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1. Introduction    

The control and possible optimization of a dynamic process usually requires the complete 
on-line availability of its state-vector and parameters. However, in the most of practical 
situations only the input and the output of a controlled system are accessible: all other 
variables cannot be obtained on-line due to technical difficulties, the absence of specific 
required sensors or cost (Radke & Gao, 2006). This situation restricts possibilities to design 
an effective automatic control strategy. To this matter many approaches have been proposed 
to obtain some numerical approximation of the entire set of variables, taking into account 
the current available information. Some of these algorithms assume a complete or partial 
knowledge of the system structure (mathematical model). It is worth mentioning that the 
influence of possible disturbances, uncertainties and nonlinearities are not always 
considered.  
The aforementioned researching topic is called state estimation, state observation or, more 
recently, software sensors design. There are some classical approaches dealing with same 
problem. Among others there are a few based on the Lie-algebraic method (Knobloch et. al., 
1993), Lyapunov-like observers (Zak & Walcott, 1990), the high-gain observation (Tornambe 
1989), optimization-based observer (Krener & Isidori 1983), the reduced-order nonlinear 
observers (Nicosia et. al.,1988), recent structures based on sliding mode technique (Wang & 
Gao, 2003), numerical approaches as the set-membership observers (Alamo et. al., 2005) and 
etc. If the description of a process is incomplete or partially known, one can take the 
advantage of the function approximation capacity of the Artificial Neural Networks (ANN) 
(Haykin, 1994) involving it in the observer structure designing (Abdollahi et. al., 2006), 
(Haddad, et. al. 2007), (Pilutla & Keyhani, 1999).  
There are known two types of ANN: static one, (Haykin, 1994) and dynamic neural networks 
(DNN).  The first one deals with the class of global optimization problems trying to adjust 
the weights of such ANN to minimize an identification error. The second approach, 
exploiting the feedback properties of the applied Dynamic ANN, permits to avoid many 
problems related to global extremum searching. Last method transforms the learning 
process to an adequate feedback design (Poznyak et. al., 2001). Dynamic ANN’s provide an 
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effective instrument to attack a wide spectrum of problems, such as parameter 
identification, state estimation, trajectories tracking, and etc. Moreover, DNN demonstrates 
remarkable identification properties in the presence of uncertainties and external 
disturbances or, in other words, provides the robustness property. 
In this chapter, we discuss the application of a special type of observers (based on the DNN) 
for the state estimation of a class of uncertain nonlinear system, which output and state are 
affected by bounded external perturbations. The chapter comprises four sections. In the first 
section the fundamentals concerning state estimation are included. The second section 
introduces the structure of the considered class of Differential Neural Network Observers 
(DNNO) and their main properties. In the third section the main result concerning the 
stability of estimation error, with its analysis based on the Lyapunov-Like method and 
Linear Matrix Inequalities (LMI) technique is presented. Moreover, the DNN dynamic 
weights boundedness is stated and treated as a second level of the learning process (the first 
one is the learning laws themselves). In the last section the implementation of the suggested 
technique to the chemical soil treatment by ozone is considered in details. 

2. Fundamentals 

2.1 Estimation problem  

Consider the nonlinear continuous-time model given by the following ODE: 

 
( )( )

η(t)Cx(t)y(t)

)  x(ξ(t),tux(t),fx(t)
dt

d

+=

+= fixed is0
 (1) 

where 

nx(t) ℜ∈  -  state-vector at time   0t ≥ ,    

my(t) ℜ∈  - corresponding measurable 
output, 

nmC ×ℜ∈  - the known matrix  defining the 
state-output transformation, 

( ) rtu ℜ∈  - the bounded control action  

( )nr ≤   belonging to the 

following admissible set 

( ) ( ){ }∞<ϒ≤= utu:tu:U adm , 

ξ(t)  and η(t)  - noises in the state dynamics and 
in the output, respectively,  

nrn:f ℜ→×ℜ  . 

