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1. Introduction

The control and possible optimization of a dynamic process usually requires the complete
on-line availability of its state-vector and parameters. However, in the most of practical
situations only the input and the output of a controlled system are accessible: all other
variables cannot be obtained on-line due to technical difficulties, the absence of specific
required sensors or cost (Radke & Gao, 2006). This situation restricts possibilities to design
an effective automatic control strategy. To this matter many approaches have been proposed
to obtain some numerical approximation of the entire set of variables, taking into account
the current available information. Some of these algorithms assume a complete or partial
knowledge of the system structure (mathematical model). It is worth mentioning that the
influence of possible disturbances, uncertainties and nonlinearities are not always
considered.

The aforementioned researching topic is called state estimation, state observation or, more
recently, software sensors design. There are some classical approaches dealing with same
problem. Among others there are a few based on the Lie-algebraic method (Knobloch et. al.,
1993), Lyapunov-like observers (Zak & Walcott, 1990), the high-gain observation (Tornambe
1989), optimization-based observer (Krener & Isidori 1983), the reduced-order nonlinear
observers (Nicosia et. al., 1988), recent structures based on sliding mode technique (Wang &
Gao, 2003), numerical approaches as the set-membership observers (Alamo et. al., 2005) and
etc. If the description of a process is incomplete or partially known, one can take the
advantage of the function approximation capacity of the Artificial Neural Networks (ANN)
(Haykin, 1994) involving it in the observer structure designing (Abdollahi et. al., 2006),
(Haddad, et. al. 2007), (Pilutla & Keyhani, 1999).

There are known two types of ANN: static one, (Haykin, 1994) and dynamic neural networks
(DNN). The first one deals with the class of global optimization problems trying to adjust
the weights of such ANN to minimize an identification error. The second approach,
exploiting the feedback properties of the applied Dynamic ANN, permits to avoid many
problems related to global extremum searching. Last method transforms the learning
process to an adequate feedback design (Poznyak et. al., 2001). Dynamic ANN’s provide an
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62 Systems, Structure and Control

effective instrument to attack a wide spectrum of problems, such as parameter
identification, state estimation, trajectories tracking, and etc. Moreover, DNN demonstrates
remarkable identification properties in the presence of uncertainties and external
disturbances or, in other words, provides the robustness property.

In this chapter, we discuss the application of a special type of observers (based on the DNN)
for the state estimation of a class of uncertain nonlinear system, which output and state are
affected by bounded external perturbations. The chapter comprises four sections. In the first
section the fundamentals concerning state estimation are included. The second section
introduces the structure of the considered class of Differential Neural Network Observers
(DNNO) and their main properties. In the third section the main result concerning the
stability of estimation error, with its analysis based on the Lyapunov-Like method and
Linear Matrix Inequalities (LMI) technique is presented. Moreover, the DNN dynamic
weights boundedness is stated and treated as a second level of the learning process (the first
one is the learning laws themselves). In the last section the implementation of the suggested
technique to the chemical soil treatment by ozone is considered in details.

2. Fundamentals

2.1 Estimation problem
Consider the nonlinear continuous-time model given by the following ODE:

%x(t) = £ (x@®,ult))+ @), x(0) is fixed )
y(t) = Cx(1) +n(1)

where
state-vector at time t=>0,

x(t)e R"
y(e R™ - corresponding measurable
output,
Ce jRMXn - the known matrix defining the
state-output transformation,
ult)e R - the bounded co.ntrol action
(r<n) belonging to the
following admissible set
d
U =u(e) : Jul)| <Y, <o},
&) and n(t) - noises in the state dynamics and
in the output, respectively,
f ,g{l’le" %9{”
The software sensor design, also called state estimation (observation) problem, consists in
designing a vector-function 2(t)e R", called “estimation vector”, based only the available
data information (measurable) {y(t),u(t)}r elo, ] in such a way that it would be "closed" to

its real (but non-measurable) state-vector X(Z). The measure of that "closeness" depends on

the accepted assumptions on the state dynamics as well as the noise effects. The most of
observers usually have ODE-structure:
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Differential Neural Networks Observers: development, stability analysis and implementation 63

%fc(t) = F[fc(t),u(t),yr e 0.} t), X is a fixed vector (2)

Here the mapping F R xR x LM xRT - R" defines the structure of the observer to be

implemented.

