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1. Introduction 

The problem of fixed-order and fixed-structure controller tuning has been known for more 
than half a century and is a one of the classic problems of the control theory. Great number 
of papers and several monographs are devoted to this problem (e.g., Rotach et al., 1984; 
Datta, 1998; Datta et al., 2000; Astrom & Hagglund, 2006). Analytic methods based on 
information on structure and form of plant mathematical model play the main role among 
the methods for solving this problem. These include: 

• tuning methods based on single-stage solution of controller parameters synthesis 
problem (Rotach et al., 1984; Astrom & Hagglund, 2006); 

• automatic tuning methods based on application of relay feedback (Rotach et al., 1984; 
Datta, 1998; Datta et al., 2000; Hjalmarsson, 2002; Astrom & Hagglund, 2006); 

• methods based on indirect adaptive control, or implicit reference model (internal model 
control) (Petrov & Rutkovskiy, 1965; Datta, 1998; Datta et al., 2000; Astrom & Hagglund, 
2006). 

For recent two decades, many papers devoted to application of powerful 2H  and ∞H  

optimization tools to design and tuning problems for fixed-structure controllers have been 
presented (McFarlane & Glover, 1992; Zhou et al., 1996; Balandin & Kogan, 2007). Moreover, 
the concepts of robust design have brought to a new view of known controller tuning 
methods. 
In (McFarlane & Glover, 1992), a practically effective solution for fixed-order controller 
tuning problem was obtained. It is based on shaping frequency responses of open control 

loop by means of pre- and post-filters (loop shaping) in conjunction with minimizing ∞H  

norm of closed-loop system. The main advantage of this approach consists in that the 
resulting controller is not only stabilizing, but possesses assured performance characteristics 
in conditions of uncertainty. The method has been successfully applied for synthesis of PID 
(Proportional-Intagrating-Derivative) controller for SISO (Single-Input Single-Output) plant, 
as well as multiloop PID controller for MIMO (Multi-Input Multi-Output) plant. The 
controller tuning problem is close to the plant identification problem that implies using of 
constrained and unconstrained optimization technique for finding optimal controller tuning 
algorithms in model matching problem (Poznyak, 1991) and, in particular, in internal model 
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control. In (Tan et al., 2002), for solving the problem of PID controller design for MIMO 

plant the authors use BMI (bilinear matrix inequality) technique and minimization of ∞H  

norm of adjusted system transfer function introduced in (McFarlane & Glover, 1992). In 
(Balandin & Kogan, 2007), the authors present the synthesis method for adjusted system 
with fixed-order controller based on LMI (linear matrix inequality) technique guaranteeing 

boundedness of 2H  norm of the adjusted system transfer matrix together with its stability. 

In (Bao et al., 1999), the authors introduce a technique for multiloop PID controller tuning 
based on Bounded Real Lemma (BRL) allowing to obtain the numerical solution via semi-
definite programming. This method of controller tuning based on direct synthesis 
algorithms with application of LMI technique has certain advantages, namely: 

• This is the first LMI-based controller tuning method that has shown its validity and 
effectiveness in solving a number of applied problems. 

• There is standard software tools (e.g., Matlab) for implementation of this method. 
But this tuning method also has a number of drawbacks: 

• This approach poorly fits for synthesis from viewpoint of required control performance. 

• The synthesis problem solution results in controller of general full-order observer form. 
It requires solving additional approximation problem in frequency domain for PID 
controller tuning. 

• For fixed-structure controller, the method requires use of pre- and post-filters and, in 
general case, results in solving BMIs. 

• The solution depends on choosen initial conditions. 
The problem of fixed-order and fixed-structure controller tuning formulated in terms of 
quadratic optimization was solved in (Yadykin, 1985). It results in classic least-squares 
method of controller tuning algorithm synthesis. This approach is based on application of 
indirect adaptive control with implicit reference model of linear plant (also called internal 
model control). The principal distinction between this approach and other methods 
mentioned before consists in that the adjusted system performance is given directly by fixed 
parameters of the implicit reference model. Criterion of proximity for dynamic 
characteristics of the adjusted control system and its reference model can be expressed in 
terms of Frobenius norm for coefficients of polynomials generated by transfer functions of 
the control system and its reference model. The main idea of new approach introduced in 

this Chapter consists in replacement of the aforementioned tuning functional by 2H  norm of 

difference between transfer functions of closed-loop adjusted and reference systems and 
switching from unconstrained optimization to optimization under constraints in form of 

LMIs guaranteeing bounded ∞H  norm of transfer function of closed-loop system. By virtue 

of Parseval’s Theorem, it is the 2H  norm of difference between transfer functions of closed-

loop adjusted and reference systems gives direct estimation of difference between transients 
in the closed-loop adjusted and reference systems. Thus, the tuning objective consists in 
providing the adjusted system with transient performance of the reference model. 

2. Problem Statement 

Consider linear continuous time invariant control system consisting of the dynamic plant 
and fixed-structure controller 
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where ( ) pn
px t ∈R  is the plant state, 1( )y t ∈R  is the plant output, 1( )u t ∈R  is the control, 

( ) cn
cx t ∈R  is the controller state, 1( )g t ∈R  is the reference signal, and the matrices ,pA  ,pB  

,pC  ,cmA  ,pB  ,cmC  and cD  have compatible dimensions. Assume that plant (1) is 

completely controllable and observable, the state-space realizations ( , , )p p pA B C  and 

( , , , )cm c cm cA B C D  are minimal, and the matrices ,pA  ,pB  and pC  are known or can be 

defined at the earlier stage of parametric identification. Also assume 2( ) [0, ).g t ∈ +∞L  We are 

interested in tracking the reference input ( )g t  for an arbitrary set of plant parameters inside 

of some bounded region .Σ  It is assumed that controller (2) has fixed structure.  The feature 

of this controller tuning problem is in that the controller structure does not change in tuning 

process, i.e. the matrices cmA  and cmC  are fixed, and only elements of the vector cB  and 

scalar value cD  are to be adjusted. Such situation appears, for instance, when controller (2) 

is a PID controller. Denote the generalized tuning vector 

 
TT .c cG B D⎡ ⎤= ⎣ ⎦  (3) 

The goal of controller tuning on the base of principle of internal model of control loop 
consists in reaching the identity 