The software sensor design, also called state estimation (observation) problem, consists in 

designing a vector-function n(t)x̂ ℜ∈ , called “estimation vector”, based only the available 

data information (measurable) ( ){ } [ ]t,Ǖu(t),ty
0∈  in such a way that it would be "closed" to 

its real (but non-measurable) state-vector x(t) .  The measure of that "closeness" depends on 

the accepted assumptions on the state dynamics as well as the noise effects. The most of 
observers usually have ODE-structure: 
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 ( ) [ ]  vectorfixed a is ,
0
ˆ

0
ˆˆ x t,t,τy,tu(t),xF(t)x

dt

d
⎟
⎠
⎞⎜

⎝
⎛

∈=   (2) 

Here the mapping  nmLrn:F ℜ→+ℜ××ℜ×ℜ  defines the structure of the observer to be 

implemented.  

2.2 Physical Constraints of the state vector 

To realize the state observation objective, many authors have taken advantages of the 
physical state constraints. Some examples of these techniques employing “a priori” 
information on states are: interval observers (Dochain, 2003) and moving horizon state 
estimation (Valdes-González et. al., 2003). In the present study, some physical restrictions 
are considered and using previous results given in (García, et. al. 2007). The main property 

of an observer, which are looked for, is to keep the generated state estimates (t)x̂  within the 

given compact set X (even in the presence of noise), that is:                 

 X(t)x ∈ˆ    (3) 

In different problems the compact set  X    has a concrete physical sense. For example, the 
dynamic behaviors of some reagents, participating in chemical reactions, always keep their 
nonnegative current values. Similar remark seems to be true for other physical variables 
such as temperature, pressure, light intensity and etc. To complete (3) the next projectional 
observer is proposed: 

 
( )

( ) [ ] )h( t,dǕǕ,Ǖ,sy,Ǖu,)(x̂F
t

thtǕ
h(t))(tx̂Xπ(t)x̂ 0

0
>

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

∈∫
−=

+−= τ   (4) 

Here  ( ) 1Cth ∈  fulfills ( ) 0≤th� . The operator  {}⋅Xπ   is the projector to the given convex 

compact set  X   possessing the property 

 { } zxzxXπ −≤−    (5) 

for any nx ℜ∈  and any  Xz ∈  . The operator  {}⋅Xπ   may be defined by different ways. 

Two examples of  {}⋅Xπ   are given below. 

Example 1 (Saturation function):  

 
{ } ( ) Τ

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛= nxsatxsatxXπ …

1   (6)  

where for any i=1..n 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+≥+

+<<−

−≤−

=

)i(xix)i(x

)i(xix)i(xix

)i(xix)i(x

):isat(x    (7) 
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with  +<− )i(x)i(x   as an extreme point a priori  known. 

Example 2 (Simplex): If  X   is the  n-simplex, i.e.,  

 ( )
⎭
⎬
⎫

⎩
⎨
⎧

∑≥ ==∈=
=

11
1

0 i

n

i
i

n zn,...,iRzX  , z:   (8) 

then  { }xXπ   can be found numerically by at least within  n-steps. The case  3n =   is 

illustrated by Figure 1. 

 

Figure 1.  Projectional operator over a simplex (n=3) 

An important point is that with the projectional operator implementations the trajectories  

( ){ }tx̂  , generated by (4), are not differentiable for any 0>≥ h(t)t . 

3 Structures of DNN Observers  

3.1 State estimation under complete information 

If the right-hand side  ( )x(t)f   of the dynamics (1) is known then the structure  F   of the 

observer (4) is usually selected in the, so-called, Luenberger-type form: 

 ( ) ( )( ) ( ) ( )( )(t)x̂Cy(t)tKu(t)(t),x̂ft,ty,tu(t),x̂F −+=   (9) 

So, it repeats the dynamics of the plant and, additionally, contains the correction term, 
proportional to the output error (see, for example Yaz & Azemi, 1994; Poznyak, 2004).  The 

adequate selection of the matrix-gain ( )tK  provides a good-enough state estimation. 

3.2 Differential Neural Network Observer,  the "grey-box" case 

In the case when the right-hand side  ( )ux,f   of the dynamics (1) is unknown, there is 

suggested to apply some guessing of it, say,  ( )W(t)|u(t)x(t),f   where  nf ℜ∈   defines the 

approximating map depending on the time-varying parameters  W(t) , which should be 

adjusted by a "adaptation law" suggested by a designer or derived, using some stability 
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analysis method. According to the DNN-approach (Poznyak et. al., 2001) we may 

decompose  ( )W(t)|u(t)x(t),f   in two parts: first one, approximates the linear dynamics part 

by a Hurwitz fixed matrix  nnA ×ℜ∈   (selected by the designer) and the second one, uses 

the ANN reconstruction property for the nonlinear part by means of variable time 

parameters  (t),W
21

  with a set of basis functions, that is, 

 