2.2 Physical Constraints of the state vector

To realize the state observation objective, many authors have taken advantages of the
physical state constraints. Some examples of these techniques employing “a priori”
information on states are: interval observers (Dochain, 2003) and moving horizon state
estimation (Valdes-Gonzélez et. al., 2003). In the present study, some physical restrictions
are considered and using previous results given in (Garcia, et. al. 2007). The main property
of an observer, which are looked for, is to keep the generated state estimates £(t) within the

given compact set X (even in the presence of noise), that is:
fe x ©

In different problems the compact set X  has a concrete physical sense. For example, the
dynamic behaviors of some reagents, participating in chemical reactions, always keep their
nonnegative current values. Similar remark seems to be true for other physical variables
such as temperature, pressure, light intensity and etc. To complete (3) the next projectional
observer is proposed:

t

2(t) = nx{x(t “he)+ 1 F(s(mur)ysefo o)) dr}, £> h(0) @
T=t-ht)

Here hlr)e ¢! fulfills h(t)<0. The operator JTX{} is the projector to the given convex

compact set X possessing the property
HJTX{X}— ZH <|x—2 (5)

for any xe ®"" and any ze X . The operator JTX{} may be defined by different ways.
Two examples of = {} are given below.

Example 1 (Saturation function):
nX{x}=[sat(x1) saif(xnﬂT

where for any i=1..n

(Xi)_ xi < (Xl')_
sat(x;): =1 x; (xi)_ <x; < (xi)+ (7)
(xl-)+ xi > (xi)+
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64 Systems, Structure and Control

with (x;) <(x; )+ as an extreme point a priori known.

Example 2 (Simplex): If X is the n-simplex, i.e.,
n
X:{ze R" : z20(i=1,..,n), Zzizl} 8)

then JIX{x} can be found numerically by at least within n-steps. The case n=3 is

illustrated by Figure 1.

I

5

Figure 1. Projectional operator over a simplex (n=3)

An important point is that with the projectional operator implementations the trajectories
{£(t)} , generated by (4), are not differentiable for any ¢ > h(t) >0 .

3 Structures of DNN Observers

3.1 State estimation under complete information
If the right-hand side f(x(#)) of the dynamics (1) is known then the structure F of the

observer (4) is usually selected in the, so-called, Luenberger-type form:
F(x(t)u(t) y(¢)t)= f{&0,u®)+ K()y® - C2() ©)

So, it repeats the dynamics of the plant and, additionally, contains the correction term,
proportional to the output error (see, for example Yaz & Azemi, 1994; Poznyak, 2004). The
adequate selection of the matrix-gain K(t) provides a good-enough state estimation.

3.2 Differential Neural Network Observer, the "grey-box" case
In the case when the right-hand side f(x,u) of the dynamics (1) is unknown, there is

suggested to apply some guessing of it, say, f(x(t),u(t)|W(t)) where feR" defines the
approximating map depending on the time-varying parameters IV(t), which should be
adjusted by a "adaptation law" suggested by a designer or derived, using some stability
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Differential Neural Networks Observers: development, stability analysis and implementation 65

analysis method. According to the DNN-approach (Poznyak et. al., 2001) we may
decompose f(x(8),u(t)|W(t)) in two parts: first one, approximates the linear dynamics part

by a Hurwitz fixed matrix Ae R™*"™ (selected by the designer) and the second one, uses

the ANN reconstruction property for the nonlinear part by means of variable time
parameters Wl 2(t) with a set of basis functions, that is,

f (x(t),u(t) Wy z(t)] ;= Ax(t) + Wy(Do(x(t))+ Wy (D) p(x(B)u(t)
Ae RPN Wie RTP, of)e RP¥] (10)
W,(he R, g()e RT*"

The activation vector (the basis) function o() and matrix-function ¢(-) are usually
selected as functions with sigmoid-type components, i.e.:

-1
n
oj(x(t)) P=a; 1+bj exp{—j%lcjxj(t)} ,j=Ln (11)
and
. -1
@; ]'(x(t)) l=a j(1+ b, . €XP[— > c, xs(l‘)D Ji=Lgj=Lr (12)
7 7 iy s—1 LS
It is easy to see that the activation functions satisfy the following sector conditions
o(x(®) o), <L) -ty (13)
o
Ag
I\ 72
lp(x(®) - o) <Lx(t)—x'(t) (14)
» A(p

and stay bounded on R" . In (10), the constant parameter A , as well as the time-varying
parameters W, 5(t) , should be properly adjusted to guarantee a good state approximation.