 ( ) ( ),my t y t≡  (4) 

where 1( )my t ∈R  is the output of implicit (virtual) reference model of system (1)–(2) under 

assumption that the plant input is fed by the test signal ( )g t  and the plant parameters 

belong to some admissible and bounded set  

{ }Σ = , , : , , .p p p pij pij pij pij pij pij pij pij pijA B C a a a b b b c c cL L L L L L  

The implicit reference model can be described by the following state-space equation system 
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where the state vectors of reference plant and controller, as well as the reference plant output 
and control have the same dimensions as their counterparts in system (1)–(2). Naturally, 
reference closed-loop system (5), (6) is assumed to be stable. The standard controller tuning 
procedure after plant identification consists of two stages (Astrom & Hagglund, 2006): 
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• synthesis of the controller parameters in nominal mode; 

• optimal controller tuning according to given tuning criterion. 
At that, it is assumed that the plant parameters at zero time take on any constant values 
from the admissible set .Σ  

Tuning objective (4) in frequency domain under assumption of zero initial conditions is 
equivalent to the identities 

 ( ) ( ) ( , ),mj jΦ ω ≡ Φ ω ∀ω∈ −∞ +∞  (7) 

 ( ) ( ) ( , ),mW j W jω ≡ ω ∀ω∈ −∞ +∞  (8) 

where ( )W s  and ( ) ( )/(1 ( ))s W s W sΦ = +  are the transfer functions of open- and closed-loop 

systems, respectively. Denote in advance that identities (7) and (8) are equivalent if some 
conditions, namely, full adaptability conditions hold true. The conditions (criteria) of weak, 
full, and partial adaptability of a control system (Yadykin, 1981) are some generalizations of 
controllability and observability criteria. Similar to the latter criteria, adaptability of a 
system can be determined in terms of ranks of some special adaptability matrices. The 
notion of system adaptability will be considered in the next section. 
Condition (8) expresses the requirement of proximity of the dynamic operators of the 
adjusted and reference open-loop systems along the whole set of admissible plant 
parameters .Σ  This is equivalent to proximity of transient responses of these systems when 

their inputs are fed with the unit step. Condition (7) expresses the same requirement for the 

closed-loop systems. In nominal mode we obviously have ( ) ( ).mW j W jω = ω  

Let us pass from the identity of transfer functions to the identity of polynomials generated 
by these transfer functions. The transfer functions of plant (1) and controller (2), as well as 
transfer functions of reference plant (5) and controller (6) are given by 

 1( ) ( ) ,p p pP s C sI A B−= −  (9) 

 1( ) ( ) ,cm cm c cK s C sI A B D−= − +  (10) 

 1( ) ( ) ,m pm pm pmP s C sI A B−= −  (11) 

 1( ) ( ) ,m cm cm cm cmK s C sI A B D−= − +  (12) 

respectively. Substituting expressions (9)–(12) into identity (8), we obtain the following 
polynomial controller tuning equation: 

 

1 1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( ) .

p p p cm cm c p p p c

pm pm pm cm cm cm pm pm pm cm

C sI A B C sI A B C sI A B D

C sI A B C sI A B C sI A B D

− − −

− − −

− − + −

= − − + −
 (13) 

Applying series expansion of resolvents in left-hand and right-hand parts of the last equality 
and multiplying its both parts to the product of characteristic polynomials of the plant, 
controller, and implicit reference plant and controller models, we obtain the following 
equation for the controller tuning polynomial (Datta, 1998): 

2 1
1 1 2 1 2 1 2 2( ) ( ) ( ) 0.c p

c p c p c p c p

n n
n n n n n n n nP N s P N s P N

+ −
+ − + − + +− + + − + − =A  

Define the adaptability matrices 
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 1 2 ,L L Lµ µ= ⎡ ⎤⎣ ⎦  T T T
1 2N N Nµ µ⎡ ⎤= ⎣ ⎦  (14) 

 and the linear-quadratic (LQ) tuning functional 1J  as follows 
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where ,ia  ,mia  cmia  are the coefficients of the characteristic polynomials of the plant, as 

well as implicit reference model of plant and controller, correspondingly. 
Identity (8) can be rewritten as 

( ) ( ) ( ) ( )( ) ( )
( , ),

( ) ( ) ( ) ( ) ( ) ( )

c p cm pmo om

c p o om cm pm

M j M j M j M jM j M j

Q j Q j Q j Q j Q j Q j

ω ω ω ωω ω
= ≡ = ∀ω∈ −∞ +∞

ω ω ω ω ω ω
 

where ( ),oM s  ( ),cM s  ( )pM s  are the numerator polynomials of transfer functions of the 

open-loop system, controller, and plant, ( ),oQ s  ( ),cQ s  ( )pQ s  are the respective denominator 

polynomials of these transfer functions. Let us denote 

( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ).o o cm o om o o o oP s M s Q s N s M s Q s F s P s N s= = = −  

Then 
2 1
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i
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F s P N s
+ −

=
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Let us also consider another one tuning functional 

 
2

2 2

1
( ) ( ) ( ( ) ( ))( ( ) ( ))

2
m m mJ s s j j j j d

+∞

−∞

= Φ − Φ = Φ − ω − Φ − ω Φ ω − Φ ω ω
π ∫  (16) 

as a criterion of proximity of the adjusted and reference closed-loop systems.  

Having introduced the tuning functionals 1J  and 2 ,J  let us formulate the following two 

tuning problems for given plant (1), the controller matrices ,cmA  ,cmC  and reference 

model (5), (6). 

Problem 1 (LQ Optimal Controller Tuning): Find 
TT

c cG B D⎡ ⎤= ⎣ ⎦  such that 

 1 min.
G

J →  (17) 
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Problem 2 ( 2H  Optimal Controller Tuning): Find G  such that 

 2 min.
G

J →  (18) 

Before giving solutions to the established problems, we need consider the notice of control 
system adaptability and properties of the adaptability matrices in some more details. 