( ) ( )

( )

( ) rq
 ,

qn
(t)W

p
 ǔ,

pn
(t) W,nnA

u(t)x(t)(t)Wx(t)(t)ǔWAx(t):(t),W|u(t)x(t),f

×
ℜ∈⋅

×
ℜ∈

×
ℜ∈⋅

×
ℜ∈×ℜ∈

++=⎟
⎠
⎞⎜

⎝
⎛

ϕ

ϕ

2

1

1

2121

  (10) 

The activation vector (the basis) function  ( )⋅ǔ   and matrix-function  ( )⋅ϕ   are usually 

selected as functions with sigmoid-type components, i.e.: 

 ( ) n, j,(t)jxjc
n

j
expjbja:x(t)jǔ 1

1

1

1 =

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
=

−+=    (11) 

and 

 ( ) r,j;q, i,(t)sx
si,

c
n

s
exp

ji,
bji,a:x(t)ji, 11

1

1

1 ==

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

−+=ϕ   (12) 

It is easy to see that the activation functions satisfy the following sector conditions 

 ( ) ( ) 22

ǔΛ
(t)xx(t)ǔL

ǔΛ
(t)xǔx(t)ǔ ′−≤′−    (13) 

 ( ) ( ) 22

ϕ

ϕϕ
ϕϕ

Λ
(t)xx(t)LΛ(t)xx(t) ′−≤′−    (14) 

and stay bounded on  nℜ  . In (10), the constant parameter A , as well as the time-varying 

parameters (t),W
21

, should be properly adjusted to guarantee a good state approximation. 

Notice that for any fixed matrices  
2121 ,Ŵ(t),W =   the dynamics (1) always could be 

represented as 

 
( ) ( )

( ) ⎟
⎠
⎞⎜

⎝
⎛−=

++++=

21

21

,Ŵ|x(t)fx(t)f:(t)f~

ξ(t)(t)f~u(t)x(t)Ŵx(t)ǔŴAx(t)x(t)
dt

d
ϕ

   (15) 
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where  ( )tf~   is referred to as a modeling error vector-field called the "unmodelled dynamics". 

In view of the corresponding boundedness property, the following inequality for the 

unmodelled dynamics  ( )tf~   takes place: 

 
T

f~
Λ

f~
 Λ,T

fΛf Λ,
f~

Λ,f Λ;f~ ,f~

f~
Λ

x(t)f~f~

fΛ
(t)f~

⎟
⎠
⎞

⎜
⎝
⎛

==>>

+≤

11
0

1
0

10

2

110

2

  (16) 

3.3 Structure DNN observers considering state physical constraints  

Introduce the following projectional DNNO:  

 
( )

( ) ( )[ ]

)t(x̂C)t(y:)t(e

d)(Ke)(u)(x)((W)(x̂)(W)(x̂A
t

tht
))t(ht(x̂X)t(x̂

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++∫
−=

− ττττϕττσττ
τ

π
21

+=   (17) 

Here the weights matrices  ( )tW
1

  and  ( )tW
2

  supply the adaptive behavior to this class of 

observers if they are adjusted by an adequate manner. We derived (see Appendix) the 
following nonlinear weight updating laws based on the Lyapunov-like stability analysis: 

 

( ) ( ) ( )

( )

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ Λ+Λ=Π

−=−+Π=Ω

−Ω
−

−=

IPNCTCN

;Ŵ)t(W:)t(W~       ; ))t(ht(eTCN)t(x̂)t(W~:)t(

tW~
dt

)t(dk
)t(x̂T)t(P

)t(k
tW

dt

d

ϖϖϖ

ϖσ

σ

23

111
2

1
1

2

1
1

1

  (18) 

 

( ) ( )( ) ( )

( )

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ Λ+Λ=Ξ

−=−+Ξ=Φ

−Φ
−

−=

IPNCTCN

;Ŵ)t(W:)t(W~       ; ))t(ht(eTCN)(u)(x̂)((W~:)t(

tW~
dt

)t(dk
x̂T)(Tu)t(P

)t(k
tW

dt

d

ϖϖϖ

ϖττϕτ

τϕτ

67

222
2

2

2
2

2

1
2

2

  (19) 

where: 

