are listed as follows: inclined plane, 
breast boards, Board-wing butterfly Board, Vac-fix bag-Vacuum Cradle Bed and alpha cradle. 
The most common, preferred and basic set-up has been performed by a breast board having 
an inclined plane with an arm support, in supine position. The head of the patient has been 

pointed to the opposite side, and arm has been abducted (90°–120°) and externally rotated. 
Skin folds in supraclavicular field and soft tissue of arm has to be modified if required. The 
patient is positioned on her back on a stable breast board, and board is angled to ensure the 
sternum—chest parallel to table. This angle can be adjusted according to clinical needs, but 
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larger angels can cause increased dose in lungs in patients requiring the supraclavicular field. 
The border between the chest wall and supraclavicular field is usually placed at the bottom 
of clavicular head. Radiopaque wires must be used to define incisions and breast borders [1].

Supine positioning has been used for breast cancer patient’s alignment for several decades 
over the world. It provides patient comfort and position reproducibility for the whole treat-
ment period, while ensures better axillary coverage in comparison to prone positioning. When 
setup errors in supine position were studied with three-dimensional cone-beam computed 

tomography (CBCT), the average magnitude of error was found to be generally less than 5 
mm across a number of studies [2]. Sethi et al. compared both prone and supine positioning 

for 3DCRT and IMRT plans; traditional three- or four-field planning has inadequate nodal 
coverage, especially performed in prone setup compared to supine (29 and 42% vs. 50 and 
59%), and this disadvantage has been altered by CT-based planning and coverage varied from 
92 to 97% depending on IMRT or 3DCRT independent from positioning [3].

2.2. Prone

Rarely, in case of a very large pendulous breast, lateral decubitus or prone position can help. 
Prone position has been proposed for especially large breasted patient as this volume can 
cause dose homogeneity due to hot spots and also overlapping breast tissue could create an 
auto bolus effect, which can abbreviate skin toxicity [4, 5]. While prone setup has also been 

proposed to increase the lung and heart tissue sparing, the literature has conflicting results in 
terms of normal tissue dose reduction [6, 7]. Wurschmidt et al. stated that the prone position 

increasing incidental dose of LAD coronary artery to a mean dose of 33.5 Gy in comparison 
with supine setup with a mean dose of 25.6 Gy in left whole breast irradiation, without any 
significant differences in the average mean dose to heart between two different setups [6]. In 

contrast, Kirby et al. also documented prone positioning to reduce cardiac doses in almost 

64% of 30 patients treated whole breast irradiation with a median reduction in LAD mean = 6.2 
Gy and 24% of the 30 cases treated with partial breast irradiation (median reduction in LAD 
max = 29.3 Gy) in addition to reducing ipsilateral-lung (mean) in all whole breast and 61 of 65 
partial irradiation cases, and chest wall V (50 Gy) in all whole breast irradiation cases. They 
concluded that prone positioning is likely to benefit left-breast-affected women of larger breast 
volume both for whole or partial breast irradiation, and right-breast-affected women regard-

less of breast volume [7]. Despite the improvement of dose homogeneity, prevention of hot 
spot regions and lower lung and heart doses, prone position for whole breast irradiation has 

not been applied in routine clinical practice. Prone setup has been considered to be more prob-

lematic to reproduce than supine position and to be less precise. In Varga et al.’s randomized 
study, the range of displacement was greater in prone position as well as the prone relocation 

precision presented an expansion over time without any correlation to any patient-related 
parameters [8]. Patient treatment-related comfort and inadequate target coverage of tumors 
especially extending down to chest wall were also mentioned as main concerns [9, 10].

Main concern about prone position as setup errors and reproducibility in comparison with 

the international standard supine position in women undergoing whole-breast radiotherapy 

was justified by Kirby et al., matching chest wall and clips on cone-beam CT (CBCT) images 
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acquired prior to the fractions 1, 4, 7, 8, 11 and 14. Setup errors were greater using prone tech-

nique than for supine technique as follows: systematic errors: 1.3–1.9 mm (supine) and 3.1–4.3 
mm (prone) (p = 0.02) and random errors: 2.6–3.2 mm (supine) and 3.8–5.4 mm (prone) (p = 
0.02). Even patient-comfort-scores and treatment times were similar, calculated CTV-PTV mar-

gins were calculated to be larger for prone (12–16 mm) than for supine treatment (10 mm) [11].

2.3. Lateral decubitus position

Lateral decubitus position is a side-lying setup especially generated for large-sized and pen-

dulous breasted patients. In experienced clinics, this setup has been used especially for only 
breast irradiated cases as lymphatic coverage could be problematic in this position. Campana 
et al. presented their isocentric lateral decubitus technique at the Institute Curie where almost 

500 patients were treated at 50 Gy whole beast radiotherapy [12]. Thin carbon fiber supports 
and special patient positioning devices have been developed especially for this technique. Their 
techniques have been proven to show good homogeneity of the dose in breast treatment volume, 
with extremely low dose to the underlying lung and heart [12]. Despite applicable single center 

results, this technique has not been spread out and accepted for the routine clinical work flow.

2.4. Thermoplastic bra

Use of thermoplastic bra has been investigated with the objective of minimizing organ at 
risk doses, as it moves the breast widely lateral. It has been found to provide shallower beam 
arrangement for left breast (medial: 288°–315° with bra vs. 302°–325° without bra) and to 
decrease lung doses by 30.6% without any dedicated selection criteria for daily clinical use 
[13]. The main concern on thermoplastic mask users related with the skin dose and possible 
associated clinical exacerbation of side effects turned out to be not significant.

3. Planning and delivery methods

3.1. 3DCRT

Conventional two dimensional wedge compensators have been used to shape the treatment 
fields for many decades. After integration of CT and more sophisticated planning programs 
in radiotherapy clinical routine, target location can be defined precisely and dose distribu-

tion can be obtained more homogenously. The target and critical structure volumes for three-
dimensional conformal radiotherapy (3DCRT) have been defined according to ICRU reports 50 
and 62 [14]. A major challenge to improve dose uniformity is the irregular shape and size of the 
breast while minimizing the risk of treatment-related complications. In recent years, conformal 
RT, particularly, forward or inverse intensity modulated RT (IMRT), which is a more advanced 
and sophisticated form of 3DCRT, is becoming popular for breast irradiation as it provides 
reduced inhomogeneity and/or better normal tissue sparing [15]. Additionally, lately accessible 
image-guided RT (IGRT) can significantly increase precision of conformal treatment delivery.

3DCRT is based on patient’s simulation CT with pertinent anatomical data for target defini-
tion as the first and most important step of this advanced planning system. Target delineation 
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and consistency of target volumes have been accepted as priority, RTOG and EORTC have 
published breast cancer-specific atlases easily reachable on websites for uniformity among 
interobservers [16, 17] (http://www.rtog.org/CoreLab/ContouringAtlases/BreastCancerAtlas.
aspx). In addition to atlas-based contouring publications, quantification of the multi-institu-

tional, multi-observer variability of target and organ-at-risk (OAR) delineation for breast can-

cer radiotherapy and its dosimetric impacts has been an attractive topic. Li et al. assembled 
nine radiation oncologists specializing in breast RT from eight institutions to individually 
delineate lumpectomy cavity, boost planning target volume, breast, supraclavicular, axillary 
and internal mammary nodes, chest wall and OARs (e.g., heart, lung) on the same CT images 
of three demonstrative patients with breast cancer [18]. The variability in contouring the tar-

gets and OARs was as low as 10% while the volume variations had standard deviations up to 
60%. These inter-observer differences can easily end up in significant changes in dosimetry 
in for breast radiotherapy planning. Further work is warranted to obtain a systematic con-

sensus, especially in the era of IMRT/IGRT, which could be used and easily adapted by the 
institutions. In similar standardization attempts to minimize the variation in substructure 
delineation for organs at risk, a detailed cardiac CT atlas have been developed by University 
of Michigan [19]. If patient has supraclavicular positive lymph node present, additional dose 
to supraclavicular region will bring into the question of brachial plexus dose. Brachial plexus 
contouring is mostly thought as a part of head and neck or lung IMRT, so breast radiation 
oncologists are encouraged to follow contouring guidelines for the brachial plexus (BP) using 
anatomically validated cadaver data set and head and neck case series [20, 21]. An average 
margin of 4.7 mm around the anatomically validated brachial plexus contour is instructed to 
cover and compensate all the anatomic variations of brachial plexus [20].

Many irradiation techniques such as single isocentric 3D conformal whole breast irradiation, 

prone position technique, four or five field irradiation technique for peripheral lymphatic were 
described and widely used all over the world and details will not be given as it is not in the 
scope of this chapter. For each CT data (2–5-mm slices), the dosimetric plans were created by 
appropriately adjusting the beam apertures such as beam angle, collimator angle, couch angle, 

wedges, energies, weights and multi-leaf collimators by virtual simulation through digitally 
reconstructed radiographs (DRR); therefore, the planning goals on coverage and OAR sparing 
can be achieved. Beam apertures were selected to fully cover the targets for each set of con-

tours. Photon beams of 6 and/or high energy 15–18 MV were used to irradiate breasts, chest 
wall and boost PTVs tangentially, supraclavicular and axillary nodes. Electron beams with or 
without a combination of 6 MV photons were used for internal mammary nodes.

As the treatment plan evaluation starts with all axial slices to be checked whether bearing hot 
or cold regions or not. Next step is the evaluation of dose volume histograms (DVH), which 
is a graphic expression of dose distribution volume in target or OAR. The planning goals 
are recommended to cover the breast or chest wall with ≥95% with maximal point dose but 
≤110%, while OAR doses are limited with contralateral breast ≤3.30 Gy, ≤20% of ipsilateral 
lung ≥20%, ≤5% of heart ≥20% for left-sided breast cancer and 0% of heart ≥25% for right-sided 
breast patients, and mean heart dose ≤5 Gy [22].