3. Adaptability of Control System and Properties of Adaptability Matrices 

Adaptability is a structural property of a control system. It characterizes the potential ability 
of the control system to retain its dynamic characteristics when adjusting the parameters of 
the system toward its given reference model in the situation where the parameter set of the 
plant scatters around the parameter set of the nominal (reference) operating conditions of 
the control system (Yadykin, 1999). 
Let us consider a control system consisting of plant (1) and controller (2) given stable closed-
loop reference model (5), (6). It is assumed that plant (1) is completely controllable and 

observable, and the state-space realizations ( , , )p p pA B C ∈Σ  and ( , , , )cm c cm cA B C D  are 

minimal. Define the output error of system (1), (2) with respect to reference model (5), (6) as 

 ( ) ( ) ( ).me t y t y t= −  (19) 

Definition 1 (Complete Adaptability): Control system (1), (2) is said to be completely 

adaptable with respect to the output ( )y t  if for any triple of matrices ( , , )p p pA B C ∈Σ  there 

exists a unique vector 
TT

c cG B D∗ ∗ ∗⎡ ⎤= ⎣ ⎦  such that 

0 0 0 0 2( , , )
inf ( , , , , , , , , , ) 0

p p p
p c pm cm p p p

A B C
e t g x x x x A B C G∗

∈Σ
=  

2 0 0 0 0[0, ), ( ) [0, ), , , , .p c pm cmt g t x x x x∀ ∈ +∞ ∈ +∞L  

Definition 2 (Partial Adaptability): Control system (1), (2) is said to be partially adaptable 

with respect to the output ( )y t  if for any triple of matrices ( , , )p p pA B C ∈Σ  and any vectors 

G  there exists a unique vector G∗  such that 

0 0 0 0 0 0 0 02 2( , , )
inf ( , , , , , , , , , ) ( , , , , , , , , , )

p p p
p c pm cm p p p p c pm cm p p p

A B C
e t g x x x x A B C G e t g x x x x A B C G∗

∈Σ
=

 

2 0 0 0 0[0, ), ( ) [0, ), , , , .p c pm cmt g t x x x x∀ ∈ +∞ ∈ +∞L  

Definition 3 (Weak Adaptability): Control system (1), (2) is said to be weakly adaptable 

with respect to the output ( )y t  if for any triple of matrices ( , , )p p pA B C ∈Σ  and any vectors 

G  there exists a set of vectors G∗  such that 

0 0 0 0 0 0 0 02 2( , , )
inf ( , , , , , , , , , ) ( , , , , , , , , , )

p p p
p c pm cm p p p p c pm cm p p p

A B C
e t g x x x x A B C G e t g x x x x A B C G∗

∈Σ
=

 

2 0 0 0 0[0, ), ( ) [0, ), , , , .p c pm cmt g t x x x x∀ ∈ +∞ ∈ +∞L  
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Notice that all three kinds of adaptability characterize structural properties of the control 
system but not of the plant characterized by the invariant properties called controllability, 
observability, stabilizability, and detectability. Also denote that the adaptability property 
can be verified experimentally. 
The above adaptability definitions can be extended onto linear discrete time invariant 
systems, dynamic systems with static nonlinearities, bilinear control systems, as well as onto 
MIMO linear and bilinear control systems (Yadykin, 1981, 1983, 1985, 1999; Morozov & 
Yadykin, 2004; Yadykin & Tchaikovsky, 2007). 
Adaptability matrices (14) possess the following properties (Yadykin, 1999): 

1. The adaptability matrix L  is the block Toeplitz matrix for MIMO systems. For SISO 

systems L  is the Toeplitz matrix. 

2. The adaptability matrix L  has maximal column rank if and only if 

 det( ) 0.p pC B ≠  (20) 

Condition (20) is the necessary and sufficient condition of partial adaptability of control 
system (1), (2), as well as the necessary condition of its complete adaptability. 

3. Each block Nµ  of the block adaptability matrix N  equals to (block) scalar product of 

the (block) row of the matrix L  and column vector G  where all variables subscripts are 

added with subscript m  in the cases when it is absent, and vice versa. 

4. Each block of the matrix L  is a linear combination of block products of the plant 

matrices ,i j
p p pC A B−  controller matrices ,cm cmC Aη−ν  ,cB  ,cD  and products of the 

coefficients of the characteristic equations of the plant, controller, and their reference 
models. 

5. Upper and lower square blocks of the adaptability matrix L  have upper and lower 
triangle form, respectively. 

4. Solutions to LQ and H2 Tuning Problems 

In this section we consider the solutions of LQ and 2H  optimal tuning problems (17) and 

(18) for fixed-structure controllers formulated in Section 2 and briefly outline an approach to 
LQ optimal multiloop PID controller tuning for bilinear MIMO control system. 

4.1 LQ Optimal Tuning of Fixed-Structure Controller 

Let us determine the gradient of the tuning functional 1J  given by (15) with respect to 

vector argument using formula 

Ttr( )
.

Ax
A

x

∂
=

∂
 

Applying this formula to expression (15), we obtain 

2 1
T T1

0

2 ( ) , , , 0,2 1.
p cn n

p c

P P LJ
P N L L n n

G G G G

+ −
µ µ µ

µ µ µ µ
µ=

∂ ∂ ∂∂
= − = = µ = + −

∂ ∂ ∂ ∂
∑  

Thus, the necessary minimum condition for the tuning functional 1J  is 
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 T1 ( ) 0.
J

L LG N
G

∂
= − =

∂
 (21) 

In paper (Yadykin, 2008) it has been shown that necessary minimum condition (21) holds 
true in the following two cases: 

1. If 0LG N− =  then system (1), (2) is completely adaptable. 

2. If 0LG N− ≠  but T( ) 0L LG N− =  then system (1), (2) is partially or weakly adaptable. 

In the first case (complete adapatability), the equation 

 0LG N− =  (22) 

has a unique exact solution. In this case, necessary minimum condition (21) is also sufficient. 
In the second case (partial or weak adaptability), equation (22) does not have an exact 
solution, but the equation 

 T( ) 0L LG N− =  (23) 

has a unique approximate solution or a set of approximate solutions. Thus, if the matrix L  
has maximal column rank, then the vector (matrix) 

 T 1 T( )G L L L N L N∗ − += =  (24) 

is the solution to equation (23). In expression (24), L+  denotes Moore-Penrose generalized 

inverse of the matrix L  (Bernstein, 2005). 
The following Theorem establishing the necessary and sufficient conditions of complete and 
partial adaptability of system (1), (2) follows from the theory of matrix algebraic equations 
(Gantmacher, 1959). 
Theorem 1: Let plant (1) be completely controllable and observable, and the state-space 

realizations ( , , )p p pA B C  and ( , , , )cm c cm cA B C D  be minimal. Control system (1), (2) is 

completely adaptable with respect to the output ( )y t  if and only if 

 Im Im ,N L⊆  (25) 

 Ker 0,L =  (26) 

where Im  denotes the matrix image and Ker  denotes the matrix kernel. Control system (1), 

(2) is partially adaptable with respect to the output ( )y t  if and only if condition (26) holds. 

