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Abstract

In this chapter, by researching the algorithm of the formal series, and deducing the
recursion formula of computing the nondegenerate and degenerate singular point quan-
tities on center manifold, we investigate the Hopf bifurcation of high-dimensional
nonlinear dynamic systems. And more as applications, the singular point quantities for
two classes of typical three- or four-dimensional polynomial systems are obtained, the
corresponding multiple limit cycles or Hopf cyclicity restricted to the center manifold
are discussed.

Keywords: high-dimensional system, center manifold, Hopf bifurcation, singular point
quantities

1. Introduction

This chapter is concerned with Hopf bifurcation restricted to the center manifold from the

equilibrium for three-, four-, and more higher-dimensional nonlinear dynamical systems.

Let us first consider the generic real systems which take the form

_x ¼ Axþ fðxÞ (1)

where x ¼ ðx1; x2; ⋯; xnÞ ∈ R
n, A ∈ R

n ·n
; n ∈ N, and fðxÞ is sufficiently smooth with fð0Þ ¼ 0,

Dfð0Þ ¼ 0. Then the origin is an equilibrium. For dynamical analysis of systems (1), it is very

important to discuss the asymptotic behavior and the existence of periodic orbits at the origin.

When the Jacobi matrix A has an eigenvalue with zero real part, the phase portraits in the

vicinity of the origin is not easy to be determined. In particular, a system (1) has the following

form
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distribution, and reproduction in any medium, provided the original work is properly cited.



_x1 ¼ A1x1 þ f1ðx1,x2Þ
_x2 ¼ A2x2 þ f2ðx1,x2Þ

�

(2)

where x1 ¼ ðx1; x2; …; xncÞ
T
∈ R

nc ; x2 ¼ ðxncþ1;…; xnÞ
T
∈ R

ns with nc þ ns ¼ n; A1 and A2 are

constant matrices, and f1ðx1, x2Þ, f2ðx1, x2Þ are functions with

f1ð0; 0Þ ¼ 0; f2ð0; 0Þ ¼ 0; Df1ð0; 0Þ ¼ 0; Df2ð0; 0Þ ¼ 0

Suppose that A1 has nc critical eigenvalues (i.e., eigenvalues with Re λ = 0) and all ns eigen-

values of A2 satisfy Re λ < 0. According to the Center Manifold Theorem (see, e.g., [1, 2]), there

exists a (local) center manifold x2 ¼ hðx1Þ with hð0Þ ¼ 0; Dhð0Þ ¼ 0; and system (2) is topolog-

ically equivalent near ð0, 0Þ to the system

_x1 ¼ A1x1 þ f1ðx1,hðx1ÞÞ
_x2 ¼ A2x2:

�

(3)

The first equation in Eq. (3) is called the restriction of system (2) to its center manifold at the

origin. The local center manifold, which is tangent to the ðx1; x2;…; xncÞ-plane (hyperplane) at

the origin and which contains all the recurrent behavior of system (2) in a neighborhood of the

origin, since the second equation in (3) is linear and has exponentially decaying solutions (see,

e.g., [3]). Thus, the dynamics of Eq. (2) near a nonhyperbolic equilibrium are determined by

this restriction. Generally, the local center manifold is not necessarily unique, but if the origin is

a center restricted to a local center manifold for system (2), then the center manifold is unique

and analytic, which is presented by the Lyapunov Center Theorem proved in Ref. [4].

If A has a simple pair of purely imaginary eigenvalues �ωi (ω > 0), system (1) undergoes a

Hopf bifurcation or multiple Hopf bifurcation in a neighborhood of the origin on the local

center manifold under proper perturbations of parameters. The computation of focal values

(Lyapunov coefficients) plays an important role in the study of small-amplitude limit cycles

appearing in these bifurcations (see [5–14] and references therein). The projection method was

used for computing the first and the second focal values (see [2]), and a perturbation technique

based on multiple time scales was used for computing focal values (see [15]). For a class of

three-dimensional systems, the formal series method was presented with a recursive formula

for computing singular point quantities (see [16]), here the theory and methodology described

in Refs. [16, 17] can be applied to n-dimensional systems, where n ≥ 4.

If A has some zero eigenvalues for system (1), the Hopf bifurcation problem at the origin on the

local center manifold becomes generally more difficult in comparison to the nondegenerate

case. Take the degenerate singular point with a zero linear part in planar system, for example,

the investigation of Hopf bifurcation from the equilibrium has to involve detecting the

monodromy and distinguishing between a center and a focus [18, 19]. For that matter, several

available approaches and corresponding results can be seen in [18–25], and one can easily find

that the results on the bifurcation of limit cycles are very less. Remarkably, the author of

reference [26] in 2001 gave the formal series method of calculating the singular point quantities

of the degenerate critical point, which made it possible to investigate multiple Hopf bifurcation
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of higher degree polynomial systems [27, 28]. Here we extend its application to the local center

manifold of more higher-dimensional system.