Transition from 2D to 3D has been promising under dosimetric studies revealing an improve-

ment. When conventional 2D and mono-isocentric 3D techniques were dosimetrically compared  
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in terms of coverage and normal tissue doses, Guillert et al. stated that homogeneity, regional 
lymphatic irradiation and heart and spinal cord protection were better with the mono-isocen-

tric 3D technique [23]. Leite et al. dosimetrically assessed incidental irradiation of the inter-

nal mammary lymph nodes (IMLNs) with using opposed tangential fields with 45–50.4 Gy 
conventional two-dimensional (2D) or 3DCRT techniques in their cohort of 80 breast cancer 
patients and documented the mean dose to the IMLNs as 7.93 Gy in the 2D cohort in compari-
son with 20.64 Gy in the 3D cohort [24]. Even all dosimetric parameters were higher in 3DCRT 
plans, still we need to improve coverage. These results from the studies analyzed above have 
proven that more attempts have to be taken to cover target volume without increasing dose 
to normal organs.

3.2. IMRT

Breast has been one of the complex radiation delivery areas due to the complex anatomi-
cal geometry and differences of depth of regional nodal areas. Two-dimensional and 3DCRT 
have been used safely and with high local control rates, but homogeneity and normal tis-

sue doses have been the two problematic topics until advanced radiation delivery techniques 
based on image guidance has been established. IMRT can be designed as a forward or inverse 
planning technique [25]. The forward planning is more common in clinical practice, uses simi-

lar beam angles without old school wedges, but manually created field in fields decreasing 
the hot high dose regions to optimize the dose distribution [26, 27]. Forward planning follows 

optimization algorithms to provide dose homogeneity and coverage [27].

The use of IMRT in breast cancer radiotherapy has been investigated in couple of fundamen-

tal prospective clinical studies [28, 29]. First was the Royal Marsden study comparing 2D 

wedge based, 3D and IMRT techniques in terms of acute and long-term side effects. The pri-
mary end point was objective change in breast appearance based on serial photographs of 306 
patients obtained before treatment, at 1-, 2- and 5-year follow-up. The conventional treatment 
arm patients were 1.7 times more likely to have a change in breast appearance compared to 
IMRT arm patients, suggesting that minimization of dose inhomogeneity in the breast reduces 

late adverse effects, whereas there were no significant differences on the patient reported 
breast discomfort and quality of life between 2SD and IMRT arms [28]. Second randomized 

trial by the Canadian group has supported the findings and concluded that 4–7 segmented 
IMRT decreased moist desquamation rates which was also related with the breast cup size 

[30]. Third prospective trial from Cambridge has focused selective forward IMRT planning 
on the patients if inhomogeneity exceeds 107% with standard planning and concluded that 
improved plan parameters with forward IMRT were obtained [29]. Dosimetrically reduction 

in surface doses using IMRT technique has been shown to be almost 20%, and this has been 
turned to be a reduction in skin acute side effects from 52 to 39% in clinical experience without 
compromising local regional control success [26]. All pertinent studies have supported the 
value of early breast cancer treatment with IMRT providing lesser acute skin toxicities, which 
would effect long-term cosmetics [31, 32].

The next question was whether more homogenous dose distribution will turn into survival 
advantage compared to conventional 2D or 3DCRT. Yang et al. retrospectively reviewed 234 
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patients treated for stage 0–III breast cancer (conventional:131 vs. IMRT: 103) and documented 
locoregional failure-free survival and disease-free survival at 8 years as 96.7 vs. 97.6% and 91.2 
vs. 93.1% for conventional RT and IMRT, respectively [33], while less frequent acute skin tox-

icity by IMRT did not translate into a significant decrease in late toxicity rates in follow-up.

IMRT can add benefit when hypofractionation is prescribed. Hardee et al. compared toxicity 
of patients treated according to the Canadian hypofractionation regimen (40 patients with 

3DCRT and 57 with IMRT) [34] and demonstrated IMRT reducing the maximum dose (Dmax 
median, 109.96% for 3DCRT vs. 107.28% for IMRT; p < 0.0001) and improving median dose 
homogeneity in comparison with 3D-CRT. Besides, grade 2 dermatitis decreased from 13% in 
the 3DCRT group to 2% in the IMRT group, and decreasing rates of acute pruritus and grade 
2–3 sub-acute hyperpigmentation were noted in IMRT group [34].

The use of more sophisticated treatment techniques will be more critical especially for organ 

at risk—lung and heart—doses in more complex treatment fields for locally advanced breast 
cancer patients. A dosimetric study by Lohr et al. evaluated the effect of IMRT on cardiac 
doses compared to 3DCRT at their CT data set of 14 patients [35]. Plans were generated by 
two conformal beam angles chosen to minimize heart and lung doses for 3DCRT and nine 

beams (0°–335°, 25° apart) over left hemi-thorax in a coplanar fashion for IMRT [35], where 

IMRT had provided superior dosimetric parameters for maximal dose to heart, V30 and V40 
of heart and left ventricle except mean and median dose of heart which increased from 6.8 to 
8.5 Gy and from 1.02 to 2.77 Gy, respectively. In the light of these results, Lohr et al. stated that 
mean risk of excess cardiac mortality significantly decreased from 6.03 to 0.25% according to 
their relative seriality model [35].

Conventional irradiation of regional nodal irradiation was known to deliver inadequate 
homogeneity and to be usually a challenge depending on the patients’ geometry, location 
close to the normal organs and patient-dependent variation of depth [3, 36]. In a dosimet-

ric study, three field, four field, CT-based 3D and forward IMRT treatment options were 
compared and superior nodal coverage has been achieved by both CT-based 3D and IMRT 
techniques, despite the fact that contralateral breast and ipsilateral lung V5 and V20 doses 
increased by 3–4 field IMRT [3]. The recent rotational form of IMRT, volumetric arc therapy, 
has also been studied dosimetrically for locally advanced breast cancer patients requiring 
regional lymph node irradiation with conflicting results [37, 38]. Ma et al. replanned left-

sided, locally advanced patients with 3DCRT-field in field, five field IMRT (2 tangents, 2 ante-

rior and 1 supraclavicular field) and two coplanar partial arc VMAT to a prescription dose 
of 50 Gy [37], the planning goals were defined as follows: PTV:[ D95 (95% of PTV receiv-

ing a prescription dose or higher) = 50 Gy, V47.5 Gy ≥95%, V53.5 Gy ≤5%]; heart: [Dmean 
≤10 Gy, V10Gy ≤20%,V20Gy ≤15%]; left lung: [Dmean ≤15 Gy, V10Gy ≤30%, V20Gy ≤20%, 
V30Gy ≤10%]; right breast:[Dmax ≤3 Gy]; spinal cord: [Dmax ≤45 Gy]; left humeral head: 
[Dmean ≤50 Gy]. Both 5F-IMRT and 2P-VMAT plans demonstrated comparable PTV cover-

age (V95%), hotspot areas (V110%) and conformity (all p > 0.05) which were significantly 
superior to 3DCRT-FinF, and 5F-IMRT plans provided significantly less heart and left lung 
dose than 2P-VMAT (all p < 0.05); therefore, Ma et al. specified that 5F-IMRT has dosimetrical 
advantages compared with the other two techniques in comprehensive breast irradiation for 
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left-sided breast cancer based on balance between PTV coverage and normal organ sparing 
[37]. Tyran et al. evaluated arc therapy and a forward-planned multi-segment technique with 
a mono-isocenter technique for left-sided breast treatment, involving lymph node irradia-

tion including the internal mammary chain [38]. VMAT improved PTV coverage and dose 
homogeneity but distributed low doses to a larger volume which blurred the clinical benefits. 
In another preclinic study revealed that VMAT achieved similar PTV coverage and sparing 
of organs at risk, with fewer monitor units and shorter delivery time than cIMRT with con-

ventional modified wide-tangent (MWT) techniques for locoregional radiotherapy of breast 
cancer [39]. Based on the conflicting dosimetric studies and without any published clinical 
study, no general recommendations for VMAT could be drawn for its use in daily clinical 
practice, leaving the decision to the institutional decision based on the planner’s experience, 
expectations and required quality assurance.

Especially forward IMRT, using tangential bream angels and creating multiple segment, can be 

accepted as standard approach in clinical practice taking into the considerations of acute toxic-

ity [40, 41]. The published literature of forward or inverse IMRT use in clinical practice of breast 
cancer, has mainly focusing on toxicities and have short follow-up time. In Canadian guidelines, 

based on the similar local control and overall survival results, IMRT has not been recommended 
over tangential radiotherapy field design [42]. Of course, the cost of using new technologies needs 
to considered as if they only reduce toxicity profile due to treatment. In USA, systematic analysis 
of Medicare reimbursement data during 2012–2015, for prostate, anal, gynecological and head-
neck cancers, declared that IMRT has been more costly than 3DCRT approximately 12.834$ per 
patients and this cost can go up to 19.113$ and breast IMRT has been named as the least expen-

sive IMRT depending on the less complex structure compared to a head and neck workload [43].

3.3. Tomotherapy

Lately, an innovative method of IMRT has been developed as a combination of helical IMRT 
with CT image guidance at the University of Wisconsin-Madison named as TomoTherapy® 
Hi•Art® [44]. A small megavoltage X-ray source was built in an analogous to that of a CT 
X-ray source, and the geometry provided the chance to deliver treatment applying the 360° 
rotation of the CT gantry and the couch moving the patient slowly through the center of the 
ring, with the mounted megavoltage linear accelerator around the gantry ring in a spiral fash-

ion to direct the beam at a slightly different plane at the each rotation of gantry. TomoTherapy 
Hi•Art can also accomplish a quick CT scan before each treatment starts for image guidance 
in the era of modern linear accelerators [45].

TomoTherapy has been used to treat other sites than breast such as prostate, brain, head and 

neck, lung, prostate, etc. [44], and when considered for breast cancer treatment, the format of 

helical tomotherapy sound unsuitable based on the use of all gantry angles delivering low 
doses to areas such as contralateral lung and breast in comparison with conventional standard 
tangents field design which would only deliver a scatter dose to these organs. Starting point 
of clinical experience of helical tomotherapy for breast cancer has been a treatment of com-

plicated case scenarios such as bilateral breast cancer to be irradiated for the bilateral breasts/

chest wall and regional nodes. Kaidar-Person et al. reviewed nine-cased treated for breast and 

Breast Cancer - From Biology to Medicine276



regional nodal irradiation with Helical tomotherapy in their institute in 5 years of period [46]. 