0

1

>
−
⎟
⎠
⎞⎜

⎝
⎛ += ϖϖϖ  ,ICTCN  

To improve the behavior of this adaptive laws, the matrix  
21,Ŵ   can be "provided" by one 

of the, so-called, training algorithms (see, for example, Chairez et. al., 2006; Stepanyan & 
Hovakimyan, 2007). Both present least square solutions considering some identification 
structure for possible set of fictitious values or even an available set of directly measured 
data of the process. 
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4. DNN Observers Stability   

4.1 Behavior of weights dynamics 

Here we wish to show that under the adapting weights laws (18) and (19) the weights  

( )tW
1

  and  ( )tW
2

  are bounded. 

Theorem 1 (bounded adaptive weights): If  (t)ik    ( )21,i =   in (18) and (19) satisfy  

 

( )( ) ( ) ( ){ }
( ) ( ){ } ( ) ( )[ ]

( ) ( ) ( )( ){ }
( ) ( ){ } ⎟

⎠
⎞⎜

⎝
⎛ −+

Φ
−≤

−+

Ω
−≤

min,k)t(k)t(cktW~TtW~tr

tx̂T)t(Tu)t(PtW~tr)t(k
)t(k

dt

d

minktktcktW~tTW~tr

)t(x̂T)t(PtTW~trtk
)t(k

dt

d

22222

2
2

2
2

2

11111

1
2

1
2

1

ϕ

σ

   (20) 

then  ( ) ( ){ }tW~tTW~tr
11

  is monotonically non-increasing function. 

Proof: Considering the dynamics for the weight matrix  ( )tW~
1

  and the following candidate 

Lyapunov function  ( ).twV    

 ( ) ( ) ( ){ } ( )[ ]2
11

4
11

2

1

+
−+= minktk

c
tW~tTW~tr:twV   (21) 

where  

 ( )[ ]
( ) ( )

( )⎩
⎨
⎧

<

≥
=+

00

0

tz

tztz
:tz   (22) 

Then, one has  

 ( ) ( ) ( ) ( ) ( )[ ]211
11

11 2 +
− −+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= min

T
w ktk

dt

)tk(d
ctW

dt

d
tW~tr:tV

dt

d
   (23) 

By (18) it follows 

 

( ) ( )
( )

( ) ( )

( )[ ] ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( )[ ] ⎟

⎠
⎞⎜

⎝
⎛

+
−−+−−

+Ω
−

≤
+

−−

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−Ω

−
−=

minktkctW~tTW~trtk
dt

))t(k(d

)t(x̂T)t(PtTW~trtk
minktk

dt

))t(k(d
c

tW~
dt

))t(k(d
)t(x̂T)t(P

tk
tTW~trtwV

dt

d

11
1

2
11

1
1

11
2

12

1

11
11

2

1
1

2

1
1

1

σ

σ

   (24) 

The property  ( ) 0twV
dt

d
≤  results from (20). 

Some examples of  )t(ik ( )21,i = are given below 
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a. Introduce the following auxiliary function 

( ) ( )( )
( ) ( ) ( ){ }

( )
+⎥⎦
⎤

⎢⎣
⎡ −

Ω−

=⎟
⎠
⎞⎜

⎝
⎛ −

min,ktkc

)t(x̂T)t(PtTW~trtk
:thte,tTW~s

11

1
1

1

1

σ
 

And select 

( )
( )

( )

⎟
⎠
⎞⎜

⎝
⎛ −−<

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ −+

⎟
⎠
⎞⎜

⎝
⎛ −

−=

>+
⎟
⎠
⎞⎜

⎝
⎛ −+

=

))t(ht(e),t(TW~s

tjbexp))t(ht(e),t(TW~a

btexpjb))t(ht(e),t(TW~a
)(k:

dt

))t(k(d

jmin,k   ,jmin,k
btexp))t(ht(e),t(TW~a

)(k
:tk

1

1
1

1
0

1
1

0

1
1

0

1

 

Leading to 

( )

⎟
⎠
⎞⎜

⎝
⎛ −>

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −

))t(ht(e),t(TW~s

))t(ht(e),t(TW~sb)(kbtexp))t(ht(e),t(TW~a

1

1
0

1
 

The last inequality is fulfilled if the weight dependent parameter  ⎟
⎠
⎞⎜

⎝
⎛ e(t))(t),TW~a
1

  is selected 

as 

( )