2. Case of the nondegenerate singular point

In this section, we consider Hopf bifurcation from the nondegenerate origin of system (1)

restricted to the center manifold, in which the Jacobian matrix A has a pair of pure imaginary

eigenvalues and its other eigenvalues are all negative. As the particular case, for planar

systems there exist some good computer algebra procedure to calculate the focal values (see

survey article [29], monograph [30], and references therein), here the formal series method of

computing singular point quantities on the local center manifold for high-dimensional system

originated from the work of [31–33] in planar systems.

2.1. The formal series method of computing nondegenerate singular point quantities on

center manifold

Considering the Jacobian matrix A at the origin of system (1) has a pair of purely imaginary

eigenvalues and a negative one, then by certain nondegenerate transformation, the system (1)

can be changed into the following system:

dx

dt
¼ −yþ ∑

∞

kþjþl¼2
Akjlx

kyjul ¼ Xðx; y; uÞ,

dy

dt
¼ xþ ∑

∞

kþjþl¼2
Bkjlx

kyjul ¼ Yðx; y; uÞ,

du

dt
¼ −d0uþ ∑

∞

kþjþl¼2

~dkjlx
kyjul ¼ ~Uðx; y; uÞ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(4)

where x; y; u; Akjl; Bkjl;
~dkjl ∈ R ðk;j;l∈NÞ and d0 > 0.

Here, we recall first the calculation method of the singular point quantities on center manifold

for the above real three-dimensional nonlinear dynamical systems. By means of transforma-

tion

z ¼ xþ yi, w ¼ x − yi, u ¼ u, T ¼ it, i ¼
ffiffiffiffiffi

−1
p

(5)

system (4) is also transformed into the following complex system:

dz

dT
¼ zþ ∑

∞

kþjþl¼2
akjlz

kwjul ¼ Zðz; w; uÞ,

dw

dT
¼ −w− ∑

∞

kþjþl¼2
bkjlw

kzjul ¼ −Wðz; w; uÞ,

du

dT
¼ id0uþ ∑

∞

kþjþl¼2
dkjlz

kwjul ¼ Uðz; w; uÞ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(6)

where z; w; T; akjl; bkjl; dkjl∈C ðk; j; l ∈ NÞ, the systems (4) and (6) are called concomitant.
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Theorem 1 (see [16]). For system (6), using the program of term by term calculations, we can

determine a formal power series:

Fðz; w; uÞ ¼ zwþ ∑
∞

αþβþγ¼3
cαβγz

αwβuγ (7)

such that

dF

dT
¼

∂F

∂z
Z−

∂F

∂y
W þ

∂F

∂u
U ¼ ∑

∞

m¼1
μmðzwÞ

mþ1 (8)

where c110 ¼ 1; c101 ¼ c011 ¼ c200 ¼ c020 ¼ 0; ckk0 ¼ 0, k ¼ 2, 3,⋯.

Definition 1. The μm in the expression (8) is called the mth singular point quantity at the origin

on center manifold of system (6) or (4), m ¼ 1; 2;⋯.

Theorem 2 (see [16, 34]). For the mth singular point quantity and the mth focal value at the origin on

center manifold of system (4), i.e., μm and v2mþ1; m ¼ 1; 2;⋯, we have the following relation:

v2mþ1ð2πÞ ¼ iπμm þ iπ ∑
m−1

k¼1
ξðkÞm μk (9)

where ξðkÞm ðk ¼ 1; 2;⋯;m − 1Þ are polynomial functions of coefficients of system (6). Usually, it is called

algebraic equivalence and written as v2mþ1~iπμm.

Based on the previous work in Ref. [16], we have developed the calculation method of the focal

values on the center manifold for real four-dimensional nonlinear dynamical systems in Ref.

[35]. In fact, here Theorem 1 can be generalized in the n-dimensional real systems as follows

dx

dt
¼ −yþ h:o:t: ¼ Xðx;y;uÞ,

dy

dt
¼ xþ h:o:t: ¼ Yðx;y;uÞ,

dui
dt

¼ −diui þ h:o:t: ¼ ~U iðx;y;uÞ, i ¼ 1; 2;⋯;n−2

8

>

>

>

>

>

<

>

>

>

>

>

:

(10)

where u ¼ ðu1;u2;⋯;un−2Þ, h.o.t denotes the terms in x;y;u1;u2;⋯;un−2 with orders greater than

or equal to 2, and all di > 0.