To illustrate LQ optimal tuning algorithm (24), let us consider a simple example. 
Example 1: Let control system (1), (2) consists of a linear oscillator and PI (Proportional-
Intagrating) controller in forward loop closed by the negative unitary feedback. The state-
space realizations of the plant and controller are given by 

0 1 0
0

1 1/(2 ) , .
0 1

1 0 0

p p cm c P I

p p
p cm c P

A B A B k k
T b

C C D k

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥

= − − ς = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎣ ⎦
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We suppose that { }: , 0 .b b b b bΣ = ≠L L  The transfer functions of the plant and controller, 

as well as the reference plant and controller are as follows: 

1

2 2

1
( ) , ( ) ,

2 1
ImP I

P P Im
p p p

k sk kb
P s K s k k k

s sT s T s

− +
= = + =

+ ς +
 

1

2 2

1
( ) , ( ) .

2 1
m Im

m m Pm Im
pm pm pm

b k s
P s K s k k

sT s T s

− +
= =

+ ς +
 

Substituting these expressions into identity (8) and eliminating equal factors, we obtain 

P m Pmbk b k=  

from which it follows that LQ optimal tuning of the controller parameters is given by 

 1 .P m Pmk b b k∗ −=  (27) 

Thus, for any values of the plant coefficient b  from the admissible set Σ  tuning 

algorithm (27) provides identical coincidence of the transfer functions of the open-loop 
adjusted system and its reference model. This means that the considered system is 
completely adaptable with respect to the output in terms of Definition 1 in the class of the 

linear oscillators with a single variable parameter (coefficient b ). 

Let as now assume that the plant is characterized by three variable parameters: 

{ }, , : , , , 0 .p p p p p p p pb T b b b T T T bΣ = ς ς ς ς ≠L L L L L L  

We are interested in tuning of two parameters of PI controller, Pk  and ,Ik  or, equivalently, 

the scalars cB  and .cD  Applying formulas (15), one can easily obtain the following 

expressions for the adaptability matrices: 

2 2

2 3

0

2 2
, ,

2 2

0

m cm

pm pm m cm p p m cm

p pm pm m cm p m cm p p

p m cm p

b b B

bT b b B T b D
L N

bT bT b B T b D T

bT b D T
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⎢ ⎥ ⎢ ⎥ς ς +⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥ς + ς
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where ,cm Pm ImB k k=  .cm PmD k=  Denote that the elements of the matrix L  are periodic: 

11 22 21 32 31 42 41 12, , , .l l l l l l l l= = = =  

According to LQ tuning algorithm (24), the optimal controller parameters are defined as 

T

12 2 4 2

2 22 2 2 4

2 3

1 0

2 1 21 4 2 (1 )
.

2 22 (1 ) 1 4

0

cm

pm pm cm p p cmpm pm p pm pm pc m

p pm pm cm p cm p ppm pm p pm pm pc

p cm p

B

T B T DT T T TB b

T T B T D Tb T T T TD

T D T

−∗

∗

⎡ ⎤ ⎡ ⎤
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4.2 LQ Optimal PID Controller Tuning for Bilinear MIMO System 

Let us outline an approach to extension of LQ optimal fixed-structure (PID) controller 
tuning algorithm presented in Subsection 4.1 onto the class of bilinear continuous time 
invariant MIMO systems with piecewise constant input signals. This approach can be found 
in more details in papers (Morozov & Yadykin, 2004; Yadykin & Tchaikovsky, 2007). 
Let us consider the bilinear continuous time-invariant plant described by the equations 

 1

( ) ( ) ( ) ( ) ( ),

( ) ( ),

r

p p pi i
i

p

x t A x t B u t N x t u t

y t C x t
=

⎫
= + + ⎪

⎬
⎪= ⎭

∑$
 (28) 

where ( ) n
px t ∈R  is the plant state, [ ]T

1( ) ( ) ( ) r
ru t u t u t= ∈A R  is the control, ( ) ry t ∈R  is 

the plant output, and the matrices ,pA  ,pB  ,pC  ,piN  1, ,i r=  have compatible dimensions. 

Also consider the fixed-structure controller, namely, multiloop PID controller for plant (28) 
with transfer matrix 

 { }1( ) diag ( ), , ( ) ,rK s K s K s= …  (29) 

where 

1 1
( ) 1 .

1
i i i

i i

K s k TD s
TS s TL s

⎛ ⎞
= + +⎜ ⎟

+⎝ ⎠
 

The state-space equations for PID controller (29) are given by (2) with 

{ }

[ ] [ ]{ } { }
−

− ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪
= = = ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

= =

= = = − +

… …

… …

1 21 2
1

1

31 3

1 2
1 3 2

0
diag , , , , diag , , ,

0 0

diag 1 1 , , 1 1 , diag , , ,

( ) , / , / ( / / ).

i r
c c cr ci c

r

c c r

i i i i i i i i i i i i i i

k k k
A A A A B

k k

C D k k

k TL k k TD L k k TL k TS k TD TL

 

The reference plant model is given by 

 1

( ) ( ) ( ) ( ) ( ),

( ) ( ),

r

m pm m pm m pmi m mi
i

m pm m

x t A x t B u t N x t u t

y t C x t
=

⎫
= + + ⎪

⎬
⎪= ⎭

∑$
 (30) 

where all vectors and matrices have the same dimensions as their counterparts in actual 
plant (28). The reference controller has the same structure as controller (29): 

 { }1( ) diag ( ), , ( ) ,m m mrK s K s K s= …  (31) 

where 

1 1
( ) 1 ,

1
mi mi m mi

m mi m mi

K s k T D s
T S s T L s

⎛ ⎞
= + +⎜ ⎟

+⎝ ⎠
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and its state-space equations are given by (6) with corresponding structure of the realization 
matrices. 