Notice that for any fixed matrices W, 2(t)=W1 5 the dynamics (1) always could be

represented as

2300 = Ax()+ Wiolx() + Waplx(0)u() + T+ &0

0 <= Fx(0)- F(x)1 A 5
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66 Systems, Structure and Control

where f(t) is referred to as a modeling error vector-field called the "unmodelled dynamics".
In view of the corresponding boundedness property, the following inequality for the
unmodelled dynamics f(t) takes place:

ol <To Rl
f (16)

T
Fo F>0; Af,A17>O, Ap=Af, A%:(Alf)

3.3 Structure DNN observers considering state physical constraints
Introduce the following projectional DNNO:

t
) =my 2=+ | [A%(0)+ Wi(D)o(2(0)+ Wy (2)(plx(7))u(z) + Ke(r)]dr} (17)

T=t—hlt)
e(t) =y(t)—C(t)

Here the weights matrices W;(t) and W,(t) supply the adaptive behavior to this class of

observers if they are adjusted by an adequate manner. We derived (see Appendix) the
following nonlinear weight updating laws based on the Lyapunov-like stability analysis:

Kt dky(t)
ZWl(t):—lz()PQ(t)aT(x(t))—clli)wl(t)
Q(t) =TIW (o (2()+2NCle(t-h(t);  Wy(t) =Wy (H-W; (18)
M= (Nw [m’A3 ¥ CTA2C)N07P ¥ I)
K dky (1)
L, 0=-"2 Y b " st~ X2 iy 1)
O(t) = ZW, (0)(@(R(0)u(r) +2NZCle(t—h(1));  Wy(t) =Wy()-Wyil  (19)

= T

where:
T _1
Ng=(cTcat) ", @50

To improve the behavior of this adaptive laws, the matrix Wl » can be "provided" by one

of the, so-called, training algorithms (see, for example, Chairez et. al., 2006; Stepanyan &
Hovakimyan, 2007). Both present least square solutions considering some identification
structure for possible set of fictitious values or even an available set of directly measured
data of the process.
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4. DNN Observers Stability

4.1 Behavior of weights dynamics
Here we wish to show that under the adapting weights laws (18) and (19) the weights
Wi(t) and Wy (t) are bounded.

Theorem 1 (bounded adaptive weights): If k;(t) (i=1,2) in (18) and (19) satisfy

4 HW L (¢ PQ(t)O' (x(t))}

1
L) <s——g ]

de 1 { (t} +cky klmm]
; (kz(t))z tr Wz(t)Pq)(t)u (t)(p (2(£))

N
b (6T Wy (1) cho ka0, i

(20)

dt

then tr{WlT (O™ (t)} is monotonically non-increasing function.
Proof: Considering the dynamics for the weight matrix Wl (t) and the following candidate
Lyapunov function V,,(t)

Violt) -'=;”{W1T( HW; (¢) } C[kl klminE (21)
where
z(t) z(t)=>
[Z(t)L- -={ 0 Z(f)< (22)
Then, one has
Ly =W @) Lo |+ 27 B )k, B @)
By (18) it follows
2 k!
y = wlTa)[— L pacna a4 >H '
1
2l d(kl(t)) ()= K], < 2(t) tr{WlT(t)PQ(t)aT(x(t))}+ (24)

2—”“’2:’5”(1 (t)tr{WlT(t)Wl(t)}+2_1C[k1(t)—k1minL)

The property ;ti (t)<0 results from (20).

Some examples of ki( t) (i = 1,2) are given below
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a. Introduce the following auxiliary function

o T (@) et -h(6) = i 0 )P f)aT(ﬁe(t))}
I c[kl (t)- kl,minL

And select
k) = 1+ a(WlT( t), f((toi h( t))) exp(bt) Hinin 7 fimin j >0
o, o W (1) et = (e b explo)
at o T (et =n(e) Jexp{ bt
<= (et -neey)
Leading to

o W (e ect - )))exp(bt)(k(O)b—s(WlT(t ) et —h(t))D
> W (1), et

The last inequality is fulfilled if the weight dependent parameter a(WlT( t)e( t))) is selected

as

a(WlT( ), e(t - h(t ))) > S(WIT(IL ),e(t—h(t )))exp(— bty
¥ = k(0)b— s(WlT(t ) e(t—h(t) ))

b. Analogously, for WzT (t) :

tr{sz ()Pt (2)p" (ﬂr))}

Cl:k2(t) = k2,min}

k()

s( AL (t),e(t_h(t))j =

+

k 0

kalt) = KO) +k
1+a(W2T (t),e(t—h(t)))exp(bt)