By means of transformation of Eq. (5), system (10) can be transformed into the following

complex system

dz

dT
¼ zþ ∑∞

kþjþ1¼2
a
kj1
zkwj

u
1 ¼ Zðz;w;uÞ,

dw

dT
¼ −w−∑∞

kþjþl¼2
b
kj1
wkzju1 ¼ −Wðz;w;uÞ,

dui
dT

¼ idi ui þ ∑∞
kþjþ1¼2

d
kj1
zkwj

u
1 ¼ Uiðz;w;uÞ, i ¼ 1; 2;⋯;n−2

8

>

>

>

>

>

<

>

>

>

>

>

:

(11)

where the subscript “kj1” denotes “kjl1⋯ln−2”, u1 ¼ ul11 u
l2
2⋯uln−2n−2, and l ¼ ∑

n−2

i¼1
li, all ui ∈ R,

z;w;T; akj1; bkj1; dkj1 ∈ C ðk; j; li ∈ NÞ, we call that system (10) and system (11) are concomitant.

Manifolds - Current Research Areas6



Theorem 3. For system (11), using the program of term by term calculations, we can determine a

formal power series:

Fðz;w;uÞ ¼ zwþ ∑
∞

αþβþℓ¼3
cαβ ℓ z

αwβ
u
ℓ

(12)

such that

dF

dT
¼

∂F

∂z
Z−

∂F

∂y
W þ ∑

n−2

i¼1

∂F

∂ui
Ui ¼ ∑

∞

m¼1
μmðzwÞ

mþ1 (13)

where the subscript “αβℓ” denotes “αβγ1⋯γn−2”, u
ℓ ¼ u

γ1
1 u

γ2
2 ⋯u

γn−2

n−2 , and ℓ ¼ ∑
n−2

i¼1
γi, and more setting

cαβℓ ¼ 0 with 0≤αþ βþ ℓ≤2 except for c110 ¼ 1, and ckk0 ¼ 0 with k≥2.

Proof. It is very similar to the proving course of Theorem 1.3.1 in [16], by computing carefully

and comparing the above power series with the two sides of (13), we can obtain the expression

of μm.

Definition 2. The μm in the expression (13) is called the mth singular point quantity at the

origin on center manifold of system (11) or (10), m ¼ 1; 2;⋯.

Remark 1. Similar to Theorem 2, there exists a equivalence between μm and v2mþ1, namely, if

μ1 ¼ μ2 ¼ ⋯ ¼ μm−1 ¼ 0;μm≠0, then v3 ¼ v5 ¼ ⋯ ¼ v2m−1 ¼ 0; v2mþ1 ¼ iπμm; m ¼ 1; 2;⋯, and

vice versa.

Corollary 1. The origin of system (10) or (11) is a center restricted to the center manifold if and only if

μm ¼ 0 for all m.

Remark 2. From the relation given by Remark 1 and Corollary 1, the center-focus problem and

Hopf bifurcation of equilibrium point restricted to the center manifold can be figured out by

the calculation of singular point quantities for system (10).

2.2. An example of four-dimensional system

Recently, the study of chaos has become a hot research topic, and the attention of many

researchers is turning to 4D systems from 3D dynamical systems, for example, the authors of

Ref. [36] investigated Hopf bifurcation of a 4D-hyoerchaotic system by applying the normal

form theory in 2012, but its multiple Hopf bifurcation on the center manifold have not been

considered. Here, we will investigate the system further by computing the singular point

quantities of its equilibrium point, which takes the following form

_x1 ¼ aðx2−x1Þ
_x2 ¼ cx1−x2 þ x4−x1x3
_x3 ¼ x1x2−bx3 þ ex21
_x4 ¼ −Kx2

8

>

>

<

>

>

:

(14)

where a; b; c; e;K∈R. Obviously, system (14) has only one isolated equilibrium: Oð0; 0; 0; 0Þ

when K≠0. Therefore, we only need to consider O. The Jacobian matrix of system (14) at O is
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A ¼

−a a 0 0

c −1 0 1

0 0 −b 0

0 −K 0 0

0

B

B

B

@

1

C

C

C

A

with the characteristic equation:

ðλþ bÞðλ3 þ ðaþ 1Þλ2 þ ða−acþ KÞλþ aK ¼ 0: (15)