The average lung V20, lung V5 and heart mean dose was 29%, 66% and 20 G, respectively. 
Clinical significant acute toxicity was observed such as dysphagia (5/9), fatigue (4/9), nausea 
and weight loss (1/9) and skin desquamation (9/9) [46]. Goddu et al. also estimated the prac-

ticability of using helical tomotherapy for locally advanced left-sided breast cancer in a dosi-
metric planning study on 10 CT data sets comparing a multifield three-dimensional technique 
with the tomotherapy treatment planning for 50.4 Gy dose [47] and found tomotherapy to 

increase the minimal dose to the planning target volume and improve the dose homogeneity. 
While decreasing the mean percentage of the left lung volume receiving 20 Gy in the tomo-

therapy plans decreased from 32.6% to 17.6 ± 3.5%, while increasing lower dose levels as V5 
from 25 to46%. The same observation was present for heart such tomotherapy decreased V35 
Gy from 5.6 to 2.2% with an increase from 7.5 to 12.2 Gy for mean heart dose levels [47]. These 

dosimetric studies confirmed that tomotherapy plans provided better dose conformity and 
homogeneity than three-dimensional radiotherapy, while the disadvantage of tomotherapy 
seems to be low dose bath and higher lower dose parameters for the normal tissue bearing an 

unpredictable effect for the long-term effects. In a case presentation from Institue Curie, com-

parison of 3DCRT dorsal decubitus and 3DCRT lateral isocentric decubitus with tomotherapy 

plan for T2N0M0 breast cancer patient revealed that tomotherapy plan has been preferred as 
it could deliver optimal coverage to the planning target volumes while also providing toler-

able doses to the patient’s heart and lungs [48].

The use of the tomotherapy unit in fixed gantry positions with the beam intensity modu-

lated by the micro collimators as the patient is moved through a stationary gantry could 
be the best approach in breast cancer treatment. This design can limit the low dose bath 

effect and created an almost a tangential approach. This form of tomotherapy has been used 
by O’Donnell and they present their case solutions for bilateral disease, left breast irradia-

tion, pectus excavatum, prominent contralateral prosthesis and internal mammary chain 
 disease [49]. Their planning results with a more limited number and angle of beams than 

standard helical tomotherapy technique results reassured better conformity of treatment 
with improved coverage of the planning target volume, including regional nodes, without 
field junction problems [49].

The major two important concerns in tomotherapy similar to IMRT and VMAT are time-
consuming planning and quality assurance than standard breast irradiation and increasing 

low dose ‘bath’ as a major concern on late oncogenesis. Published comparative studies of 
conformal radiotherapy and IMRT have revealed generally better target volume coverage 
and organ-at-risk dose reductions and worse risk of secondary cancer induction based on 
increased out-of-field leakage radiation with higher number of fields and used monitor units 
in IMRT plans; the overall estimation of lifetime attributable risk of the radiation-induced can-

cer risk was lower with 3DCRT than with IMRT or VMAT [50, 51]. Comparison of five treat-
ment modalities including tomotherapy, 3D conformal radiotherapy, field in field, IMRT and 
VMAT in breast cancer patients, tomotherapy plans provided better dose homogeneity in the 
target volume, as IMRT and VMAT plans created better dose coverage and dose conformity; 
the V20Gy of the ipsilateral lung was the lowest in the single isocentric IMRT plan, followed 
by the 3–4 arc VMAT, 3D-CRT, TOMO, and Field in field plans, and the V10Gy was the highest 
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for the VMAT plan among the five modalities [52]. Keeping in mind that lifetime attributable 
risk of secondary cancers depends on organ's distance from the primary beam and the used 
modality, risk of secondary malignancies expected in the ipsilateral lung, thyroid, contralat-
eral lung and contralateral breast were found to be the highest for the VMAT plans, followed 
by the IMRT plans [34], and remarkably, the risk of the Tomotherapy was comparable to or 
lower than those of the 3DCRT and Field in field plans [52]. This study clarified one of the 
major concerns of tomotherapy and can reflect more common use of tomotherapy in breast 
cancer treatment.

3.4. Proton therapy

Proton radiation is a particle radiation which has a capability of depositing therapeutic radia-

tion at a fixed point with sparing of tissues beyond the target. Although proton therapy is 
prescribed in fractions similar to photons, its radiobiological effect rate is higher than (1.1) 
photons [53]. The use of protons in treatment has been evaluated primarily for tumors requir-

ing high doses or located in close proximity to critical structures such as prostate cancer, 
brain tumors and childhood cancer. Despite dosimetric advantages, extensive cost of equip-

ment and maintenance has been defined as an important barrier fact for protons to become 
widespread in clinical use. Nowadays, 61 centers are operating over the world, and in 2020, 
the estimated number of proportional proton radiotherapy centers will be 91 [54]. Clinically, 

proton has limited use in breast cancer, although it has an exclusive capability to archive 
full coverage of the breast or chest wall with a rapid fall-off of dose beyond the target which 
would be a great contribution for acute and late cardiopulmonary toxicities. Hence, greater 
data were present for accelerated partial breast irradiation (APBI) with longer follow-up.

Galland-Girodet et al. compared photon-based and proton-based APBI in phase 1 study and 
7 year ipsilateral breast recurrence rate 11 vs. 4%, respectively. The physician assessment 
of overall cosmesis was good or excellent for 62% of proton patients, compared with 94% 
for photon patients depending on more skin toxicities such as telangiectasia, pigmentation 
changes, fibrosis and patchy atrophy [55]. Loma Linda Medical center has the largest proton-

based APBI experience including 100 patients treated with 40 Gy (RBE) in 10 daily fractions, 
with patient and physician reported cosmesis, tumor recurrence and dermatitis rates of 90, 

3 and62% at 5 years, respectively [56]. Proton-based APBI, therefore, is accepted as a non-
inferior treatment option for early-stage breast cancer patients.

There are few single-center case series that presented the use of proton for treating peripheral 

lymphatics, especially for locally advanced breast cancer with short follow-up periods. In a 
dosimetric comparison of proton in combination with 3DCRT to 3DCRT (photon + electron) 

and IMRT, proton have improved coverage and has decreased dose exposure to normal tissue 
adjacent to target [57]. First clinical report from Massachusetts General Hospital consists for 
12 locally advanced breast cancer and they based their prospective trial on a dosimetric com-

parison of 11 patients plans with protons, partially wide tangent photon fields (PWTF) and 
photon/electron (P/E) fields. Proton therapy achieved superior coverage with a more homoge-

neous plan compared to PWTF and P/E fields, also considerable cardiac and pulmonary spar-

ing was achieved with proton therapy as compared to PWTF and P/E [58]. They afterwards 
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reported feasibility of proton delivery of post-mastectomy proton radiation to a dose of 50.4 Gy 
[relative biological effectiveness (RBE)] to the chest wall and 45–50.4 Gy (RBE) to the regional 
lymphatics with or without reconstruction. With maximum grade 2 skin toxicity (75%) and no 
radiation pneumonitis reported, proton RT for post-mastectomy RT was found to be feasible 

and well-tolerated. They noted that mean heart dose was as low as 0.44 Gy and this was the 
strongest argument for using protons for extensive chest-wall irradiation.

The second report by Memorial Sloan Kettering, including 30 patients, supported the positive 
results of early toxicity and normal tissue sparing shown by the previous literature [59]. They 

have used uniform scanning beams with anterior orientation for delivery. Supraclavicular 
field and chest-wall field were matched anteriorly, a set of beams with same orientation has 
been shifted 1-cm superior/inferiorly for feathering to minimize hot spots. Similar to previ-
ous report, mean heart dose was 1 Gy (RBE) and grade 2 skin toxicity rate was 71.4%, also 
29% of the patient experienced moist desquamation [59]. Uniform scanning proton therapy 

provides100% dose at the skin without using a bolus for post-mastectomy patients. This effect 
depends on the technique, selective skin sparing can be obtained by pencil beam scanning 
with proximal range modulation advantage.

University of Florida recently published a prospective pilot study including 18 women (stage 
IIA-IIIB, 10 patients with proton therapy, 8 patients with proton-photon combination) requir-

ing comprehensive breast radiation [60]. Proton therapy was shown to improve target cover-

age for the internal mammary nodes and level 2 axilla while median cardiac V5 was 0.6% with 
PT and 16.3% with conventional radiation (p < 0.0001). Within median 20-month follow-up, 
only grade 3 toxicity developed was dermatitis in four patients (22%) [60].

The most important advantage of proton treatment was almost none ‘low dose bath’ dose 
compared to IMRT techniques as high integral doses of heart, lung and coronary arteries 

could be associated with increased long-term complications and secondary cancers for espe-

cially young population. This philosophy behind using proton therapy in breast cancer treat-

ment has been an attractive research area.

Another repeatedly cited concern concerning about the use of proton radiation is cost. 
Although the dosimetry serves for advantage dose distribution and superior normal organ 
sparing compared to standard RT, clearly more long-term and superior clinical results are 

also warranted to rationalize the higher cost of proton therapy. Lundkvist et al., accomplished 
a cost analysis demonstrating that proton therapy could be cost-effective if main aim is pri-
marily heart sparing [61]. As a conclusion, proton radiotherapy dose distribution of radiation 
to chest wall/breast and regional lymphatics has been proven to provide excellent coverage 
with improved sparing of adjacent normal structures but until the cost of proton therapy 
decreases, we have to select eligible patients carefully.