We are interested in tuning the parameters ,ik  ,iTD  ,iTS  ,iTL  1, ,i r=  of controller (29) 

such that to ensure the identity 

( ) ( )my t y t≡  

in steady-state mode provided that the parameters of plant (28) and control signal vary as 

step functions of time within some bounded regions ,Σ  .Ω  

The main idea of applying approach described in Subsection 4.1 for solving this problem 
consists in linearization of bilinear plant (28) and reference plant (30) with respect to the 
deviations from the steady-state values. In this case we obtain the linearized model of the 
actual plant 

 
( ) ( )

,
( ) ( )0

p pp p

p

A Bx t x t

y t u tC

⎡ ⎤Δ Δ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

$
 (32) 

o o

1

( ), , ,
r

p p pi i i p p p p
i

A A N u u B B C C
=

= + + Δ = =∑  

and the reference plant 

 
( ) ( )

,
( ) ( )0

pm pmpm pm

m mpm

A Bx t x t

y t u tC

⎡ ⎤Δ Δ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

$
 (33) 

o o

1

( ), , .
r

pm pm pmi i i pm pm pm pm

i

A A N u u B B C C
=

= + + Δ = =∑  

Then, the problem of PID controller tuning for bilinear plant (28) reduces to Problem 1, and 
we can apply LQ optimal controller tuning algorithm described in Subsection 4.1 to solve it.  

4.3 H2 Optimal Tuning of Fixed-Structure Controller 

To evaluate the squared 2H  norm of difference between the transfer functions of the 

adjusted and reference closed-loop systems, we need the following result. 

Lemma 1: Let ( ) ( , , )W s A B C=  be the strictly proper transfer function of a stable dynamic 

system of order n  without multiple poles. Let ( , , )A B C -realization of the transfer function 

( )W s  be the minimal realization. Then the following relations hold 

 
2

2
1 1

( ) ( )
( ) ( ) ( ) ,

( ) ( )
i i

n n

i i d
i i ds s s

M s M s
W s W s sW s

Q s Q s
−

+ −
+ −

− − + −
= = =

= =∑ ∑Re  (34) 

 

1 1

0 1 0 12

2
0

0 0 0

( 1 )

( ) ,

( 1)

n n n n
j j

i j i j
n

j j

n n ni j j jj
j j ji i i

j j j

s a CA B s a CA B

W s

a s ja s a s

−λ− −λ−λ λ λ
− −

λ= =λ+ λ= =λ+

=

− − −
= = =

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
−⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭=
⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪

−⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑ ∑ ∑
∑

∑ ∑ ∑
 (35) 
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where is +  are the poles of the main system, is −  are the poles of the adjoint system, that is, 

( 1) ,i is s+ −= − ⋅  ja  are the coefficients of the characteristic polynomial of the matrix ,A  

( ) ( )
( ) , ( ) ,

( ) ( )

( ) ( ), ( ) ( ), ( ) ( ) , ( ) ( ) ,

( ) 0, ( ) 0.

s s s s

i i

M s M s
W s W s

Q s Q s

M s M s Q s Q s M s M s Q s Q s

Q s Q s

+ −
+ −

+ −

+ + − −
=− =−

+ −
+ −

= =

= = = =

= =

 

Proof: When the Lemma 1 assumptions hold true, we have for the main and adjoint systems 

 1 1( ) ( )
( ) ( ) , ( ) ( ) .

( ) ( )

M s M s
W s C sI A B W s C sI A B

Q s Q s

+ −
+ − − −

+ −
= − = = − − =  (36) 

As is well known, the resolvent of the matrix A  has the following series expansion (Strejc, 
1981): 

 
1

11

0 1
0

1
( ) .

n n
j i j

in i
j i jii

sI A s a A
a s

−
− −−

= = +
=

− = ∑ ∑
∑

 (37) 

Substitution of (37) into (36) gives 

 
1

1

0 1 0

( ) , ( ) ,
n n n

j i j i
i i

j i j i

M s s a CA B Q s a s
−

− −+ +

= = + =

= =∑ ∑ ∑  (38) 

 
1

1

0 1 0

( ) ( 1) , ( ) ( 1) .
n n n

j j i j i i
i i

j i j i

M s s a CA B Q s a s
−

− −− −

= = + =

= − = −∑ ∑ ∑  (39) 

By definition of 2H  norm, 

2

2

1
( ) ( ) ( ) .

2
W s W j W j d

+∞

−∞

= − ω ω ω
π ∫  

Since by assumption the integration element in the last integral is strictly proper rational 

function, let us apply the Theorem of Residues forming closed contour C  consisting of the 

imaginary axis and semicircle with infinitely big radius and center at the origin at the right 
half of the complex plain. Inside of this contour, there are only isolated singularities defined 

by the roots of the characteristic equation ( ) 0Q s− =  of the adjoint system. It follows that 

1

1 1

( ) ( )1
( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( )
( ) ( ).

( ) ( )

i i

i i

n

d d
i ds ds s s

n n

i id
i ids s s

M s M s
W j W j d

Q s Q s Q s Q s

M s M s
W s sW s

Q s Q s

−

−

+∞ + −

− + + −
=−∞ =

+ −
+ −

− −+ −
= ==

− ω ω ω =
π +

= =

∑∫

∑ ∑ Re

 

Applying (38), (39), we obtain expression (35). 
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Correctness of the following equalities in notation of Section 2 can be proved by direct 
substitution: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ,
( ) ( ) ( ) ( )

o om om o o
m

o om o om

M s Q s M s Q s F s
W s W s

Q s Q s Q s Q s

−
− = =  (40) 

 
( )

( ) ( ) .
( ( ) ( ))( ( ) ( ))

o
m

o o om om

F s
s s

Q s M s Q s M s
Φ − Φ =

+ +
 (41) 

It is obvious that if the adjusted system is completely adaptable then ( ) 0oF s ≡  and 

1 2Arg min Arg min .
G G

J J=  

The following Theorem answer the question: Whether this equality retains when the system 
is not completely adaptable? 
Theorem 2: Let plant (1) be completely controllable and observable, the transfer functions 

( ) ( , , )p p pP s A B C=  and ( ) ( , , , )c c c cK s A B C D=  be strictly proper rational functions with no 

multiple and right poles. Then the following statements hold true: 

1. The necessary minimum conditions for functionals 1J  and 2J  coincides and are given 

by either 

 0LG N− =  (42) 

or 0,LG N− ≠  but 

  T( ) 0.L LG N− =  (43) 

2. If equation (42) has a unique solution, then the necessary minimum condition is also 
sufficient. 

3. The optimal controller tuning algorithms for functionals 1J  and 2J  coincide and are 

given by 

 .G L N∗ +=  (44) 