To guarantee that A has a pair of purely imaginary eigenvalues �i ωðω > 0Þ and two negative

real eigenvalues λ1;λ2, we let its characteristic equation take the form

ðλ2 þ ω
2Þðλ−λ1Þðλ−λ2Þ ¼ 0:

Thus, we obtain the critical condition of Hopf bifurcation at O:

a2ðc−1Þ ¼ ω
2; K ¼ aðaþ 1Þðc−1), λ1 ¼ −b; λ2 ¼ −a−1 (16)

where a > −1; b > 0; c > 1, namely, c ¼ a2þω
2

a2
; K ¼ ðaþ1Þω2

a . Under the conditions (16), one can

find a nondegenerate matrix

P ¼

−
ia2

ðaþ 1Þðaþ iωÞω

ia2

ðaþ 1Þða−iωÞω
0 −

a2

ω2

−
ia

ðaþ 1Þω

ia

aωþ ω
0

a

ω2

0 0 1 0

1 1 0 1

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

such that

P−1AP ¼

ωi 0 0 0
0 −ωi 0 0
0 0 −b 0
0 0 0 −a−1

0

B

B

@

1

C

C

A

(17)

Namely, we can use the nondegenerate transformation and the time rescaling: T ¼ itω to make

the system (14) become the following same form as the complex system (11) with n ¼ 4:

dz

dT
¼ zþ ∑2

kþjþlþn¼2
a
kjln
zkwjulvn ¼ Zðz;w;u;vÞ,

dw

dT
¼ −w−∑2

kþjþlþn¼2
b
kjln
wkzjulvn ¼ −Wðz;w;u;vÞ,

du

dT
¼

bi

ω
uþ ∑2

kþjþlþn¼2
d
kjln
zkwjulvn ¼ Uðz;w;u;vÞ,

dv

dT
¼

ðaþ 1Þi

ω
vþ ∑2

kþjþlþn¼2
e
kjln
zkwjulvn ¼ Vðz;w;u;vÞ

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(18)

where u∈R, z; w; T∈C, and all akjln ¼ bkjln ¼ dkjln ¼ ekjln ¼ 0 except the following coefficients

Manifolds - Current Research Areas8



a0011 ¼
a3 þ a2ð1þ iωÞ þ iaω

2ω2ðaþ iωþ 1Þ
; a0110 ¼

aðω−iaÞ

2ω
�

a2 þ aþ ωðω−iÞ
� ;

bkjln ¼ akjln ðikjl ¼ 0011; 0110Þ,

d0002 ¼
ia3ð1−aÞe

ω5
; d0101 ¼ −

a4ð2eþ 1Þ−a3ð1þ iωÞ

ðaþ 1Þω4ða−iωÞ
;

d0200 ¼
a3ωþ ia4ðeþ 1Þ

ðaþ 1Þ2ω3ða−iωÞ2
; d1001 ¼

a4ð2eþ 1Þ þ a3ðiω−1Þ

ðaþ 1Þω4ðaþ iωÞ
;

d1100 ¼ −
2ia4ðeþ 1Þ

ðaþ 1Þ2ω3ða2 þ ω2Þ
; d2000 ¼ −

a3ω−ia4ðeþ 1Þ

ðaþ 1Þ2ω3ðaþ iωÞ2
;

e0011 ¼ −
iaðaþ 1Þ

ωða2 þ 2aþ ω2 þ 1Þ
; e0110 ¼ −

a

ða−iωÞða2 þ 2aþ ω2 þ 1Þ
;

e1010 ¼
a

ðaþ iωÞða2 þ 2aþ ω2 þ 1Þ

where akjln denotes the conjugate complex number of akjln.

According to Theorem 3, we obtain the recursive formulas of cαβγ and μm.

Theorem 5. For system (18), setting cαβγλ ¼ 0 with 0≤αþ βþ γþ λ≤2 except for c1100 ¼ 1, and

ckk00 ¼ 0 with k≥2, we can derive successively and uniquely the terms of the following formal series (12)

with n ¼ 4, such that (13) with n ¼ 4 holds and if α≠β or α ¼ β; λ2 þ γ2
≠0, cαβγλ is determined by

following recursive formula:

c
αβγλ

¼
ω

ωðα−βÞ þ iðb γþ ðaþ 1Þ λÞ
{−d2000ð1þ γÞc½α−2;β;γþ 1;λ�−d1100ðγþ 1Þc½α−1;β−1;γþ 1;λ�−
e1010ðλþ 1Þc½α−1;β;γ−1;λþ 1�−d1001ðγþ 1Þc½α−1;β;γþ 1;λ−1�þ
b0110ðβþ 1Þc½α−1;βþ 1;γ−1;λ�−d0200ðγþ 1Þc½α;β−2;γþ 1;λ�−
e0110ðλþ 1Þc½α;β−1;γ−1;λþ 1�−d0101ðγþ 1Þc½α;β−1;γþ 1;λ−1�−
e0011λc½α;β;γ−1;λ�−d0002ðγþ 1Þc½α;β;γþ 1;λ−2�þ
b0011ðβþ 1Þc½α;βþ 1;γ−1;λ−1�−a0110ðαþ 1Þc½αþ 1;β−1;γ−1;λ�−
a0011ðαþ 1Þc½αþ 1;β;γ−1;λ−1�}