3.5. Hypofractionation

Conventionally, radiation treatment after breast surgery has prescribed to the whole breast 
with total doses of 45–50 Gy delivered in 1.8- to 2-Gy daily fractions, and in many cases fol-
lowed by an additional 10- to 15-Gy boost dose to the tumor bed, for a total of 5–6 weeks of 
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daily treatment. The cost and travel distance to radiotherapy centers for multiple weeks are 
the most known barriers to the administration of radiotherapy. One of the solution was using 
increased daily fractions to lessen the total treatment time. Radiobiologic studies have pro-

posed that breast cancer cells have a alpha-beta ratio which is similar to late reacting normal 
irradiated tissues [62] and the Royal Marsden Hospital/Gloucestershine Oncology Center trial 
based on the alpha-beta ratio of almost 4 Gy aiming equivalent tumor control with shorter 
hypofractionated schedules to a lower total dose randomized 1410 women with invasive 
breast cancer to receive 50 Gy radiotherapy given in 25 fractions, 39 Gy given in 13 fractions, 
or 42.9 Gy given in 13 fractions, all given over 5 weeks [63, 64]. After a median follow-up of 9.7 
years, the risk of ipsilateral tumor relapse after 10 years was 12.1% in the 50 Gy group, 14.8% 
in the 39 Gy group, and 9.6% in the 42.9 Gy group [64]. Hypofractionation schemes were 
confirmed to be safe, effective and encouraged shorter course for early-stage breast cancer 
patients without compromising local recurrence or survival end points.

Hypofractionated regimens of irradiation to the whole breast have been studied by Canadian 
and English radiation oncology groups. Initially, Canadian trial enrolled 1234 women with 
invasive, lymph node-negative breast cancer treated by lumpectomy with negative pathologic 
margins and small to moderate breast size (breast separation ≤ 25 cm) to randomize to receive 
hypofractionated whole breast irradiation of 42.5 Gy in 16 fractions over 22 days versus stan-

dard whole breast irradiation of 50 Gy in 25 fractions over 35 days [65]. Acute toxicity was 
recorded similar between the arms, with only grade 2 or 3 radiation skin toxicity observed in 3% 
of patients in each arm. Additionally, long-term outcomes also were comparable between treat-
ment schemas, the 10-year risk of local recurrence was 6.2% in the hypofractionated arm and 
6.7% in the standard arm, as well as the rate of good or excellent cosmesis was 69.8% in the hypo-

fractionated arm and 71.3% in the standard arm [65]. The following supporting hypofraction-

ation randomized trial presented by START Trialists’ Group-START-A enrolled 1410 patients to 
either standard fractionated whole breast irradiation or hypofractionated schedules of 42.9 or 39 

Gy in 13 fractions over 5 weeks [66, 67]. Disease-free survival and overall survival were found 
to be similar in all arms except more moderate or marked skin toxicities were recorded at 39 Gy 
such as breast induration, telangiectasia and breast edema [66, 67]. The START B trial random-

ized 50 Gy in 25 fractions over 5 weeks versus 40 Gy in 15 fractions over 3 weeks in 2215 women 
(pT1-3a pN0-1 M0), and after a median follow-up of 6.0 years, reported lower local-regional 
tumor relapse (2.2 vs. 3.3%) and also lower rates of late adverse effects by photographic and 
patient assessments at 5 years in the accelerated hypofractionated arm [68]. Combining these 

START trials have suggested that use of 40 Gy in 15 fractions schema with fewer fractions of 
larger dose per fraction is at least as safe and effective as the historical standard regimen (50 Gy 
in 25 fractions) for women after primary surgery for early breast cancer [68].

An unplanned subgroup analysis of Ontario study proposed that the hypofractionated regi-
men was less effective in patients with high-grade tumors, having 10 years of cumulative 
recurrence incidence of 4.7% for standard RT and 15.6% for the hypofractionated RT with high-
grade tumors [65]. In contrast, START A and B studies did not demonstrate a significant out-
come measure respective to grade [67]. The proportion of patients with high grade tumors were 

19, 28% and 23% in the Canadian, START A and START B trials implying insufficient numbers 
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for appropriate conclusions as well as not calculated for a proper hypothesis. Therefore, the 

American Society for Radiation Oncology (ASTRO) task force could not reach a strict con-

clusion for comfortably advising use of HF-WBI for women with high-grade tumors until 
other studies clarified the outcome [69]. Bane et al. reexamined molecular and pathological 
features of 989 patients whose tumor blocks were present and checked thoroughly the associa-

tion between tumor classifications and local recurrence rates [70]. The 10-year cumulative inci-
dence was 4.5% for luminal A and basal-like, 7.9% for luminal B and 16.9% for HER-2 enriched 
tumors (p < 0.01); albeit tumor grade, molecular subtype or hypoxia did not predict any cor-

relation between local recurrence and hypofractionation. Accordingly, hypofractionated radio-

therapy is now considered appropriate regimens as a first treatment option for all grades and 
molecular subtypes of breast cancer; ASTRO published an evidence-based guideline for the use 
of hypofractionation and whom to prescribe in clinical practice [69]. Mainly, the routine suit-

able group for hypofractionation was defined as follows: age older than 50 years, stage T1–T2, 
no use of chemotherapy and central axis dose of 93–107%. The recommended schedules were 
42.5 Gy in 16 fractions (Canadian trail), 41.6 Gy in 16 fractions over 5 weeks (START A), 40 Gy 
in 15 fractions over 3 weeks (START B). As the clinical approach spread all over the radiation 
oncology world, the suitable group criteria’s expanded and nowadays this scheme is suitable 
for all ductal carcinoma in situ or T1–T2 invasive ductal carcinoma tumors with N0 status 
above 40-year old without any restriction. In case of regional lymph node irradiation, the lit-
erature has low toxicity rates in retrospective analysis regarding brachial plexopathy with the 
use of hypofractionation.

There is an increasing attention to more intensified hypofractionation in the treatment of breast 
cancer which has ground for randomized UK FAST Trial, published in 2001 with first results 
[71]. They have compared 50 Gy in 25 fractions, 30 Gy in 5 fractions or 28.5 Gy in 5 fractions, all 
over 5 weeks, and based on adverse effects in the breast with 3-year median follow-up, 28.5 Gy 
in 5 fractions was found to be comparable to 50 Gy in 25 fractions and was significantly better 
than ultra-short schema 30 Gy in 5 fractions [71]. Further studies are ongoing to build upon 

these findings including questions for assessing the values of concomitant boost with IMRT.

3.6. Accelerated partial breast radiotherapy

The role of partial breast irradiation (PBI) has been based on the knowledge that whole breast 
radiotherapy does not appear to prevent the development of new primary cancer in elsewhere 
localization in breast other than primary tumor quadrant being true recurrences. Pathological 
studies have examined specimens, and it revealed that residual tumor is detected in 15 mm 
or less in more than 90% of the cases [72]. PBI is the limited volume irradiation of breast tis-

sue covering just around the tumor bed with a margin. PBI delivers a larger fraction dose in 
shorter total treatment time to reduce RT waiting period. Today, this technique can be applied 

by either intracavitary brachytherapy or MammoSite, interstitial brachytherapy, intra-opera-

tive techniques using electrons or X-rays at 50 kVp or external beam radiotherapy.

In order to select proper patients for these modalities, three different groups have been 
described where only minor differences were present between the set criteria’s. American 
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Society of Therapeutic Radiation Oncology (ASTRO) recommendations are divided into 
three categories labeled as ‘suitable’ [≥60 years, tumor size ≤2 cm, pN0(i+/i−), no LVSI, inva-

sive ductal carcinoma (IDC), margin (−), unifocal], ‘cautionary’ [50–59 years old, tumor size 
2.1−3.0 cm, limited/focal LVSI, invasive lobular carcinoma (IlC), close margin (<2 mm), uni-
focal, DCIS ≤3 cm] ‘unsuitable’ [≤50 years, tumor size ≥3 cm, DCIS ≥3 cm, positive margin, 
multifocal, LVSI (+), ≥pN1] groups. American Society of Breast Surgeons (ASBS) has defined 
as age 45-year old or older for invasive cancer, age 50 years or older for DCIS, invasive carci-
noma or ductal carcinoma in situ, Total tumor size less than or equal to 3 cm in size, negative 
microscopic surgical margins, pN0 [73]. American Brachytherapy Society (ABS) APBI crite-

ria’s based on a review of clinical and pathologic factors by the clinician [age (≥50 years old), 
tumor size (≤3 cm), all invasive subtypes and ductal carcinoma in situ, surgical margins (neg-

ative), LVSI (not present) and nodal status (negative)] [74]. To clarify the patient selecting for 

APBI depending on the clinicopathological features, a nomogram detecting the locoregional 
recurrence in patients treated with accelerated partial-breast irradiation has been developed. 
The nomogram was established on the results of a total of 2000 breasts (1990 women) treated 
with APBI at William Beaumont Hospital (n = 551) and in the American Society of Breast 
Surgeons MammoSite Registry Trial (n = 1449). Almost all APBI types were prescribed (mul-
tiplanar interstitial catheters, 98; balloon-based brachytherapy, 1689; and three-dimensional 
conformal radiation therapy, 213). Univariate analysis found that age <50 years, pre-/peri-
menopausal status, close/positive margins, estrogen receptor negativity and high grade were 
associated with a higher frequency of LRR [75].

Interstitial brachytherapy is the first technique used to treat only a partial amount of breast 
tissue. At that time, electron beam therapy was not available, so boosts were delivered to tumor 
bed using low dose rate (LDR) interstitial brachytherapy. With the advent of high-energy lin-

ear accelerators, electron beam boosts for the most part replaced interstitial brachytherapy 

with better dose homogeneity and improved overall cosmesis parallel to the experience [76]. 