Proof: Applying Lemma 1 and equality (41), we obtain 

 2
1 1

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

p c p c

c c
i mi

n n n n
o o o o

d d
o om om o o om om oi ids dss s s s

F s F s F s F s
J

R s R s R s R s R s R s R s R s
− −

+ ++ − + −

+ + − − + + − −
= == =

= +∑ ∑  (45) 

where ( ) ( ) ( )o o oR s Q s M s= +  and ( ) ( ) ( )om om omR s Q s M s= +  are the characteristic polynomials 

of closed-loop system and its implicit reference model (superscripts “ + ” and “ − ” are used 

for the main and adjoint systems, respectively), c
is −  and c

mis −  are the poles of the adjoint 

system and its reference model. Denoting 

2 1 2 1 2 12 2( ) 1 , ( ) 1 ( 1) ,c p c p c pn n n n n n
S s s s s S s s s s

+ − + − + −+ −⎡ ⎤ ⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦A A  

one can put down 

{ } T Ttr ( )( ) ( )1 1
( ( ) ( )) ( ) .

( ) ( ) ( ) ( ) ( ) ( )
m o

o om o om o om

S s LG N L S s
W s W s F s

G N s N s G N s N s G N s N s

∂ −∂ ∂
− = = =

∂ ∂ ∂
(46) 
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Applying expressions (40), (45), and (46) to the transfer functions and characteristic 
polynomials of the main and adjoint systems, we have 

 2 2 2 ,
I II

J J J

G G G

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (47) 

where 
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With (45) and (46) in mind, denoting 

{ }1 2( 1)( ) diag ( 1) ,j jH s s− −= −  

let us transform expressions (48), (49) into 
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For the numerator polynomial of the open-loop system we have 

0
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mii
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a s
=

=
∑

 

Differentiating the last expression, we obtain 
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Using these formulas, it is not hard to obtain 
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From (50) and (52) it follows that all terms of sum (47) are the products of the complex 
matrices being the values of the complex-valued diagonal matrices with compatible 
dimensions in the poles of the adjoint closed-loop system and its reference model and the 

matrix factors of the form T( )L LG N−  and T( ) .LG N−  Since the complex-valued matrix 

factors cannot be identically zero on the set ,Σ  the necessary conditions for minimum of the 

functional 2J  are given by (42) or (43) and coincide with the necessary minimum conditions 

for the functional 1.J  Thus, the first statement of the Theorem is proved. 
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Let equation (43) have a unique solution for any given point of the plant parameter set .Σ  

Then this solution is given by (44) and determines one of the local minimums of the 

functionals 1J  and 2 .J  The analytic expressions for the functionals 1J  and 2J  include as 

factors the polynomials ( )oF s+  and ( )oF s−  that equal to zero according to (7). Since equality 

(42) holds true, conditions (21) hold and, consequently, the mentioned minimums must be 
global and coinciding. This proves the second and third statements of the Theorem. 
The tuning procedure determined by (44) gives the solution to unconstrained minimization 

problem for the criteria 1J  and 2 .J  But it does not guarantee stability of the adjusted system 

for the whole set .Σ  

The main drawback of this tuning algorithm consists in that the direct control of stability 
margin of the adjusted system is impossible. This drawback can be partially weakened by 
evaluating the characteristic polynomial of the closed-loop system or its roots. Let us 
consider another approach to managing the mentioned drawback. 

5. H2 Tuning of Fixed-Structure Controller with H∞ Constraints 

The most well-known and, perhaps, the most efficient approach to solving this problem is 

the direct minimization of ∞H  norm of transfer function of the adjusted system on the base 

of loop-shaping (McFarlane & Glover, 1992; Tan et al., 2002). The main advantages of this 
approach consist in the direct solution to the controller tuning problem via synthesis, 
simplicity of the design procedure subject to internally contradictory criteria of stability and 
performance, as well as good interpretation of engineering design methods. 
Drawbacks consist in need for design of pre- and post-filters complicating the controller 
structure, as well as in optimization result dependence on chosen initial approach. Bounded 

Real Lemma allows expressing boundedness condition for ∞H  norm of transfer function of 

the adjusted system in terms of linear matrix inequality for rather common assumptions on 
the control system properties (Scherer, 1990). Consider application of Bounded Real Lemma 
to forming linear constraint for the constrained optimization problem. 
The feature of mixed tuning problem statement is that the linear constraints guarantee some 
stability margin, but not performance, since it is assumed that performance can be provided 
by proper choice of matrices of the implicit reference model, and then performance can only 
be maintained by means of adaptive controller tuning. 
The problem statement is as follows. Let us consider the closed-loop system consisting of 
plant (1) and fixed-structure controller (2) 

 
cl clcl cl

cl

( ) ( )
( ) :

0( ) ( )

A Bx t x t
s

Cy t g t

⎡ ⎤ ⎡ ⎤⎡ ⎤
Φ =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

$
 (53) 

with 

cl cl

cl
,

0
0 0

p p c p p cm p c

c p cm c

p

A B D C B C B D
A B

B C A B
C

C

⎡ ⎤−
⎡ ⎤ ⎢ ⎥

= −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 

and the closed-loop reference model 
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cl clcl cl

cl

( ) ( )
( ) : ,

0( ) ( )
m mm m

m
mm

A Bx t x t
s

Cy t g t

⎡ ⎤ ⎡ ⎤⎡ ⎤
Φ =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

$
 (54) 

 ( ) .m ms
∞

Φ < γ  (55) 

We are interested in finding the controller parameters cB  and cD  such that 

 2 2 ,
( ) ( ) min,

c c
m

B D
J s s= Φ − Φ →  (56) 

 ( )s
∞

Φ < γ  (57) 

, ,p p pA B C∀ ∈Σ  and the matrix clA  be Hurwitz.  

By virtue of Theorem 2, the necessary condition for minimum of functional (56) is 

 
TT T T 0c cL L B D L N⎡ ⎤ − =⎣ ⎦  (58) 

, , .p p pA B C∀ ∈Σ  According to Bounded Real Lemma (Scherer, 1990), condition (57) holds 

true if and only if there exists a solution T 0X X= >  to matrix inequality 

 

T T
cl cl cl cl

T
cl

cl

0 0.