(19)

and for any positive integer m; μm is determined by following recursive formula:

μm ¼ d2000c½−2þm;m; 1; 0�
þ d1100c½−1þm;−1þm; 1; 0� þ d0200c½m;−2þm; 1; 0�

(20)

and when α < 0 or β < 0 or γ < 0 or λ < 0 or α ¼ β; γ ¼ λ ¼ 0, we have let cαβγλ ¼ 0, and where

each c½α;β;γ;λ� denotes c
αβγλ

.

By applying the above formulas in the Mathematica symbolic computation system, we figure

out easily the first two singular point quantities of the origin of system (18):

μ1 ¼ iaf 1 ½jaj b c ðaþ 1Þ2d0�
−1
;

μ2 ¼ 108ia3b4f 2 f
2
3 f 4 ½jaj c

2d0d1
2d2

4d3�
−1 (21)

where
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f 1 ¼ 8a3ceþ 8a3c−8a3e−8a3−2a2bceþ 2a2beþ 8a2ceþ 8a2c

−8a2e−8a2 þ ab2cþ 3ab2eþ 2ab2 þ 2abc−2abþ 3b2eþ 3b2;

f 2 ¼ ð2aþ bþ 2Þ3ð2aeþ 2a−bÞðeþ 1),

f 3 ¼ 4a2eþ 4a2−3abe−2abþ 4aeþ 4aþ b;

f 4 ¼ 8a5c2−16a5cþ 8a5−2a4bc2 þ 2a4bcþ 8a4c2−16a4cþ 8a4 þ 2a3b2c

−2a3b2−4a3bcþ 4a3b−5a2b3cþ 4a2b3 þ 2a2b2c

−2a2b2−2a2bcþ 2a2b−2ab3−b3;

d0 ¼ ða2cþ 2aþ 1Þð4a2c−4a2 þ b2Þðc−1Þ3=2;

d1 ¼ 8a3c−8a3−2a2bcþ 2a2bþ 8a2c−8a2 þ 3ab2 þ 3b2;

d2 ¼ 8a2eþ 8a2−2abeþ 8aeþ 8aþ b2 þ 2b;

d3 ¼ 9a2c−8a2 þ 2aþ 1;

and the above expression of μ2 is obtained under the condition of μ1 ¼ 0.

From Remark 1 and the singular point quantities (21), we have

Theorem 6. For the flow on center manifold of the system (14), the first 2 focal values of the origin are

as follow

v3 ¼ iπμ1; v5 ¼ iπμ2 (22)

where the expression of v5 is obtained under the condition of v3 ¼ 0.

Remark 3. In contrast to the result and process in [36], one can easily see that our first quantity

is basically consistent with its characteristic exponent of bifurcating periodic solutions, and our

algorithm is easy to realize with computer algebra system due to the linear recursion formulas,

and more convenient to investigate the multiple Hopf bifurcation on center manifold.

Considering its Hopf bifurcation form of Theorem 6, we have the following:

Theorem 7. At least two small limit cycles can be bifurcated from the origin of the 4D-hyoerchaotic

system (14), which lie in the neighborhood of the origin restricted to the center manifold.

The rigorous proof of the above theorem is very similar to the previous ones in [14, 16], namely,

by calculating the Jacobian determinant with respect to the functions v3; v5 and its variables,

which will not be given here.

3. Case of the degenerate singular point

Up till now, study on bifurcation of limit cycles from the degenerate singularity of higher

dimensional nonlinear systems (1) is hardly seen in published references. Here, we will inves-

tigate the Hopf bifurcation problem from the high-order critical point on the center manifold.