To date, numerous single-arm and some randomized studies have been published examining 
multi-catheter interstitial brachytherapy [77–80]. Commonly, these studies registered patients 

with early-stage low-risk invasive and in situ carcinoma of, T1 or T2, with some allowing up 
to three positive axillary lymph nodes (N1) with negative surgical margins. Interstitial cath-

eters were placed with a free-hand technique or a breast template with the placed surgical 

clips between 4 and 8 weeks after surgery. Earlier studies tend to use LDR or pulsed dose rate 
(PDR) sources, but the majority of the more recent series have been using 192Iridium (192Ir) 
high dose rate (HDR) brachytherapy. Generally, the target volume has been defined as the 
tumor bed plus 1–2 cm, 45–50 Gy with LDR and 30–36 Gy (using twice daily fractionation) 
with HDR. Local recurrence rates were ranged form0 to 8.9% [77, 79–81]. Usually, the rates of 

recurrence were low except the Guy’s Hospital experience which stated an ipsilateral breast 
tumor recurrence rate of 18% [82]. GEC-ESTRO published 5-year follow-up results of ran-

domized trial comparing interstisyel brachytherapy to whole breast radiotherapy for patients 

aged 40 years or more, small T1-2N0-miM0 (less than 3 cm) with negative margins and no 
lympho-vascular invasion (LVI) and excluded women with multifocal tumors. This trial has 
been conducted in 16 different centers in Europe. Planning and dose limits were as follows: 
The maximum skin dose less than 70% of the prescribed dose, the dose nonuniformity ratio 
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(V100/V150) below 0.35, 100% of the prescribed dose covered at least 90% of the target volume 
(coverage index ≥0.9). APBI was delivered a total dose of 32.0 Gy in eight fractions (8 × 4.0 Gy) 
or 30.3 Gy in seven fractions (7 × 4.3 Gy), with fractionation twice a day, was used for HDR 
brachytherapy. A total dose of 50 Gy with pulses of 0.60–60.80 Gy/h (one pulse per h, 24 h/day) 
was given by PDR brachytherapy. Analysis of 1184 patients with low-risk invasive and ductal 
carcinoma in situ treated with breast-conserving surgery has demonstrated that the cumula-

tive incidence of local recurrence was 1.44% with APBI and 0.92% with whole-breast irradia-

tion. The five-year risk of grade 2–3 late side-effects to the skin was 3.2% with APBI versus 5.7% 
with whole-breast irradiation, and grade 3 fibrosis at 5 years was noted as 0.2% with whole-
breast irradiation and 0% with APBI. Polgar et al., randomized 258 pT1N0-1miM0, grade 1 or 
2; T1N0-N1miM0, grade 1 or 2 patients with invasive breast cancer (unifocal tumors, tumor 
size less than 20 mm, clinically or pathologically N0, or single microscopic nodal metastasis) 

after wide local excision of tumor and negative pathological margins (greater than 2 mm and 
less than 2.0 mm) to receive either 50 Gy whole-breast irradiation (n = 130), APBI with multi-
catheter HDR brachytherapy (n = 88), or APBI with electron beam irradiation (n = 40). The local 
recurrence at 10 years was 5.9% after APBI and 5.1% with whole-breast irradiation (p = 0.767) 
after median follow-up of 10.2 years. Excellent-to-good cosmetic results were 81% with APBI 
and 63% with whole-breast irradiation (p < 0.01) [77]. The literature has confirming results 
showing that the overall cosmesis scores were good to excellent for the majority of the patients 
with low rates of late complications [77, 80, 83]. Recently, phase 2 study of NRG Oncology/
Radiation Therapy Oncology Group 9517 published 10-year rates of oncological outcome mea-

sures of accelerated partial breast irradiation using multi-catheter brachytherapy including 98 
stage I/II unifocal breast cancer patients (tumor size <3 cm, negative surgical margins and 0–3 
positive axillary nodes without extracapsular extension). High dose rate group received 34 
Gy in 10 twice-daily fractions over 5 days and low dose rate (LDR) brachytherapy had 45 Gy 
in 3.5–5 days. Only five regional recurrences were defined. The 10-year disease-free survival, 
overall survival and contralateral breast event rates were 69.8, 78.0 and 4.2%, respectively [84]. 

Despite the encouraging results of the literature and long years’ experience, interstitial brachy-

therapy stayed limited to selected institutes owing to the requirements of dedicated team, 

experience, skills and specific equipment.

External-beam XRT is the other option for APBI administration with an advantage of nonin-

vasive nature, widespread availability of required resources, and knowledge of final pathol-
ogy before the treatment planning. External APBI is most frequently administered in a 38.5-Gy 
regimen divided into 10 fractions given twice per day for 5 days. Rodríguez et al. reported on 
the 5-year outcomes of 102 patients with features of pT1-2pN0M0 invasive ductal carcinoma, 
tumor size 3 cm or less, negative margins and grade 1 or 2 histology randomized to receive 
whole breast irradiation (48 Gy/with or without boost) using three-dimensional conformal 
external beam radiation therapy (37.5 Gy in 3.75 Gy per fraction) or APBI [85]. Beam weights 
were manually optimized to cover the PTV by the 95% isodose line while maintaining a hot 
spot of <105%. For imaging, portal images of each beam and an orthogonal (anteroposterior) 
images were obtained for the first and second fractions. At a median 5 years of follow-up, 
aside from no local recurrences, APBI also reduced acute side effects and radiation doses to 
healthy tissues compared with WBI. Physician assessment showed that >75% of patients in 
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the APBI arm had excellent or good cosmesis similar to whole breast group, and these out-
comes has not changed at the follow-up [85].

An interim analysis of the RAPID (randomized trial of APBI) trial was important in terms 
of cosmetic results in which 1108 patients (invasive ductal carcinoma or ductal carcinoma in 
situ with tumors <3 cm, negative margins and no involved axillary nodes) were randomized 
to either 3D external beam APBI or WBRT. RAPID trial used 3DCRT in 38.5 Gy/10 fractions 
over 5–8 days (with a minimum 6 h gap between fractions given on the same day) and two 
fractionation schemas for WBRT: 50 Gy/25 fractions or 42.5 Gy/16 fractions. Baseline post-
treatment nurse assessment for adverse cosmesis was 19% in the APBI arm and 17% in the 
WBRT arm and at the third year evaluation, these rates were increased in APBI arm to 29% 
and remains stable −17% for WBRT [86]. The worsening cosmetic results have been shown 
previously reported by single institute reports of Michigan University and Tufts University. 
Despite the good cosmetic outcome results in the non-randomized, multicenter studies, exter-

nal beam-based APBI has been used with caution in practice [87–90]. The National Surgical 

Adjuvant Breast and Bowel Project (NSABP) B-39/Radiation Therapy Oncology Group 
(RTOG) 0413 trial that randomized 3000 patients to WBXRT or partial breast irradiation (PBI) 
finished patient recruiting but will be completed at April 2020. As most of the patients on the 
non-WBXRT arm have received 3D-CRT, the results will help to enlighten the cosmetic results 
and routine use of external beam as an option [91].

Catheter-based radiation therapy (brachytherapy) has been performed with MammoSite™ 

(Hologic, Marlborough, MA, USA) as the first balloon-based catheter and following with sin-

gle and multi-lumen catheters Contura®, and SAVI™, in historical order. These catheters can 
be found in different sizes and shapes. All placement for insertion shared the same protocols 
where placement can be performed at either at the time of lumpectomy or as a postponed 

procedure up to 2–6 weeks after operation. Ultrasound guidance is the key device to detect 
the seroma and guide the catheter insertion along the longest axis diameter of the cavity. The 
device can be inserted through the surgical scar or a separate incision pathway could be cho-

sen depending on Ultrasound guidance or the cavity evaluation CT of the patients that was 
obtained at radiation oncology clinic before placement. This cavity evaluation CT also serves 
for detecting proper size of the catheter. If the APBI decision was already given before surgery, 
a ‘placer’ can be put in the cavity and the balloon placer is then inflated with sterile saline to a 
diameter of 4.0–5.0 as it is described above and after evaluating the final pathology, it can be 
replaced by the selected size of the catheter. After insertion, a new CT scan is then obtained to 
assess the conformance of the balloon to the cavity and the presence of air or fluid gaps. A ratio 
of air or fluid in the cavity to balloon surface of less than 10% is usually acceptable, and also 
just for single lumen catheters a balloon-skin distance equal or greater than 5 mm is warranted. 
The lumpectomy cavity is then delineated and expanded by 1 cm to define the PTV. The most 
commonly prescribed dose is 3.4 Gy BID to a total of 34 Gy. Recommended dose constraints 
and contouring recommendations are given in Table 1. It is recommended that the placement 

and the position of the catheter has to be checked before each treatment.

MammoSite is the first developed balloon-based single-lumen device and major disadvan-

tage is the minimum distance of skin required from skin to cavity which is about 7 mm. After 
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new developments, MammoSite also changed its single lumen form and a multi-lumen cath-

eter released similar to Contura and SAVI.

Contura™ (SenoRx, Inc. Aliso Viejo, CA, USA) is a similar balloon catheter that has multiple 
catheters within the balloon and also comes in different sizes to fit the cavity. The multiple 
catheters offer optimization of the plan to that better normal tissue and skin sparing meaning 
that skin cavity distance has no more importance for patient selection, allow more precise 

Contouring

-Excision cavity Outlined based on either visualization on CT, or if placed, 

contouring around the surgical clips

Clinical target volume CTV) CTV = Excision cavity + 15 mm

CTV limited to 5 mm from the skin surface and by the 

posterior breast tissue (chest wall and pectoralis muscles are 

not to be included)

PTV PTV = CTV + 10 mm

PTV is used to generate the beam aperture with an 
additional margin for penumbra

PTV_EVAL PTV_EVAL = PTV—anything outside the ipsilateral breast, 
the first 5 mm of tissue under the skin (in order to remove 
most of the buildup region), and any PTV expansion 
beyond the posterior extent of breast tissue (chest wall, 
pectoralis muscle, and lung)

Normal tissue Skin

Thyroid

Ipsilateral lung

Contralateral lung

Heart

Dose volume histogram
Acceptable criteria’s:

-Dose volume histogram analysis of target coverage will 
confirm ≥90% of the prescribed dose covering ≥90% of the 
PTV_EVAL

-The actual volume of tissue receiving 150% (V150) and 
200% (V200) of the prescribed dose will be limited to ≤70 cc 
and ≤20 cc, respectively.

-Critical normal tissue DVHs within 5% specified value 
(uninvolved normal breast: ideally, <60% of the whole 
breast reference volume should receive ≥50% of the 
prescribed dose.)

-Dose delivered twice a day for a total of 10 treatments 
over a period of 5–10 days
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treatment planning. The other advantage of this catheter is the vacuum ports which helps to 
remove fluid and air if needed.