T
al Wx (t),e(t—h(t)) b~exp(bt)
;tkz(t)::—kz(O) ( ZNT )]
e ] (0),e(t = h(t) Jexp{ byt

< -S(Wg (t),e(t— h(t))]

min,j’ “min, | -
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It is worth to notice that the learning law (18) and (19) must be realized on-line in parallel
with the gain-parameter adaptation procedure (20). By this reason, this structure can be
considered as a second adaptation level.

4.2 Main theorem on an upper bound for the observation error
For the stability analysis of the proposed DNNO, the next assumptions are accepted:

Al) the function f R SR s Lipschitz continuous in xe X , thatis, forall x,x’e X

there exist constants Ll b such that

Hf(x,u,t)— f(y,v,t]\ < Lle —y|+ Ly |u—v|

25
Hf(O,O,iEX2 SCl; X, Y€ R u,ve RM; OSLI,LZ < oo )

A2) The pair (A,C) is observable, that is, there exists a gain matrix Ke RTXM such that

matrix
A(K) :=A-KC (26)

is stable (Hurwitz).
A3) The noises {(t) and n(t) in the system (1) are uniformly (on t) bounded such that

(27)

§(»2A§ <Ye,

2
nf, <Y
A;7 n

where A§ and A, are known "normalizing" non-negative definite matrices, which

n

permit to operate with vectors having components of different physical nature (for
example, meters, voltage and etc.).
Theorem (Upper error for DNNO). Under assumptions A1-A3 and if there exist matrices

Ai=AlT>O , Aieﬂinxn , 1=1...10, Qoe%nxn, Ke RMXm and positive parameters

@, 1,0y and pg such that the following LMI

F(K,w',ﬂl,ﬂz) P 0 N 0
P R

o, AT(K)p

0 1 0 0
PA(K) P . (28)

A >
0 0 0, W (k)P .
PW,  p,P ;
0 0 0 03 5 (K)P
I PW,  uzP

with t{0;}<1, i=1,2,3 and
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70 Systems, Structure and Control

I'(K,6,py, pp) = [AT(K)P + PA(K) + Q(5IP‘1/P‘2/P‘3 )}
RV =ar b ag b agd + wpas g ) +iyag 1,
Q6 1y 13 )= [ASLU + QLYo+ g+ iyLy + iYL (/)}I

+a7(A3_1 +A;1)+QO

)T

has positive definite solution P, then the projectional DNNO, with the weight's learning
laws, given by (18), (19), (20) and with h(t) satisfying

limh(t) - ¢0< e<<1 (29)

t—o0
Provides the following upper bound for the "averaged estimation" error
T

1 T
RN 0(5 (r=h()Qod(r~h() )dr <

2
A9([KA;7 0 /2r77 + A?l /2. 5]}

1/2
-1 2 2 -1
il Foe iy (P,

(30)

Diam(x )2} +P| N r g 420,

+p A}I[TO +FinY

where Diam(x)= sup |x—z|, andd(t) :=2(t)-x(t) is the state estimation error. The
x,ze X

proof of this theorem is presented in the appendix A.
Remark 1: 1t is easy to see that in the absence of noises ( 7(t)=¢(t)=0 ) and unmodelled

dynamics ( f =0 ), we can prove that:

Fr 2 :? (JT(r—h(r))Q 5(1—11(2'))[12’—)0 (31)
TowT 29 0

5. Numerical Example Implementation

5.1 Algorithm of Implementation

As it follows from the presentation above, to realized the suggested approach one needs to

fulfill the following steps:

e  Define the projector.

e Select Matrices A and W (some hints are given in Chairez, et. al. 2006; Stepanyan &
Hovakimyan, 2007).

e Select K suchthat A-KC isstable, with C defined by the output of the system.
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Differential Neural Networks Observers: development, stability analysis and implementation 71

e Find P as thesolution of the LMI problem (28).
e Introduce P into the adapting weight law (18), (19) and (20) and realized them on-
line.