0

XA A X XB C

B X I

C I

⎡ ⎤+
⎢ ⎥

−γ <⎢ ⎥
⎢ ⎥−γ⎢ ⎥⎣ ⎦

 (59) 

Matrix inequality (59) is not linear and jointly convex in variables ,X  ,cB  and .cD  In order 

to pass from inequality (59) to LMI constraints, let us use a technique similar to (Gahinet & 
Apkarian, 1994; Balandin & Kogan, 2007). Define the matrix of the controller parameters 

cm c

cm c

A B

C D

⎡ ⎤
Θ = ⎢ ⎥

⎣ ⎦
 

and represent the closed-loop system matrices as 

cl 0 cl 0 1 cl 0 2, , ,A A B C B B B D C C D C= + Θ = + Θ = + Θ  

0 0 0 1 2

00 0 0
, 0, 0 , , , , 0.

00 0 0

p p
p

p

IA B
A B C C B C D D

CI I

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = = = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

Substitute these expressions into (59) and represent the resulting inequality as linear matrix 

inequality with respect to :Θ  

 T T T 0,P Q Q PΨ + Θ + Θ <  (60) 

[ ]

T T
0 0 0

T
1

0

0

0 0 , 0 , 0 0 .

0

A X XA C

I P C D Q B X

C I

⎡ ⎤+
⎢ ⎥ ⎡ ⎤Ψ = −γ = =⎢ ⎥ ⎣ ⎦
⎢ ⎥−γ⎣ ⎦
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According to Projection Lemma (Gahinet & Apkarian, 1994), inequality (60) is solvable with 

respect to the matrix Θ  if and only if 

 

T T T T
0 0 0 0 0 0

T T

0 0

0 0

0 0 0, 0 0 0,

0 0

P P Q Q

A X XA C A X XA C

W I W W I W

C I C I

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥

−γ < −γ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−γ −γ⎣ ⎦ ⎣ ⎦

 (61) 

where the columns of the matrices PW  and QW  form the respective bases of KerP  and 

Ker .Q  To eliminate the unknown matrix X  from the matrix ,Q  let us represent 

T

0 0

0 0 , 0 0 ,

0 0

X

Q R I R B

I

⎡ ⎤
⎢ ⎥ ⎡ ⎤= = ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 

from which it follows that 

1 0 0

0 0 .

0 0

Q R

X

W I W

I

−⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Substituting this expression into (61) and denoting 1 ,Y X −=  we obtain the following result. 

Theorem 3: Given 0,γ >  fixed-structure controller (2) providing minimum for the tuning 

functional 2J  and ensuring condition (57) exists if and only if there exist the inverse 

matrices T 0X X= >  and T 0Y Y= >  such that 

 

T T T T
0 0 0 0 0 0

T T

0 0

0 0

0 0 0, 0 0 0, .

0 0

P P R R

A X XA C A Y YA YC

W I W W I W XY I

C I C Y I

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥

−γ < −γ < =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−γ −γ⎣ ⎦ ⎣ ⎦

 (62) 

If conditions (62) hold true, and the matrices X  and Y  are found, the controller parameters 

cB  and cD  are defined from solution of linear matrix inequality (60) subject to equality 

constraint (58). 

Denote that further simplification of (62) via respective choice of the matrices PW  and RW  

is possible (see, e.g., Gahinet & Apkarian, 1994), but this is not required by the numerical 
algorithm for solving linear matrix inequalities with respect to inverse matrices presented in 
(Balandin & Kogan, 2005). 

Taking into account the block structure of the controller matrix Θ  that includes constant 

and variable blocks, let us consider some aspects of solving inequality (60). Let the matrix 

X  satisfying (62) be found. Partition it into the blocks 

11 12

T
12 22

X X
X

X X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

in accordance with the orders of plant and controller. Then 
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T T T
11 11 12

T
12

0

0 0 0
,

0 0 0

0 0

p p p p

p

p

A X X A A X C

X A

I

C I

⎡ ⎤+
⎢ ⎥
⎢ ⎥

Ψ = ⎢ ⎥−γ⎢ ⎥
⎢ ⎥−γ⎣ ⎦

 (63) 

T
12 22

T T
11 12

0 0 0 0 0
, ,

0 0 0 0p p p

I X X
P Q

C I B X B X

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

12 11 12 11 12 11

T T T
22 12 22 12 22 12T

( ) 0

( ) 0
.

0 0 0 0

0 0 0 0

c p c p cm p cm c p c

c p c p cm p cm c p c

X B X B D C X A X B C X B X B D

X B X B D C X A X B C X B X B D
Q P

− + + +⎡ ⎤
⎢ ⎥
− + + +⎢ ⎥Θ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (64) 

Substituting (63) and (64) into (60), one can obtain linear matrix inequality with respect to 

the unknown controller parameters cB  and .cD  

Thus, the procedure of 2H  optimal controller tuning with ∞H  constraints consists of two 

stages. At the first stage, one need find two inverse positive-definite matrices X  and Y  

satisfying (62) with .mγ = γ  At the second stage, when the matrices X  and Y  are obtained, 

the controller parameters cB  and cD  can be found from linear matrix inequality (60), (63), 

(64) subject to equality constraint (58). Numerical solution to linear matrix inequality subject 
to linear equality constraints can be obtained using Matlab software toolbox SeDuMi 
Interface (Peaucelle, 2002). 
For the purpose of numerical illustration, let us give a simple numerical example. 
Example 2: Consider the problem of a first-order controller tuning for a second-order 
unstable linear oscillator. The reference model is given by (5), (6) with 

 

5

7

0 1 1
23.33604 2.54 10

100 0.3 0 , ,
0 9.09 10 31.62046

1 0 0

pm pm cm cm

pm cm cm

A B A B

C C D

−

−

⎡ ⎤
⎡ ⎤− − ⋅⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥= − =⎢ ⎥ ⎢ ⎥⎢ ⎥
− ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦

⎣ ⎦

 (65) 

at that 1,2( ) 0.15 9.9989 .pmA jλ = ±  The reference model controller ( )mK s  is a solution to the 

following ∞H  suboptimal problem: find fixed-order controller (6) for plant (5) guaranteeing 

internal stability of reference closed-loop system (54) and fulfilment of condition (55) with 

1.02mγ =  (Balandin & Kogan, 2007). In this example, we consider the actual plant given 

by (1) with two sets of parameters: 