The SAVI™ (Cianna Medical, Inc., Aliso Viejo, CA, USA) device has also multi-catheter (6, 
8 or 10) body in an elliptic shape. The catheter body of the device does not have a balloon 
around the catheters and can be opened and closed like an umbrella which helps fit eas-

ily the fat tissue of the cavity. As it locked in the lumpectomy cavity, the rotation and the 
problems with the delivery will be ruled out. ClearPath™ (Renata Medical, Irvine, CA, USA) 
is a single entry multi-catheter device which allows both HDR- and LDR-based APBI treat-
ment. If the patient carries Ir125 seeds placed in ClearPath device, they have to wear a fully 

Unacceptable: -Dose volume analysis of the target volume confirms 
<90% of the prescribed dose and/or <90% coverage of the 
PTV_EVAL

-Critical normal structure DVH exceeds 5% of the specified 
value (uninvolved normal breast: ideally, <60% of the 
whole breast reference volume uninvolved normal breast: 
ideally, <60% of the whole breast reference volume should 
receive ≥50% of the prescribed dose and <35% of the whole 
breast reference volume should receive the prescribed 
dose)

Normal tissue • Contralateral breast: The contralateral breast reference 
volume, contoured using the same methods described 
for the ipsilateral breast reference volume, should 
receive <3% of the prescribed dose to any point

• Ipsilateral lung: <15% of the lung can receive 30% of 
the prescribed dose

• Contralateral lung: <15% of the lung can receive 5% of 
the prescribed dose

• Heart (right-sided lesions): <5% of the heart should 
receive 5% of the prescribed dose

• Heart (left-sided lesions): The volume of the heart 
receiving 5% of the prescribed dose (V5) should be less 
than the 40%

• Thyroid: maximum point dose of 3% of the prescribed 
dose. Should receive ≥50% of the prescribed dose.)

• The maximum skin dose at any point is ≤145% of 
prescription dose, assuring that the skin dose does 
not exceed acceptable limits the maximum allowable 
skin dose is kept below 100% of the prescription. If 
the balloon-skin distance is 5–7 mm, up to 145% of the 
prescribed dose is also acceptable

Table 1. Recommendations for APBI contouring and DVH evaluation based on RTOG NSABP PROTOCOL B-39 [91].
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shielded bra during the low dose rate APBI treatment. Axxent® (Sunnyvale, CA, USA) is 
a novel electronic brachytherapy system that is developed to simplify the brachytherapy 
technique. In its form, there is an iridium seed-based single catheter balloon, also it does not 

require a high dose rate afterloader unit or a shielded vault and can be turned on and off such 
that it can be used in the office setting [92]. The balloon is radiolucent to improve visibility 
on breast radiographs and CT images. In a dosimetric evaluation, electronic brachytherapy 
plans were stated as providing comparable target coverage, increased high-dose regions, and 
a significantly reduced dose to the ipsilateral breast and lungs as well as the heart compared 
with the iridium-192 treatment plans [93]. Also, the intersocietal Electronic Xoft Intersocietal 
Brachytherapy Trial (EXIBT) registry recruited 400 patients and at 1-year follow-up demon-

strated that breast infection occurred in two (2.9%) patients, and no tumor recurrences were 
reported. Cosmetic outcomes were excellent or good in 83.9–100% of evaluable patients at 1, 
6 months and 1 year [94].

The MammoSite Registry of the American Society of Breast Surgeons has the biggest num-

ber of patients with this device with a median follow of 63.1 months. The registry data had 
1449 patients with a five-year actuarial IBTR rate is 3.8% and axillary recurrence rate is 0.6%. 
Excellent/good cosmetic results at 60, 72 and 84 months were as follows: 91.3, 90.5 and 90.6%. 
The overall rates of fat necrosis, symptomatic seroma and infections remained low at 2.5, 13.4 
and 9.6% with few late toxicity events beyond 2 years. These results have been found to be 
comparable to the rates for whole breast irradiation and other forms of APBI. Mann et al. 
retrospectively examined the long-term results of 111 patients treated with MammoSite APBI 
and revealed that the incidence of ipsilateral breast tumor recurrence was 2.7%. The incidence 
of ipsilateral axilla nodal recurrence was low as well (1.8%). Excellent to good cosmesis rate 
was 98.1% of the patients. The cosmetic results were found to be paralleled to the mean value 
of maximum skin dose: excellent, good and fair cosmesis were 88.9, 92.7 and 109.5% of the 
prescription dose, respectively [95]. These results also confirmed by Northwest University 
prospective MammoSite study (n:33), which noted that local recurrence is 100%, and cosmetic 
results were good to excellent in 94% of the patients [96]. Gitt et al. used MammoSite brachy-

therapy as a boost (15 Gy in 2.5-Gy fractions) after whole breast radiotherapy for carefully 
selected early-stage pT1-2, pN0-1, M0 disease 107 patients were treated with breast-conserving 
therapy and adjuvant radiotherapy with MammoSite followed by WBI (median = 50.4 Gy). 
In a short follow-up period of 21 months, no ipsilateral breast-tumor recurrences have been 
observed with an acceptable toxicity profile of 28% asymptomatic and 10% symptomatic 
seroma in 90 days after treatment [97]. Another retrospective long-term single institute (N:157) 
results confirmed that rate of ipsilateral breast recurrence was low as 2.5% at a median follow-
up time of 5.5 years (range 0–10.0 years). Good to excellent cosmetic outcomes were achieved 
in 93.4% of patients and proved that skin dose >100% significantly projected the development 
of telangiectasia (50 vs. 14%, p < 0.0001) [98].

In Mayo clinic, a prospective protocol for completing all locoregional treatment (surgery 
and APBI) within 10 days with acceptable complication rates and cosmesis. Intraoperative 
multi-lumen strut-based device was placed for 123 women [age 50 years or older with clini-
cal T1 estrogen receptor positive (ER+) sentinel lymph node (SLN)-negative invasive ductal 
cancer or pure ductal carcinoma in situ]. Analyzing the procedure, 110 (90%) of these patient 
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underwent intraoperative catheter placement, whereas 13 did not due to intraoperative pathol-
ogy findings. Prescribed radiotherapy was completed within 5 days at 109 APBI patients (99%), 
for all patients, this duration was 9 days with 6% 30-day complication rate. The local recur-

rence rate was 1.8% (two patients), and excellent or good cosmesis was achieved in 88% of 
patients [99]. Evaluating early toxicity in a prospective manner in 132 patients treated with 
strut-adjusted volume implant (SAVI) for early-stage breast cancer, SAVI has been observed as 
a safe treatment option with one acute and three late skin infections (two were grade 3), besides 
grade 1 or 2 late toxicities of hyperpigmentation (44%), telangiectasia (0.8%), seroma (9%), fat 
necrosis (5%), and fibrosis (12%). Crude local recurrence rate was 4% at a median follow-up 
time of 20 months [100]. It has to be noted that the literature studying new catheters except 
MammoSite are mostly presenting early results for feasibility and toxicity profile. Wobb et al. 
recently documented late side effects of 1034 patients treated with brachytherapy-based APBI 
(interstitial 40%, applicator-based 60%) and whole breast irradiation using intensity modulated 
radiotherapy [101], and stated that though brachytherapy-based APBI was associated with 
higher rates of ≥grade 2 seroma formation (14.4 vs. 2.9%, p < 0.001), telangiectasia (12.3 vs. 
2.1%, p = 0.002) and symptomatic fat necrosis (10.2 vs. 3.6%, p < 0.001), there was no difference 
between rates of fair or poor cosmesis [101].

The use of partial irradiation in the treatment of ductal carcinoma in situ was tested in a prospec-

tive multicenter trial consisting 41 patients (42 breasts) with the eligibility criteria’s of a diagnosis 
of DCIS confirmed by core needle biopsy, unicentric disease _<3 cm in size by mammogram, and 
an estimated life expectancy of >5 years [102], where the mean tumor size was 0.82 cm with com-

edo necrosis in 21.4%, and estrogen receptor positivity was 52.4%. Abbott et al. documented four 
patients (9.8%) developing an IBTR (all DCIS) outside the treatment field with a 3.2 years mean 
time of recurrence, and the actuarial recurrence rate at 5 years of 11.3%. It has to be noted that all 
patients with recurrence had at least one normal mammogram after treatment and before recur-

rence. Even all the recurrences were DCIS and occurred outside of the treatment field, prospec-

tive randomized trials have to waited before recommending routine use of APBI for DCIS [102].

In a meta-analysis of nine randomized trials comparing APBI vs. whole breast radiotherapy, 
the overall mortality was 4.9% and as no difference was observed in the proportion of breast 
cancer-related deaths, both non-breast cancer mortality with a difference of 1.1% (p = 0.023) 
and total mortality with a difference of 1.3% (p = 0.05) were found to be significantly lower 
in PBI than WBI cohorts which encourages PBI in selected patients with a 25% reduction in 
five-year non-breast cancer and overall mortality in comparison with WBI [103]. The most 

criticized study in APBI practice was the population-based retrospective analyses by Smith et 
al. based on Medicare billing codes rather than actual clinical outcomes defining the rate of 
mastectomy after APBI or whole breast radiotherapy [104], which analyzed 6952 breast cancer 
patients treated with brachytherapy and 85,783 with whole breast radiotherapy over 67-year 
old. Mastectomy was required in more women treated with brachytherapy (3.95%) than WBI 
(2.18%), and though five-year overall survival was similar on both group 87.66% with brachy-

therapy vs. 87.04% WBI, brachytherapy was shown to be linked with more frequent infectious 
(16.20 vs. 10.33%) and noninfectious (16.25 vs. 9.00%) postoperative complications such as 
breast pain (14.55 vs. 11.92%), fat necrosis (8.26 vs. 4.05%) and rib fracture (4.53 vs. 3.62%; p ≤ 
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0.01 for all) [104]. These rates contradicted with the ones by Wobb et al. with mastectomy rates 

due to local recurrence (3.1% for WBI–IMRT and 1.2% for APBI, p = 0.06), or other reasons (0.8 
and 0.6%, p = 0.60) [101]. In another series by Mann et al., the salvage mastectomy rate was 
2.7% for patient treated with APBI which is not as high in Medicare data [95]. Although sin-

gle institute results favored APBI, Medicare-based data slowed down the use of APBI which 
nowadays is recommended mainly in prospective protocols.