5.2 DNNO implementation (Contaminated Soil Treatment by Ozonation)

High oxidation process employing ozone is one of the most recent approaches in the
treatment of the contaminated soil with chemical compounds such as polyaromatic
hydrocarbons. The next simplified model (32) describes the ozonization of one contaminant
in the solid and gas phases in a semi-continuous reactor (Poznyak T., et. al. 2007).

dt as| * ' gas gas max

d b b
¥ =K S(anqrs;‘a Py t)j 2)

d
a x3,t = k1X4 (t)x?)(t)

d _
xa(="KG N0,

4 =v) [w ClM W 18— kg 3t bes(fo ce_abs _ x2(t)ﬂ

Here in (32) y(t)=x|()+7(t) (see Figures 2 and 3 ) is the ozone concentration (mole/L) at
the output of the reactor assumed to be on-line measurable, x,(f) (mole) is the ozone
amount absorbed by the soil, which is not reacting with the contaminant, x3(t) (mole) is

the ozone amount absorbed by the soil and reacting with the contaminant, and x(t)

(mole/g) is the current contaminant concentration, C"* is the ozone concentration at the

free_abs
max

absorbed by the soil, Wgas is the gas flow (L/s) (established as a constant value), Vgas is
the volume of the gas phase.

reactor input (mole/L), Q is the maximum amount of ozone, which can be

x1(t)

x4(t) xo(t) +x3(t)

SOIL

W s
i
(L)-

Figure 2. Contaminated soil ozonation procedure in a semi-continuous batch reactor
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It is worth notice that the model is employed only as a data source; any structural
information (mathematical model) has been used in the projectional DNNO design.
The convex compact set X according to the physical system constrictions is given as:

BIESENOE anzrsi—”bs

in
0< X3(t) < Vgﬂsc

(33)

Projectional operator is defined as in (6), and the corresponding observer parameters are
defined by:

26 0 0 0 0.01
0 -16 0 0 0.01

A= K = (34)
0 0 -224 0 —0.0001
0 0 0 -046 ~0.1

Figures 4-7 represent the results of x5 and x, estimation from the measurable output.

We have compared the projectional DNNO against a DNNO without projection operator, it
means, with and without considering physical restrictions in the DNNO structure.
Simulation have been realized in the presence of "quasi-white noise" n(t)

(amplitude = 0.6x107°) and with the same initial conditions in both cases.

x 10

mole/L

_0_5 1 | 1 1
0 5 10 15 20 25

Time [s]

Figure 3. Measurable output (available information)
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mole

e

Xg DNN Observer without projection

-1.5 1 L 1 L L L | | |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time [s]

Figure 4. Estimation of x3(t) (2 s)

iy o

:'T ..... oreen Xg Projectional DNN Obsener

of %, DNN Obsenver without projection
A

_2 | | | | | | | | |
0 2 4 6 8 0 12 14 16 18

Time [s]

Figure 5. Estimation of x3(t) (20 s)
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=
o OF T i
° S ‘ Xy min/ —
s \ X4 Projectional DNN Observer / ]
260 / - _
b |
al \ Y, |
_5 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]
Figure 6. Estimation of x4(t) (1 s)
x 10°
5
J f
%4
3% ........... x, Projectional DNN Obsener i
Xy DNN Obsener without projection

99

Time [s]

Figure 7. Estimation of x4(t) (5 s)

As it can be seen, the projectional DNNO has significantly better quality in state estimation,
especially in the beginning of the process, when negative values and over-estimation have
been obtained by a non-projectional DNNO.
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6. Conclusion and future work

The complete convergence analysis for this class of adaptive observer is presented. Also the
boundedness property of the adaptive weights in DNN was proven. Since the projection
method leads to discontinuous trajectories in the estimated states, a nonstandard Lyapunov
- Krasovski functional is applied to derive the upper bound for estimation error (in "average
sense"), which depends on the noise power (output and dynamics disturbances) and on an
unmodelled dynamic. It is shown that the asymptotic stability is attained when both of these
uncertainties are absent. The illustrative example confirms the advantages, which the
suggested observers have being compared with traditional ones.

Appendix (proof of Theorem 2)
Evidently that

|6()-6(t-h)<Lg

' —(t=h(t))

n(t)= \/(Aln/ Zn(e), Ay A () <

_q1/2
ORI

172
5y

1/2
OB

M 2| 2
G| for ey

where 6(t') :=£(t')-x(t') is the state estimation error at time .