⎟
⎠
⎞⎜

⎝
⎛ −−=Ψ

−Ψ−⎟
⎠
⎞⎜

⎝
⎛ −>⎟

⎠
⎞⎜

⎝
⎛ −
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1
0

1
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b. Analogously, for  ( )tTW~
2

 : 
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( ) ( ) ( )( ){ }
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+⎥⎦
⎤

⎢⎣
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⎠
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⎝
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It is worth to notice that the learning law (18) and (19) must be realized on-line in parallel 
with the gain-parameter adaptation procedure (20). By this reason, this structure can be 
considered as a second adaptation level. 

4.2 Main theorem on an upper bound for the observation error 

For the stability analysis of the proposed DNNO, the next assumptions are accepted: 

A1) the function  nn:f ℜ→ℜ   is Lipschitz continuous in  Xx ∈  , that is, for all  Xxx, ∈′   

there exist constants  
21,L   such that 

 
( ) ( )

( ) ∞<≤ℜ∈ℜ∈≤

−+−≤−

21
0

1

2
00

21

L,L;mv,u;ny,x  ;Ct,,f

vuLyxLt,v,yft,u,xf
   (25) 

A2) The pair  ( )CA,   is observable, that is, there exists a gain matrix  mnK ×ℜ∈   such that 

matrix  

 ( ) KCA:KA~ −=    (26) 

is stable (Hurwitz). 

A3) The noises  ξ(t)   and  η(t)   in the system (1) are uniformly (on t ) bounded such that 

 ηηΛ
η(t) ,ξξΛ

ξ(t) ϒ≤ϒ≤
22

   (27) 

where  ξΛ   and  ηΛ   are known "normalizing" non-negative definite matrices, which 

permit to operate with vectors having components of different physical nature (for 
example, meters, voltage and etc.). 

Theorem (Upper error for DNNO). Under assumptions A1-A3 and if there exist matrices  

0>= T
iΛiΛ  , nn

iΛ
×ℜ∈  ,  ,i 101…=    ,nnQ ×ℜ∈

0
   mnK ×ℜ∈   and positive parameters  
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with  { } ,iΘtr 1<    321 ,,i =   and 
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has positive definite solution P, then the projectional DNNO, with the weight's learning 

laws, given by (18), (19), (20) and with  h(t)   satisfying  

 10 <<<→
∞→

 ǆǆ,h(t)lim
t

   (29) 

Provides the following upper bound for the "averaged estimation" error 
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where  zx

Xzx,

supDiam(x) −

∈

= ,  and ( ) ( ) ( )txtx̂:tǅ −=   is the state estimation error.  The 

proof of this theorem is presented in the appendix A. 

Remark 1: It is easy to see that in the absence of noises ( 0ξ(t)η(t) ==  ) and unmodelled 

dynamics ( 0=f~  ), we can prove that: 

 0
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5. Numerical Example Implementation 

5.1 Algorithm of Implementation 

As it follows from the presentation above, to realized the suggested approach one needs to 
fulfill the following steps: 

• Define the projector. 

• Select Matrices  A   and  Ŵ   (some hints are given in Chairez, et. al. 2006; Stepanyan & 

Hovakimyan, 2007). 

• Select  K   such that   KCA −   is stable, with  C   defined by the output of the system. 
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• Find  P   as the solution of the  LMI   problem (28). 

• Introduce  P   into the adapting weight law (18), (19) and (20) and realized them on-
line. 

5.2 DNNO implementation (Contaminated Soil Treatment by Ozonation) 
High oxidation process employing ozone is one of the most recent approaches in the 
treatment of the contaminated soil with chemical compounds such as polyaromatic 
hydrocarbons. The next simplified model (32) describes the ozonization of one contaminant 
in the solid and gas phases in a semi-continuous reactor (Poznyak T., et. al. 2007). 
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dt
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dt
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   (32) 

Here in (32)  η(t)(t)xy(t) +=
1

  (see Figures 2 and 3 ) is the ozone concentration (mole/L) at 

the output of the reactor assumed to be on-line measurable,  (t)x
2

  (mole) is the ozone 

amount absorbed by the soil, which is not reacting with the contaminant,  (t)x
3

  (mole) is 

the ozone amount absorbed by the soil and reacting with the contaminant, and  (t)x
4

  

(mole/g) is the current contaminant concentration, inC  is the ozone concentration at the 

reactor input (mole/L), 
free_abs
maxQ  is the maximum amount of ozone, which can be 

absorbed by the soil, Wgas  is the gas flow (L/s) (established  as a  constant value), Vgas is 
the volume of the gas phase.  