Intraoperative radiotherapy is the delivery of a single fraction of radiotherapy at the time of 
surgery directed to only tumor cavity. This can help to reduce long treatment duration for 
patient; but in today’s practice, it is still expensive due to additional staffing, workload and 
specific equipment requirements. The available methods of delivering IORT are low-energy 
X-ray systems, electron beam radiation therapy and high dose rate afterloaders.

The Intrabeam® device (Carl Zeiss, Oberkochen, Germany) is a low-energy X-ray IORT device 
that has solid and rounded applicators in different sizes. After the lumpectomy is performed, 
Tungsten-impregnated sheets are used to shield the wound, and afterwards, applicator fixing 
in the tumor cavity is placed. A 20-Gy one-time dose is delivered at the surface of the applica-

tor decreasing to a dose of 5 Gy at a depth of 1 cm from the cavity. Treatment time varies from 
20 to 40 min. Shielding is essential to reduce radiation scatter, operation room walls will often 
provide sufficient shielding for the low-energy X-rays but measure environmental radiation 
dose rates around the theatre is essential.

There are three commercially available mobile linear accelerators, which can deliver elec-

tron beam radiation therapy the Novac7® (Hitesys S.p.A., Aprilia, Latina, Italy), the Liac® 
(Sordina, Padova, Italy) and the Mobetron® (IntraOP Medical Inc, Sunnyvale, CA USA). Both 
Novac7® and Liac® have been used in a phase-III trial, the ELIOT trial. The irradiation pro-

cedure is easily completed in 2 min, and the delivered dose is 21 Gy with the depth of 90% 
isodose ranging from 13 (3 MeV) to 24 mm (9 MeV). The breast tissue is mobilized over a lead/
aluminum shield placed posteriorly to protect the chest wall and viscera. By means of these 
systems are delivering electrons, non-shielded operating rooms can be used but the team has 
to leave the operation room while the radiation is delivered.

High dose rate (HDR) afterloader (Mick Radio-Nuclear Instruments, Inc., Mount Vernon, 
NY, USA) within a dedicated shielded operating facility (Brachytherapy Unit) was assessed 
by Memorial Sloan—Kettering Cancer Centre. Treatment is delivered with HDR to the 
tumor bed using an iridium 192 (192Ir) source connected to a quadrangular silastic template 
applicator named Harrison-Anderson-Mick (H.A.M.®). A dose of 18 Gy was used as a stan-

dard approach. At 5 years (median follow-up 68 months), local recurrence of 7% reported by 
this techniques but has a limited use due to the high cost and the need of special shielded 

operating room.

Several single institution studies have been present in the literature on the feasibility and 
effectiveness of IORT, but only two phase-III trials have been published, the targeted 
intraoperative radiotherapy-alone (TARGIT-A) trial and the electron intraoperative treat-
ment (ELIOT) trial with results at a medium follow-up of 2.4 and 5.8 years, respectively. 
TARGIT-A is an international cohort of 3451 patients who were randomized to either whole 
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breast radiotherapy (40 to 56 Gy ± 10 to 16 Gy boost) or Intrabeam®, with a single 20 Gy 
fraction prescribed to the surface of the applicator. All clinical T1–T2 ≤3.5 cm, N0–1 inva-

sive breast cancer patients were eligible if they were aged 45 years or older and suitable for 
wide local excision for invasive ductal carcinoma that was unifocal on conventional examina-

tion and imaging [105]. After the pathological evaluation, if the patients had adverse patho-

logic features including LCIS, lymphovascular space invasion, positive nodal status or other 
parameters defined at each center, postoperative WBI was added, and the APBI was counted 
as the boost. At a median follow-up of 2 years and 5 months, local recurrence rate was 3.3% 
in the APBI group and 1.3% in the WBI group (p = 0.04). Interestingly, even though cases 
were selected carefully, local recurrence in patients treated with TARGIT as a second invasive 
procedure by reopening the wound (n = 1143) was 5.4% and higher than with EBRT (1.7%). 
The difference was explained as a possibility of a delay in wound fluid suppression of tumor 
cells, a delay of radiation or a geometric miss when inserting the applicator postsurgery 

by authors [106], and “postpathology” TARGIT by reopening the wound was not recom-

mended. Furthermore, OS or distant metastases, the rates were similar with low skin toxicity 
profile. There was no difference in hematomas needing surgical aspiration, seromas needing 
greater than three aspirations, infections requiring intravenous antibiotics or surgical inter-

vention or skin breakdown or delayed healing rates between APBI and WBRT [105].

The ELIOT trial also uses intraoperative electrons as a single dose of 21 Gy prescribed to 
the 90% depth compared 50 Gy of external beam radiation therapy in which 1305 patients 
presented with tumors 2.5 cm or smaller and 48 years or older. After tumor excision, the 
breast tissue was mobilized and a lead/aluminum shield was placed to protect chest wall and 

underlying structures. The breast tissue as a target was rearranged over the shield. An appro-

priately sized collimator (4–8 cm) was inserted. At a median follow-up of 5.8 years, the 5-year 
recurrence rate was 4.4% for ELIOT versus 0.4% for the EBRT. For low risk women the 5-year 
IBTR was 1.7%. For patients with one or more high risk features (tumor size, receptor status, 
nodal positivity and grade), the 5-year IBTR was 11.8% for the 178 women (30.4%) with 1 or 
more risk factors versus 1.7% for the 407 ELIOT low risk women (69.6%) [107]. The rate of 

ELIOT patients who could be defined as ASTRO suitable subgroup was 23%, and ipsilateral 
breast recurrences ratio for them was 1.5% at 5 years and alike to whole breast group. ELIOT 
study results revealed low rates of skin and pulmonary damage [108]. There was no differ-

ence in terms of pain, retraction or fibrosis. Overall survival was the same between the two 
arms. The applicator sizes used in the ELIOT trial are not specified, but it has been advised 
that to guarantee uniform coverage of microscopic residual disease, the IOERT applicator 
dimension size has to be chosen at least 1.5 to 2 cm larger than the maximum tumor dimen-

sion [109]. Although the above IO-APBI trials show some promising early results, the follow-
up for ELIOT is short especially given that breast cancer can recur many years later.

Cochrane meta-analysis including all types of APBI has been published in 2016 consisting 
seven randomized trials studying 7586 women of the 8955 enrolled [110]. Local recurrence-

free survival decreased from HR-1.62 to HR-1.11 for women receiving PBI/APBI compared 
to WBRT, in addition to poorer physician-reported cosmesis with PBI/APBI. Oncological 
outcomes as cause-specific, distant metastasis-free, relapse-free survival or mastectomy rates 
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were not affected by this small local recurrence difference, besides no difference in overall 
survival with PBI/APBI. As acute toxicities seem to be reduced by partial irradiation, this 
effect did not lead into an advantage for late term subcutaneous fibrosis. ‘Elsewhere prima-

ries’ (new primaries in the ipsilateral breast) found to be more frequent with PBI/APBI. This 
meta-analysis cannot help to determine which technique increased the local recurrence or 

elsewhere primary detection. Ongoing trial will address the questions in future [110]. Despite 

small differences in local control, the advantages of the patients with APBI such as short treat-
ment duration or easy application during surgery can increase patient treatment compliance. 

IO-APBI could be a reasonable option for highly selected subpopulation of early-stage breast 
cancer patients out of a clinical trial.

3.7. Breath hold-cardiac sparing methods

Breast cancer radiotherapy reduces the risk of cancer recurrence and death demonstrated by 
randomized trials, but as radiation delivery requires tangential and selectively mammaria 
interna fields, meta-analyses also have found an increase in cardiac deaths following breast 
cancer radiotherapy associated with the volume of the heart receiving 5 Gy or more [111]. 

Decreased myocardial function or coronary artery diseases are the most common cardiotoxic-

ity besides less common toxicities of myocardial infarction, congestive heart failure, pericar-

ditis, arrhythmias, angina or valve dysfunction [112]. Darby et al. steered a population-based 

case-control study of major coronary events in 2168 women who underwent radiotherapy 
for breast cancer between 1958 and 2001 in Sweden and Denmark. The overall average of the 
mean doses to the whole heart was 4.9 Gy (range 0.03–27.72), and the rates of major coronary 
events were associated with a 7% increase in risk of ischemic events per gray increase in mean 
heart dose with no apparent threshold. This effect of radiation on heart was increasing within 
the first 5 years after radiotherapy and found to be unrelated to the presence of cardiac risk 
factors at the time of radiotherapy.

Due to the interplay between respiratory motion and MLC motion during IMRT delivery, the 
planned and expected doses could be different. Respiratory motion is a well-known factor 
during treatment planning for breast IMRT, dosimetric studies presented that PTV dose het-
erogeneity increases as respiratory motion grows. The lung and heart doses also change with 

respiratory motion. As a result, a larger margin is proposed from CTV to PTV margin [113]. The 

breath-hold technique could help to minimize the effect of potential negative dosimetric impact 

arising from interplay effect of multileaf collimator and breathing motion during delivery of 
IMRT [114, 115].

In clinical practice, there are two commercially available devices: active breathing coordina-

tor™ (ABC_DIBH) (Elekta, Crawley, UK) and Varian RPM system guiding patients to hold 
their breath while radiotherapy is delivered, which pushes the heart down and away from the 
radiotherapy field. Even the benefits of these systems were proved by dosimetric studies, they 
are not used more widespread as it was used in only 19% of EORTC centers in 2010 and just 
4% of UK centers [116, 117]. This could be due to additional cost, education of staff and time-
consuming procedure depending on patient’s capacity and therapist’s experience.
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In the early 2000s, the Real-time Position Management (RPM) system from Varian Medical 
System (Palo Alto, USA) consisting of two reflectors attached to an external marker-cube 
placed on the patient’s abdomen was released. The motion of the cube marker, reflecting the 
breathing pattern of the patient, is evaluated by software that controls the scanner, based on 
predefined criteria [118]. The advantage of this RPM system is the constant monitorization of 
patient respiration, and a beam-hold condition automatically occurs if the breath-hold level 
departs from the planned one [119]. The patient can easily track their performance on screen, 
also reproducibility is the other important advantage of this system.