 1,2

0 1 0.6

140 0.5 0 , ( ) 0.25 11.8295 ,
0

1.4 0 0

p p

p
p

A B
A j

C

⎡ ⎤
⎡ ⎤ ⎢ ⎥

= − λ = ±⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (66) 

and 
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 1,2

0 1 1.4

60 0.1 0 , ( ) 0.05 7.7458 .
0

0.6 0 0

p p

p
p

A B
A j

C

⎡ ⎤
⎡ ⎤ ⎢ ⎥

= − λ = ±⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (67) 

Given controller structure and order ( ,c cmA A=  c cmC C= ), we are interested in finding the 

matrices cB  and cD  such that conditions (56), (57) hold with .mγ = γ  

At the first stage of tuning process described above we have obtained the following 

numerical solutions to dual LMI (56) with 1.02 :mγ = γ =  

0.0754 0.0003 0.0304 13.4456 6.9922 0.3846

0.0003 0.0005 0.0001 , 6.9922 1836.7693 0.3456

0.0304 0.0001 1.0646 0.3846 0.3456 0.9503

X Y

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

for plant (1) with realization (65) and 

0.0687 0.0001 0.0000 14.5580 1.4755 0.0000

0.0001 0.0011 0.0000 , 1.4755 873.4150 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

X Y

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

for plant (1) with realization (66). 
At the second stage, solving LMI (60), (63), (64) subject to equality constraint (58) we have 
obtained the controller 

 7

23.33604 104.30004

9.09 10 52.71044

cm c

cm c

A B

C D

∗

−∗

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ = ⎢ ⎥

− ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (68) 

for realization (66) and 

 

7

7

23.33604 1.44589 10

9.09 10 17.71328

cm c

cm c

A B

C D

∗ −

∗ −

⎡ ⎤ ⎡ ⎤− − ⋅
⎢ ⎥ ⎢ ⎥=

− ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (69) 

for realization (67). Denote that controller (68) results in ( ) 1.0125 1.02,s
∞

Φ = < γ =  and 

controller (69) results in ( ) 1.0069 1.02.s
∞

Φ = < γ =  

Simulation results for reference system (65), as well as for actual plants (66), (67) with 
controllers (68), (69), respectively, are presented in Fig. 1. The left red-coloured diagrams 
correspond to plant (66) and controller (68), whereas the right blue-coloured diagrams show 
transients and control for plant (67) and controller (69). The diagrams for the reference 
system are shown in black colour. At the top diagrams, the step responces of reference and 
actual plants are presented. The middle plots show the step responces of closed-loop 
reference and actual systems. The control signals generated by reference and adjusted 
controllers are given at the bottom diagrams. One can denote good visual proximity of step 
responces of the reference and adjusted closed-loop systems at the middle diagrams. 
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Figure 1. Step responces and control for reference and actual systems 
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Figure 2. Bode diagram for reference system 
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Figure 3. Bode diagrams for actual systems 

The Bode diagrams for the reference and actual systems are shown in Fig. 2 and Fig. 3, 
correspondingly, including diagrams for plants (blue lines), controllers (green lines), and 
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closed-loop systems (red lines). At Fig. 3, the left plots correspond to plant (66) and 
controller (68), the right plots represent plant (67) and controller (69). 

6. Conclusion 

One of the main results of this Chapter consists in that the necessary minimum conditions 

for the functional given by 2H  norm of the difference between the transfer functions of the 

closed-loop adjusted and reference systems coincide with the necessary minimum 
conditions for Frobenius norm of the controller tuning polynomial generated by these 
transfer functions that have been obtained earlier. 
Theorem 2 shows that in spite of complexity of analytic expressions for the “direct” tuning 

functionals 1J  and 2 ,J  optimal values of the adjusted parameters can be found via 

comparatively simple pseudosolution of linear matrix algebraic equation. This approach 
ensures proximity of transient responses of the adjusted and reference systems and, 

consequently, the best (in sense of 2H  norm) stability of performance indicies of the 

adjusted system. 
The properties of complete, partial, and weak adaptability of a system with respect to its 
output belongs to the system invariants. The adaptability criteria, just as Kalman’s criteria of 
controllability and observability, are formulated in terms of rank properties of the 
adaptability matrices. One of the main properties of the adaptabilty matrices is Toeplitz 
property. 

Although 2H  norm in functional 2J  is defined for the closed-loop systems, the elements of 

the adaptability matrices depend only on the coefficients of the characteristic polynomials, 
matrices and matrix coefficients of the resolvent series expansions of the plant, controller, 
and their reference models. An advantage of finding optimal controller parameters via the 
mentioned pseudosolution consists in that individual plant poles can be unstable on 
condition that all poles of adjusted closed-loop system are stable. 

The main drawback of LQ and 2H  optimal tuning algorithms consists in that the direct 

control of stability margin of the adjusted system is impossible. This drawback can be 
partially weakened by evaluating the characteristic polynomial of the closed-loop system or 

its roots. This drawback can be eliminated by use of 2H  optimal tuning algorithm together 

with ∞H  constraint. 

Another one important result of this Chapter consists in the presented 2H  optimal fixed-

structure controller tuning algorithm with ∞H  constraint for SISO systems represented by 

minimal state-space realization that can be easily extended onto MIMO systems. This 

approach is based on minimization of 2H  criterion of proximity of transient responses of the 

closed-loop system and its implicit reference model subject to constraint onto ∞H  norm of 

the transfer function of the closed-loop system formulated in terms of LMIs. 
The obtained algorithms of optimal tuning of multiloop PID controller for bilinear MIMO 
plant have the same structure as the similar algorithms for linear MIMO plant (Morozov & 
Yadykin, 2004; Yadykin & Tchaikovsky, 2007). However, the optimal tuning procedures for 
the bilinear plant are more complex than similar procedures for the linear plant: 

• Identification procedures for bilinear plants depend on operating point of the process, 
increment of piecewise-constant control, and its sign in various combinations. This 
gives rise to need in considering many modes of identification and tuning. 
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• The models of bilinear plant and reference system, as well as tuning criteria and 
algorithms have to be matched. 

• Dynamics of transients in the adjusted system depends on the sign and magnitude of 
the test control increment. For positive increments, the transients, in general, accelerate 
and their decrement decrease, whereas for negative increments the transient decrement 
increase and it decelerate. 

The obtained results can be also considered as a solution to the controller design problem 
for linear time invariant SISO and MIMO systems on the base of the constrained 

minimization of 2H  norm of the difference between the transfer functions of the closed-loop 

designed and reference systems subject to constraint onto ∞H  norm of the transfer function 

of the designed system established in terms of LMIs. 
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