Consider the next "nonstandard" Lyapunov-Krasovskii ("energetic") function

t
V)= | [5@2 ¥ k(r)tr{WT(r)W(r)ﬂdr
P
t—hit)

where W(rt)= W(r(-W. Since the problem under consideration contains uncertainties and
external output disturbances we won't demonstrate that the time-derivative of this energetic
function is strictly negative. Instead, we will use it to obtain an upper bound for the
averaged state estimation error. Taking time derivative of Lyapunov-Krasovski function and
considering the property (5), the assumption A2, and in view of (29) we have:
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d
—V(t)<
dt()

t
f_h(t)[Ax(r) + Wy (7)o (2(7))+ Wy (T) (9(2(2))u(T) + K(Cx(7) + () - cg(t)))]df}

ﬁx{x(t—h(t)ﬂ

7=t
““W%—
St =he)]) +

k1<t>trtWF<t>v~v1< )i k(= h(t ))mﬁ% (t—h(t) )W (t — (b)) }+
K (£) (VT (£ ()} ey (£ — () € VT (£ = (£, (£~ h(t)) )<

t
2(t-h(t)+ | o )[Af%(f)+ Wi (7)o (&(1))+ Wa(t)(p(%(7))u(z)+ K(1(7)-C())ld T

T=t—h

2

—x(t-h(t)- | [Ax(t)+w1 (e(t)+ Wa(@lx(2))u(t)+ F(0)+ E(T)ldT) -|5(t—hit Oy
p
+k1( >trm (YRR (1)} Ky (¢ = h(E)) e AT (£~ ()W (£~ (1))}
T ko () ex{VT (£ W, ()} ks (= (1) e£JVT (= B(E) W, (£ = h(t))}

Taking into account that
la-+ b3, =al, +[b/ +2(Pa,b)
Defining:
A :=A-KC
Wi): =Wi(t)-W; i=1,2
o(t): = o(2(t)) - 0(x(2))
P(t) = p(2() - p(x(t))

we derive

V <a(t)+ p(t)+
K (t)tr&WlT (VR (6)) Ky ¢ — ()T (= (O~ (e .
ey ()T ()W (8) = Ky (£ = () VS (2 = (E) Wt — h(£))

where:

t
] ( )[ﬁa(r) W (0)o(3(2))+ Wi (2) + Wy (2)(pl2(T))u(T) +
T=t-hit

Wa(0)u(e)+ Kn(0)- &)~ (o)l

alt) =

t
Bt) = [21)5(:& —-h), | ( )[M(r) + W, (7)o (£(7))+ Wi&(1) + W, (7)(p(%(7))u(7)
T=t-hit
+WLop(2)u(z) +Kn(e)-&(r)— F(o)dr)
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The term B(t) is expanded as

t

Bt)= {Pé‘t—h 5( )dr}+

2{P§(t—h(t)) f J+2[P5t h(t f Wla‘(r)er
=t—hlt)

t
+2[P§(t h(t)), [ Wz(r)(¢(§2(r))u(r)d7J

+2| P&(t—h(t)),
7=t

| —
=

Wy@(7)u(t)dt
h(t)2

+2(P5(t—h(t)), Ih( )(Kn(r)—é‘(r))df]—2[P6(t—h(t)), f T(T)er
T=t-hit

Similarly, we can estimate ¢; by the Jensen's inequality we get

t
| ( )[Aé(r) + W (7)o (2(1))+ W(7) + W, (7)(p(2(7)) u(7)
T=t—hit

+I/Vz¢(2')u(r)+1<77(7)—ég(T)—7(7')]‘”“2J <

alt) =

8{ f (25(712 +HWI(7)0'(52(T))H2 +[A 2 + W, (z')((p(f(‘,(r))u(z')szT
r=t-hit) P P P P

t a
e 1 (t)[wztv(r)u(r); e+ 7o+ 5(1);%7}

Each term of «; and A(t) is upper bounded, next facts are used. Norm inequality |AB| <

|A||B] and the matrix inequality

XyYT +vxT <xanl +ya~yT

valid forany X,Ye R™ andany 0<A=ATe R (Poznyak, 2001).
It also necessary to represents the state estimation error ¢; as a function of the available

output, the estimation error e, :

Giving

S(t) = N@[_ cTe(t)+cTn(t)+a75(t))
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where:

-1

(AT
N, ._(c C+a71]

and @ is a small positive scalar. Taking into account all these facts next estimation is
obtained:

d T T
EV(t) <h(t)5; _ h(t)[ﬁ P+PA+

P(Al_ Lewag o )+ ag i, JF+ agt+ Al‘oljp +J

(5[ +/Ag[L 0% + 1y + oLy + pv2, )1+ 45 +A;1)+QO}@_ o)+

3 +

2
h(t){Ag[(KA;ﬂ/ A§11/2 B +A10A}1{70 +71x(t)ix§. ]+
[ﬁam602}+]

HPHHAEIHQ+zrﬁ_5}_h(t)goat_h(tﬂ+ i ()z(eT(t_h(t))cwa,pwl(r)o(x(r)))dr

12 L 12 L2 2 YLz L y212
t){/‘lAzf“‘s 035”‘2 036“‘1*6“*3 - +ag q) =

1/2
2 -1 -1 1
ety | 12|z o+ 7y

T=t-hit
. [UT(X(T))WIT(T)PNw(CAZC+0A3)N&7PW1(T)U(£(T))}0ZI

s o e W oPRLole, Jir + ky (DT (O ()
k(= ht ))tr{Wl (t—h(t))Wy(t - h(t )}+

t

i o - n)CN PR @)u(r) Jar

t
o 1 Wl ce)W] r)pN (CTA6C+a7A7ijPWZ(r)((p(X(T))u(T)dr

T o T o) ple ()T WS (2)PW (2) (9(3(0))u()dr +
t—hit

kO T (O b e )T (- h ) ()
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Considering
AT(K)P + PA(K)+ PR™'P+Q(6, 4, 115, 113)< 0
R‘l=A11+W1A§1(W1>T+W2A§1<W2)T+A51+AI&
Q. a1y, 13)=| AL+ [AglLVE 41+ il + YL |1
+a7(A31 +A7 )+QO

implies:

£ T T T x

| tr{Wl (T)P[zch e(t—h(t))+ N [am3 +C Azcj NPW, (7)o(2(7))

r=t-hlt)

ST (oo (o) ir
kg (AT )T () Ky (¢~ HO) T (4= TR (£~ (0D }=0

that can be obtained selecting

Ty (1)=
, at
_klz(t) {P[2N CT (t h(t)) (([)‘A3+CTA2C)N PWl( ) ( ( ))+
W (r)o(2(z ?
dkl(t) ~

Analogously, for the second adaptive law

t

i tr{ vl (r)P[zchTe(t—h(t))+N0(cTA6c +arA7jNa,pWI(r)(¢(5a(r))u(r)
r=t—h(t)

+ W, (7)(p(2(7))u( Yu(o)uT ()T (ﬁ(f))}df

(e T (W (1)} ey (£~ )T (£~ B (¢~ (e =0

leading to

d
Lw, ()=
50

{P[zwa,cTe(t Ch(E)+ N{J(CTA6C ¥ a7A7)NwPWl (2)(ol2(2))u(z) +

Wy (0)(p(2(0)u(0)|uT (0)p (2(2))

dky()
20 )}

k)7
2
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Finally:

2 2
Vs { I VL= B SO B

2
+h(t){A9[[K UIH /2 A§11/2T§]] +A10A71{70+71x(t]il'7]

eI el bt e Il RN
n n j‘ 0 1 j‘

+P[g e+ 27, -5 Qo0 |

Diam(x)z}

or in the short form:

jtV(t )< h(t)(h(t)za +b-oT(t- h(t))Qys(t - h(t)))

where
12 L 12 L% 12 TZL L2 L Y212
a -'—HAlHHﬁHz 9 +|as|-C 5“‘2 ° 5“‘1*6“‘3 : +ag 2
/2 /2 _
e +A10A71{70+71x<t111? }
1/2 . _
+KPppa +HPHHAT1 {70 T ‘Alf Diam(x )2} #[pi|ag! g +2w,
So,
2 dav(t) 1.
5T (t~ n()Qyd(t —n(e) < lan(1)? +b)- o

And integrating, we obtain

T T
T, _ _ 2., 4vt) 1
1 sTe-no)eute-nixe)izs | OW(T) +)- U hm}zr
And hence,
T av, v, ) T
- f d( j [ h(r)dz'<
T= Oh(f) r=0 (7)) 7= Oh(r)
_?dVr _ . W
h(z) h(t)  h(0) ™ h(0)
This implies

? ST (z—h(t)(1))Qud(r—h(t)(r))dr<a f h(tYdz+bT + ‘(/0)
7=0 =0

Dividing by T and taking the upper limit we finally get (30).
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