The ABC method was established at William Beaumont Hospital and is currently commercial-
ized by Elekta, Inc. as the active breathing coordinator. Also the VMAX Spectra 20C (VIASYS 
Healthcare Inc, Yorba Linda, CA, USA) and the SpiroDyn’RX (Dyn’R, Muret, France) which are 
working in the similar principles [120]. The ABC apparatus can be used to suspend breathing at 
any predetermined position along the normal breathing cycle, or at active inspiration. A digital 
spirometer is used measure the respiratory cycle, which is connected to a balloon valve. In an ABC 
procedure, the patient breathes normally through the apparatus. When an operator “activates” the 
system, the lung volume and the phase (i.e., inhalation or exhalation) at which the balloon value 
will be closed are specified. The patient is then instructed to proceed to reach the specified lung 
volume, typically after taking two preparatory breaths. At this point, the valve is inflated with an 
air compressor for a predefine duration of time, thereby “holding” the patient’s breath [120].

There is solid evidence from retrospective and dosimetric planning studies, demonstrating 
reduction in dose to the heart and coronary arteries with deep inspiration breath-hold treat-

ment of left-sided breast cancers for both early and locally advanced breast cancer therapy with 
regional irradiation. In a dosimetric analysis, free and breath-hold technique were planned 

with both forward and inverse IMRT showing a significant reduction in radiation exposure to 
the contralateral breast, left and right ventricles, as well as proximal and especially distal LAD 
by breath hold with forward IMRT, as inverse IMRT provided no additional advantage [121]. 

For whole breast radiotherapy, Wang et al. reported a reduction in mean heart dose from 3.2 Gy 
forward-planned IMRT in free-breathing to 1.3 Gy for forward-planned IMRT in breath hold. 
Another confirming study, recruiting 319 breast cancer patients revealed that deep inspiration 
breath-hold plans expressed large reductions in dose to the heart compared with left-sided FB 
plans; V20Gy of the heart is reduced from 7.8 to 2.3%, V40Gy from 3.4 to 0.3% and mean dose 
from 5.2 to 2.7 Gy (−48%, p < 0.0001) while median target coverage is slightly improved [122].

In William Beaumont Hospital experience revealed that moderate deep inspiration breath 
hold achieved using an active breathing control (ABC) device, compared with free breath-

ing (FB) during treatment with deep tangents fields (DT) for locoregional (LR) irradiation of 
15 breast cancer patients, reduced the heart V30 for 6 of the 9 left breasted patients, entirely 
avoiding heart irradiation in 2 of these 6 patients and the mean percentage of both lungs 
receiving more than 20 Gy from 20.4 to 15.2% [123]. Twenty centers in order to compare 

clinical aspects of respiratory-gated conformal radiotherapy during breast cancer irradiation 

versus conventional conformal radiotherapy and reassured the feasibility and good repro-

ducibility of the respiratory gating systems with the reduction in the dose delivered to the 
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heart during irradiation of the left breast [119]. Even locoregional irradiation is considered, 
breath-hold technique still added benefit with breath-hold technique significantly by reduc-

ing Dmean Heart and Dmean LAD compared to free breathing for both the whole breast and 
chest wall and regional irradiation groups. When Dmean Heart of <4 Gy had been set as a 
criteria for planning, all the plans in whole breast radiotherapy has been met this apart from 

breathing pattern, but only five of nine patients (56%) in the comprehensive breast irradiation 
group were able to meet this constraint with free breathing, compared to all patients with 

deep breath hold was in compliance with the criteria of Dmean Heart <4 Gy [124]. Addition 
to the routine use of deep breath old techniques for left breast cancer patients, Essen et al. 

recommend it to use for right breast also. The gain for locoregional breast treatment without 

IMN, the average mean lung dose reduced from 6.5 to 5.4 Gy for the total lung and from 
11.2 to 9.7 Gy for the ipsilateral lung while if internal mammaria lymph node irradiation is 
added significant gain will continue for lung doses, which can translate into a lower risk of 
pneumonitis and secondary lung cancer rates in future [125]. As a summary of the published 
literature, deep breath hold reduced the mean heart dose by up to 3.4 Gy when compared 
to a free breathing approach. Also deep breath-hold technique was announced as stable and 
reproducible on a daily basis [126].

Breath-hold technique’s dosimetric benefits have been clearly in the literature, but these 
techniques are not yet in widespread use. The reasons for this could be explained by 
this technique needs commercially available solutions necessitate specialist equipment. 
Another breath-hold technique described as ‘voluntary breath-hold technique’ described. 
This breath-holding technique monitories breath-hold consistency using the distance 

moved by the anterior and lateral reference marks away from the treatment room lasers 
in breath hold to monitor constancy at CT-planning and treatment setup. Light fields are 
then visually checked breath-hold consistency before and during treatment. This technique 
is announced as simple and inexpensive, but still there is concerns about the reproducibil-
ity and consistency [127]. A randomized study conducted at the Royal Marsden Hospital 
(Sutton, UK), The UK HeartSpare Study, has confirmed that interfraction reproducibility 
with the voluntary breath-hold technique is analogous to the performed with the spirome-

try-based device. Addition to this, voluntary technique offers a time advantage at planning-
CT and treatment setup and is preferred by patients and radiographers alike compared 
to using the spirometry-based device [128]. In HeartSpare II study, the VBH technique is 
currently being ongoing at 10 UK radiotherapy centers to  confirm that the technique is 
applicable in a multicenter setting where presented preliminary data suggest multicenter 
application of VBH is found to be both actual and practicable at heart-sparing [129].

According to Royal Marsden Hospital protocol firstly patient’s asked to practice at home 
holding their breath, while lying down, initially for 5 s, and building up in 5 s intervals to 20 s. 
During the standard CT simulation procedure, position of crosses in free breathing and while 

taking a deep breath in marked on the patient. The duration of the breath hold has to be noted. 
All the details and a video related to this technique has been published by Barnett et al. [127]. 

Systematic and random error range for each beam and in each plane reported as 1.5–1.8 mm 
and 1.7–2.5 mm, respectively [127].
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As a conclusion, to date, there is only retrospective or dosimetric studies were presented and 
no data studying the clinical benefits and oncological outcomes for patients treated with this 
technique. Especially, the cardiac data will be presented in 15–20 years. Under these circum-

stances, the clinical application of deep breath-hold technique is important and advisable. In 
our clinic, we routinely train all our left breast cancer patients and use RPM system during the 
simulation and treatment to provide the consistency and reproducibility of breath-holding 
period. After forward IMRT planning, DVH are evaluated according to criteria’s as follows: 
Spinal cord Max <45 Gy or Max <36 Gy (if >2.5 Gy/Fx), heart V20 <4%, V10 <15%, total lung 
V20 <35%. Our aim is to reduce mean heart dose as low as possible. Average mean heart 
doses were usually under 4–5 Gy and 2.5 Gy for left-sided RT and right-sided RT including 
IM nodes. After adding segments, the 105% isodose line cloud should not been seen except in 
the corners due to lung transmission.

4. Conclusion

Modern radiotherapy techniques have been evolving in the last two decades. Supine posi-
tioning will be continued to be used for breast cancer simulation for several decades over 
the world as it provides patient comfort and position reproducibility for the whole treat-
ment period, while in rare indications such as a very large pendulous breast or depending on 
institution choice lateral decubitus or prone position can help. The reflection of modern tech-

niques such as three-dimensional (3D), intensity-modulated radiotherapy (IMRT), volumetric 
modulated arc therapy (VMAT) has been evolving in breast therapy. Even dosimetric studies 
has demonstrated more homogenous dose distribution and normal organ sparing, still sur-

vival data, and the long-term effects of normal tissue sparing on survival will be answered 
in future. Especially, forward IMRT, using tangential bream angels and creating multiple 

segment, can be used in clinical practice taking into the considerations of acute toxicity but 
using tangential radiotherapy field design is still acceptable. There is an increasing attention 
to hypofractionation in the treatment of breast cancer, while there are still unanswered ques-

tions in regional lymph node and expander irradiation. Another attractive approach—APBI 
could be a reasonable option for highly selected subpopulation of early-stage breast cancer 

patients out of a clinical trial. Results of ongoing trial comparing APBI techniques to external 
radiotherapy will address the future of APBI techniques as a routine clinical approach. The 
most important advance could be named as cardiac sparing-deep breath-hold approach in all 
the modern technique improvement. Retrospective or dosimetric studies were presented the 
benefit of using commercially available techniques or voluntary performance, while clinical 
outcomes could be presented in 15–20 years. Under these circumstances, the clinical applica-

tion of deep breath-hold technique is important and advisable.

Although most advanced techniques in management of breast cancer have not been proved 
to increase survival, we suggest recommending resource stratified advanced techniques to be 
decided institutionally in order to provide best technical and clinical care in this long-term 
survivor candidates.
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Abbreviations

RT Radiation therapy

2D Two-dimensional

3D Three-dimensional

IMRT Intensity-modulated radiotherapy

VMAT Volumetric modulated arc therapy

4D Four-dimensional

CT Computed tomography

CBCT Cone-beam computed tomography

3DCRT Three-dimensional conformal radiotherapy

ICRU International Commission on Radiation Units and Measurements

IGRT Image-guided RT

RTOG Radiation Therapy Oncology Group

EORTC European Organisation for Research and Treatment of Cancer

OAR Organ-at-risk

DVH Dose volume histograms

IMLNs Internal mammary lymph nodes

ASTRO American Society for Radiation Oncology

LDR Low dose rate

PDR Pulsed dose rate

HDR High dose rate

APBI Accelerated partial breast irradiation

DCIS Ductal carcinoma in situ

PBI Partial breast irradiation

Dmean Mean dose
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