3.1. The formal series method of computing degenerate singular point quantities on center

manifold

Let us consider the real n-dimensional systems with two zero eigenvalues and zero linear part

as follows

Manifolds - Current Research Areas10



dx

dt
¼ ðδx−yÞðx2 þ y2Þq þ ∑

∞

kþjþ1¼2qþ2
Akj1x

kyju1 ¼ Xðx;y;uÞ,

dy

dt
¼ ðx−δyÞðx2 þ y2Þq þ ∑

∞

kþjþ1¼2qþ2
Bkj1x

kyju1 ¼ Yðx;y;uÞ,

dui
dt

¼ −diui þ ∑
∞

kþjþ1¼2
dkjlz

kwj
u
1 ¼ Uiðx;y;uÞ, i ¼ 1; 2;⋯;n−2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(23)

where the subscript “kj1” denotes “kjl1⋯ln−2”, u1 ¼ ul11 u
l2
2⋯uln−2n−2, and l ¼ ∑

n−2

i¼1
li, all di > 0,

x; y; ui; t; δ; Akjl; Bkjl; dkjl∈R, q; k; j; li∈N. Obviously, the origin of system (23) is a high-order

degenerate singular point with two zero eigenvalues and n−2 negative ones.

In order to discuss the calculation method of the focal values on center manifold of the system

(23), from the center manifold theorem [1], we take an approximation to the center manifold:

u ¼ uðx;yÞ ¼ u2ðx;yÞ þ h:o:t: (24)

where u ¼ ðx1;x2;⋯;xn−2ÞT , u2 is a quadratic homogeneous polynomial vector in x and y, and h.

o.t. denotes the terms with orders greater than or equal to 3. Substituting u ¼ uðx;yÞ into the

equations of system (23), we obtain a real planar polynomial differential system as follows

dx

dt
¼ ðδx−yÞðx2 þ y2Þq þ ∑

∞

k¼2qþ2
Xkðx;yÞ ¼ ~Xðx;yÞ,

dy

dt
¼ ðx−δyÞðx2 þ y2Þq þ ∑

∞

k¼2qþ2
Ykðx;yÞ ¼ ~Yðx;yÞ

8

>

>

>

<

>

>

>

:

(25)

where Xkðx;yÞ,Ykðx;yÞ are homogeneous polynomials of degree k, and the origin is degenerate

with a zero linear part.

For system (25), some significant works have been done in Refs. [26] and [27]. Let us recall the

related notions and results.

By means of transformation (5)

z ¼ xþ yi; w ¼ x−yi; u ¼ u; T ¼ i t; i ¼
ffiffiffiffiffi

−1
p

;

system (25) is transformed into following system:

dz

dT
¼ ð1−iδÞzqþ1wq þ ∑

∞

kþj¼2qþ2
akjz

kwj ¼ Zðz;wÞ,

dw

dT
¼ −ð1þ iδÞzqwqþ1− ∑

∞

kþj¼2qþ2
bkjz

kwj ¼ −Wðz;wÞ

8

>

>

>

<

>

>

>

:

(26)

where z; w; T are complex variables and for any positive integer k; j, we have akj ¼ bkj, then

systems (25) and (26) are called concomitant.

For any positive integer k, we denote
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f kðz;wÞ ¼ ∑
αþβ¼k

cαβz
αwβ

a homogeneous polynomial of degree k with c00 ¼ 1; ckk ¼ 0; k ¼ 1, 2,⋯.

Theorem 8 ([26, 27]). For system (26) with δ ¼ 0, we can derive successively the terms of the

following formal series:

Fðz;wÞ ¼ zw 1þ ∑
∞

m¼1

fmð2qþ3Þðz;wÞ

ðzwÞmðqþ1Þ

" #

(27)

such that

dF

dT
¼

∂F

∂z
Z−

∂F

∂w
W ¼ ðzwÞq ∑

∞

m¼1
μmðzwÞ

mþ1
: (28)

Definition 3. If δ ¼ 0 holds, μm in expression (28) is called the mth singular point quantity at

the degenerate singular point for system (26) or (1.3.26) is also called the mth singular point

quantity of the origin on the center manifold of system (23), where m ¼ 1; 2;⋯:

Similar to Theorem 2, there also exists a equivalence between the mth singular point quantity

and the mth focal value v2mþ1ð2πÞ at the origin on center manifold of system (23).

Theorem 9. For system (23) with δ ¼ 0, and any positive integer m, the following assertion holds:

v2mþ1ð2πÞ~iπμm, namely

v2mþ1ð2πÞ ¼ iπ μm þ ∑
m−1

k¼1
ξðkÞm μk

� �

, (29)

where ξðkÞm ðk ¼ 1; 2;⋯;m−1Þ are polynomial functions of coefficients of system (26). Then, the relation

between v2mþ1ð2πÞ and μm is called the algebraic equivalence.