(L). 

Figure 2.  Contaminated soil ozonation procedure in a semi-continuous batch reactor 
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It is worth notice that the model is employed only as a data source; any structural 
information (mathematical model) has been used in the projectional DNNO design. 

The convex compact set  X   according to the physical system constrictions is given as: 
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Projectional operator is defined as in (6), and the corresponding observer parameters are 
defined by: 
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Figures 4-7 represent the results of   3x   and  4x   estimation from the measurable output. 

We have compared the projectional DNNO against a DNNO without projection operator, it 
means, with and without considering physical restrictions in the DNNO structure. 

Simulation have been realized in the presence of "quasi-white noise"  )t(η    

(amplitude ). 5
1060

−×=   and with the same initial conditions in both cases. 
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Figure 3.   Measurable output (available information) 
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Figure 4.  Estimation of x3(t) (2 s) 
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Figure 5.  Estimation of x3(t) (20 s) 
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Figure 6.  Estimation of x4(t) (1 s) 
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Figure 7.  Estimation of x4(t) (5 s) 

As it can be seen, the projectional DNNO has significantly better quality in state estimation, 
especially in the beginning of the process, when negative values and over-estimation have 
been obtained by a non-projectional DNNO.  
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6. Conclusion and future work  

The complete convergence analysis for this class of adaptive observer is presented. Also the 
boundedness property of the adaptive weights in DNN was proven. Since the projection 
method leads to discontinuous trajectories in the estimated states, a nonstandard Lyapunov 
- Krasovski functional is applied to derive the upper bound for estimation error (in "average 
sense"), which depends on the noise power (output and dynamics disturbances) and on an 
unmodelled dynamic. It is shown that the asymptotic stability is attained when both of these 
uncertainties are absent. The illustrative example confirms the advantages, which the 
suggested observers have being compared with traditional ones. 

Appendix (proof of Theorem 2) 

Evidently that 

( ) ( ) ( ))tht(tLhtt −−′≤−−′ δδδ  

( ) ( ) ( )

ηηη
ηη

ηηηηηη

ϒ−Λ≤Λ
−Λ

≤⎟
⎠
⎞⎜

⎝
⎛ Λ−ΛΛ=

21
121

21121

/
)t(

t/,t/t

 

ξξξ ϒ−Λ≤
21

1
/

)t(  

( )

21

2

110

21
1

/

f~
txf~f~

/

f~
)t(f~

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Λ
+−Λ≤  

where  ( ) ( ) ( )txtx̂:tǅ ′−′=′   is the state estimation error at time t . 

Consider the next "nonstandard" Lyapunov-Krasovskii ("energetic") function 

( )
( ) ( ) ( ){ } τdǕW~ǕTW~trǕkpǅ(Ǖ)

t

tht
V(t) ⎥⎦

⎤
⎢⎣
⎡ +∫

−

= 2  

where .ŴW(Ǖ((ǕǕ)W~ −=   Since the problem under consideration contains uncertainties and 

external output disturbances we won't demonstrate that the time-derivative of this energetic 
function is strictly negative. Instead, we will use it to obtain an upper bound for the 
averaged state estimation error. Taking time derivative of Lyapunov-Krasovski function and 
considering the property (5), the assumption A2, and in view of (29) we have: 
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The term  ( )tǃ   is expanded as 
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Similarly, we can estimate  tα  by the Jensen's inequality we get  
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Each term of  tα  and )t(β  is upper bounded, next facts are used. Norm inequality  AB  ≤  

BA  and the matrix inequality  

TYYΛTXΛΛTYXTXY 1−+≤+  

valid for any  srRYX, ×∈   and any  ssT RΛΛ ×∈=<0   (Poznyak, 2001).   

It also necessary to represents the state estimation error tδ  as a function of the available 
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where: 
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and  ϖ   is a small positive scalar. Taking into account all these facts next estimation is 
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Dividing by  T   and taking the upper limit we finally get (30). 
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