Remark 4. In fact, from Theorem 2, for any positive integerm ¼ 2; 3;⋯, if μ1 ¼ μ2 ¼ ⋯ ¼ μm−1 ¼ 0

and v1ð2πÞ ¼ v3ð2πÞ⋯ ¼ v2m−1ð2πÞ ¼ 0 hold, and vice versa. And more the stability and

bifurcation of the origin of system (23) can be figured out by calculating the singular point

quantities.

Corollary 2. The origin of system (23) is a center restricted to the center manifold if and only if μm ¼ 0

for all m.

3.2. An example of three-dimensional system

Now we consider an example for system (23) with n ¼ 3, it can be put in its concomitant form

as follows
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dz

dT
¼ ð1−iδÞz2wþ uz ða20z

2 þ a11zwþ a02w
2Þ ¼ Z;

dw

dT
¼ −ð1þ iδÞzw2−uw ðb20w

2 þ b11wzþ b02z
2Þ ¼ −W ;

du

dT
¼ iuþ id1zw ¼ U;

8

>

>

>

>

>

<

>

>

>

>

>

:

(30)

where d1≠0 and

aij ¼ Ai þ iBi; bij ¼ Ai−iBi; Ai;Bi∈R; i;j ¼ 0; 1; 2; (31)

namely, aij ¼ bij. Then for the center manifold of system (30), from the transformation (5), we

can determine the formal expression (24): u ¼ uðx;yÞ ¼ ~uðz;wÞ, thus obtain

dz

dT
¼ ð1−iδÞz2wþ ~uz ða20z

2 þ a11zwþ a02w
2Þ ¼ ~Z,

dw

dT
¼ −ð1þ iδÞzw2−~uw ðb20w

2 þ b11wzþ b02z
2Þ ¼ − ~W

:

8

>

<

>

:

(32)

Remark 5. For system (32), the corresponding n ¼ 1 in (27) and (28) of Theorem 8, we figure out

that each μm is related to only the coefficients of the first 2mþ 3 order terms of system (32),

m ¼ 1; 2;⋯. Here, we determine the above ~u just to the sixth-order term as follows

~uðz;wÞ ¼ ∑
6

k¼2

~ukðz;wÞ (33)

where ~uk is a homogeneous polynomial in z;w of degree k and

~u2 ¼ −d1zw; ~u4 ¼ 2δd1z
2w2

; ~u3 ¼ ~u4 ¼ ~u5 ¼ 0;

~u6 ¼ −id1wzðða02−b20Þd1w
3zþ ða11d1−b11d1−8iδ

2Þw2z2

þða20−b02Þd1wz
3Þ: (34)

Hence, ~Z and ~W in system (32) are two polynomials with degree 9.

Theorem 10. For system (32) with δ ¼ 0, we can derive successively the terms of the formal series (27),

such that (28) holds (cαβ, μm in Appendix A).

Applying the powerful symbolic computation function of the Mathematica system and the

recursive formulas in Theorem 10, and from Remark 5, we obtain the first three singular point

quantities as follows

μ1 ¼ −d1ða11−b11Þ,

μ2 ¼ d21ðb20b02−a20a02Þ,

μ3 ¼ −2id21ða02a20 þ b02b20−a02b02−a20b20Þ

(35)

In the above expression of each μk; k ¼ 2; 3, we have already let μ1 ¼ ⋯ ¼ μk−1 ¼ 0.

Thus, from Theorem 9 and Eqs. (35) and (31), we have
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Theorem 11. For the flow on center manifold of system (30),δ¼0, the first three focal values

v2iþ1ð2πÞ ði ¼ 1; 2; 3Þ of the origin are as follows

v3 ¼ 2πd1B1;

v5 ¼ 2πd21 ðA2B0 þ A0B2Þ,

v7 ¼ 2πd21 ½ðA0−A2Þ
2 þ ðB0 þ B2Þ

2�

(36)

Theorem 12. For the flow on center manifold of (30)δ¼0, the origin is a three-order weak focus, i.e.,

v3 ¼ v5 ¼ 0; v7 ≠ 0 if and only if

B1 ¼ 0; A2B0 þ A0B2 ¼ 0 and ðA0−A2Þ
2 þ ðB0 þ B2Þ

2
≠ 0 (37)

Remark 6. For the coefficients of system (30)δ¼0, there exists necessarily a group of critical

values: Ai ¼ A�
i ; Bi ¼ B�

i ði ¼ 0; 1; 2Þ such that the conditions (37) hold, for example:

A�
1 ¼ B�

1 ¼ 0; A�
0 ¼ B�

0 ¼ 1; B�
2 ¼ −A�

2 ¼ 13 (38)

Now we consider Hopf bifurcation of limit cycles from the origin for perturbed system (30).

Theorem 13. At least three limit cycles can be bifurcated from the origin of system (30) restricted to the

center manifold, which lie in the neighborhood of the origin.

Proof. From Theorem 11, one can easily calculate the Jacobian determinant with respect to the

functions v3;v5;v7 and variables B1;B0;A0,

J ¼
∂ðv3;v5;v7Þ

∂ðB1;B0;A0Þ
¼ −2π3d51½8ðA0A2−A

2
2−B0B2−B

2
2Þ� (39)

Considering the conditions (37) of Theorem 12 and substituting the group of critical values of

Eq. (38) into Eq. (39), we obtain J ¼ 649π3d51 ≠ 0. Thus, we take some appropriate perturbations

for the coefficients of system (32) to make the following two conditions:

ðv1ð2πÞ−1Þv3 < 0; v3v5 < 0; v5v7 < 0 (40)

and

je2πδ−1j≪jv3j≪jv5j≪jv7j (41)

hold, one must obtain that the succession function on the center manifold has three small real

positive roots, just the system (30) has at least three limit cycles in the neighborhood of the

origin. We can refer to references [16, 26, 27] for more details about the construction of limit

cycles.

Remark 7. In general, in order to find more limit cycles in the neighborhood of the origin of

system (30), we should add more higher order terms of ~uðz;wÞ determined in Eq. (33). Here we
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propose a conjecture that system (30) has at most three limit cycles through Hopf bifurcation

restricted to a center manifold from the origin. However, the center conditions or integrability

at the degenerate singularity will need further study.

4. Conclusion and discussion

The two classes of methods for computing the nondegenerate and degenerate singular point

quantities on center manifold of the three-, four-, and more higher dimensional polynomial

systems are discussed here, and more as the applications of them, the multiple limit cycles or

Hopf cyclicity of two typical nonlinear dynamic systems restricted to the corresponding center

manifolds are investigated.

Appendix A

c½α;β� ¼

1

5ðα−βÞ
d1{b

2
02ð3β−2αÞ þ a20b02ð20−β−αÞ−a

2
20ð20þ 2β−3αÞÞ

· d1c½α−17;β−13� þ ðða11b02 þ a20b11Þð20−β−αÞ−2b02b11ð5−3βþ 2αÞ−

2a11a20ð15þ 2β−3αÞÞd1c½α−16;β−14� þ ðða02b02 þ a11b11 þ a20b20Þð20−

β−αÞ−ða211 þ 2a02a20Þð10þ 2β−3αÞ−ðb211 þ 2b02b20Þð10−3βþ 2αÞÞd1c½α−

15;β−15� þ ðða02b11 þ a11b20Þð20−β−αÞ−2b11b20ð15−3βþ 2αÞ−2a02a11ð5þ

2β−3αÞÞd1c½α−14;β−16� þ ða02b20ð20−β−αÞ−b
2
20ð20−3βþ 2αÞ−

a202ð2β−3αÞÞd1c½α−13;β−17�−b02ð5þ 3β−2αÞ þ a20ð5þ 2β−3αÞÞic½α−

6;β−4�−ðb11ð3β−2αÞ þ a11ð2β−3αÞÞi c½α−5;β−5�

þðb20ð5−3βþ 2αÞ þ a02ð5−2βþ 3αÞÞic½α−4;β−6�

~μ ½α� ¼ −

d1
5
{ða220ðα−20Þ þ 2a20b02ð10−αÞ þ b202αÞd1c½α−17;α−13�

þð2a11a20ðα−15Þ−2ða11b02 þ a20b11Þðα−10Þ þ 2b02b11ðα−5ÞÞd1c½α−

16;α−14� þ ðða211 þ 2a02a20−2a02b02−2a11b11 þ b211−2a20b20 þ 2b02b20Þðα−

10ÞÞd1c½α−15;α−15� þ 2ðða02b11 þ a11b20Þð10−αÞ−b11b20ð15−αÞ−a02a11ð5−

αÞÞd1c½α−14;α−16� þ ðb220ðα−20Þ−2ða02b20Þðα−10Þ þ a202αÞd1c½α−13;α−

17� þ ða20ðα−5Þ−b02ð5þ αÞÞi c½α−6;α−4� þ ða11−b11Þαii c½α−5;α−

5�−ðb20ðα−5Þ−a02ð5þ αÞÞi c½α−4;α−6�},

μm ¼ ~μ½5m�,

where c½k;j� ¼ ckj.
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