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Abstract

This chapter deals with the behaviour of an abutment pier on subsoil subjected to flood 
changes. The floods increase the cross-section of the river bed and change the properties 
of the foundation soil under the foundation. First, the soil saturates with water. Then, 
fine-grained particles will wash away and finally parts of the basement rock will be 
washed off. Finite element method has been used for the calculation of the interaction 
between the foundation and the subsoil. The foundation has been modelled in a 2D envi-
ronment using spatial components. For the subsoil, an element with effects of an elastic 
foundation has been used. The stiffness of the bedrock has been characterized by the C 
parameter. The chapter describes situations related to the collapse of the structure.
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1. Introduction

Unflagging growth of anthropogenic activities has been causing changes in the Earth’s cli-
mate. These changes have led to the changes of weather in comparison to the past. Changes in 

weather frequently have brought increased values of loads (e.g. due to wind, snow and water) 
which can significantly influence reliability (see, e.g. Tikalsky et al., 2005; Pustka et al., Raizer, 
2009; Briaud et al., 2014; Králik and Králik, 2014; Markova et al., 2014; Pustka, 2014; Janas 
et al., 2015; Pustka, 2015; Koteš et al., 2016) of (civil) engineering structures. To assure required 
level of reliability of these structures, it is necessary to deal with this issue. Climate’s changes 
have brought, among others, heavier precipitations which have led to excessive water flows 
or even to floods. This unexpected flows of water can significantly damage bridge structures 
crossing these watercourses (see, e.g. Cajka and Manasek, 2005; Link et al., 2008; Pasiok and 
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Stilger-Szydlo, 2010; Burns et al., 2011; Wang et al., 2011; Yu et al., 2011; Khosronejad et al., 
2012; Collins et al., 2013; Lin et al., 2014; Afzali, 2015; Ehteram and Meymand, 2015; Klinga 
and Alipour, 2015; Fael et al., 2016; Mohamed et al., 2016). In association with this growing 
risk, a study examining effects of scour to a bridge abutment was elaborated.

 In the following model, an example of a bridge pier (Strasky et al., 2001; Navratil, 2004; 
CNI, 2005; Parke and Nigel, 2008; Navratil and Zich, 2013; Sucharda and Brozovsky, 2013) 
is considered. To analyse interaction between the basement rock and foundation (see, e.g. 
CNI, 1988; CNI, 2004; Cajka et al., 2011; Cajka, 2013a,b,c; Cajka et al., 2014; Unlu et al., 2013; 
Hrubesova et al., 2015; Lahuta et al., 2015; Hrubesova et al., 2016; Cajka et al., 2016a,b; 
Labudkova and Cajka, 2016) a parametric study has been created. In the study, the finite 
element method on elastic subsoil has been utilised. The floods increase the cross-section 
of the river bed and change the properties of the foundation soil under the foundation (see, 
e.g. Ettema et al., 2000). In the first stage, the soil saturates with water. In the second stage 
fine-grained particles will wash away. In the third stage, parts of the basement rock will be 
washed off.

2. Model example of an abutment pier

2.1. Assumptions of calculation

For the calculation of interaction between the foundation and basement finite element 
method has been used (FEM consulting, 2002). The foundation has been modelled in a 2D 
environment using spatial components. For the basement rock, an element with effects 
of an elastic foundation has been used. The C parameter represents properties of the 

 basement rock.

2.2. Subsoil model

The most efficient way for solutions of interaction tasks is a 2D model of the basement rock. 
Such model represents correctly, through a surface model, deformation properties of the 
whole mass of the foundation soil. The physical properties are expressed by means of subsoil 
parameters. The set of the interaction parameters is marked briefly as C. The parameters are 

allocated directly to structure components that are in the contact with the basement rock. The 
parameters describe the properties that influence the stiffness matrix. To simplify the situa-
tion, the C parameter can be imagined as the supporting by means of a dense liquid γ = C1z 

(MN m−3) or by means of a set of vertical springs with an infinite density. From the physical 
point of view, there is not any difference. In case of extreme simplification, the C parameter 

can be imagined as Winkler’s elastic foundation model.

2.3. Modelling and description of the structure

As a material for the foundation concrete C16/20 has been considered. Dimensions of the abutment 
pier are evident from Figure 1. The pier has been loaded by the horizontal load- carrying structure 
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of the bridge (forces Rgk and Rqk). The load developed by the soil and  random load of the road that 
influences the back face of the pier structure, have been introduced

 
by

 
Hk force (see Figure 1).

 As far as the structure of the abutment pier is concerned, the foundation structure has been 
used only for the calculation. The loading of the whole upper construction has been re-cal-
culated and simplified. Only the vertical loading and bending moment in the centre of grav-
ity of the stem have been taken into consideration. The basement rock has been modelled 
using the Cz parameter. For purposes of the calculation, the following reference value has 

been used: Cz = 25 MN m−3. This rough value is given by characteristic of gravel with fine-
grain particles and by the loading and deformation for a specific type of the basement rock. 
The interaction has been solved for several cases: the value of Cz has changed because of 

the lower stiffness of the basement rock that was caused by the washing off of the fine-grain 
particles. In another case, the washing off of the basement rock has been taken into consid-
eration. Finally, the combination of the both cases above has been investigated. Figure 2 

shows the foundation with considered distributions of the basement rock stiffness Cz.

Figure 1. Scheme of the abutment pier with considered loads.
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2.3.1. Partial loss of contact between the foundation and basement rock

The flow of water washes away the basement rock. This reduces the contact surface resulting 
in increase of the stress in the foundation joint. Because of the non-homogeneous distribu-
tion of the tension in the foundation joint, the settlements in points 1 and 2 (see Figure 2) are 

Figure 2. The foundation with considered distributions of the basement rock stiffness Cz.
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 different. Consequently, the foundation joint rotates. Table 1 shows the settlements of the pier 
in the points 1 and 2 and the total rotation. Assumed deformation of the foundation is shown 
in Figure 3. Rotation is calculated according to Eq. (1):

  ϕ = arctg   Δw ___ 
b
    (1)

Figure 2 shows the x-coordinates related to considered distribution of the basement rock stiff-
ness Cz. When the contact surface is reduced to a certain level, tensile forces are generated. 
Elements, where tensile stress appeared, have been excluded from the calculation. Figure 4 

x [m] Origin (1.9 – x) [m] w
1
 [mm] w

2
 [mm] Δw = w

2
 – w

1
 [mm] Rotation of 

foundation [deg]

Max. stress on foundation 

surface [MPa]

0.0 1.9 6.92 11.98 5.06 0.152 0.299

0.1 1.8 5.50 14.95 9.46 0.285 0.361

0.2 1.7 3.68 19.07 15.39 0.464 0.435

0.3 1.6 1.35 24.81 23.46 0.707 0.526

0.4 1.5 –1.66 32.88 34.54 1.042 0.638

0.5 1.4 –5.57 44.37 49.94 1.506 0.778

0.6 1.3 –10.71 60.99 71.70 2.163 0.955

0.7 1.2 –17.56 85.45 103.01 3.109 1.182

0.8 1.1 –26.83 122.29 149.12 4.506 1.479

0.9 1.0 –39.65 179.31 218.96 6.632 1.877

1.0 0.9 –57.82 270.62 328.44 10.004 2.426

Table 1. Deformation of the foundation for the case ’a’.

Figure 3. Assumed deformation of the foundation.

Influence of Contact Stress Model on the Stability of Bridge Abutment
http://dx.doi.org/10.5772/66803

313



shows the chart for the calculation where the tension in the contact surface is taken into 
account (case (a*)). For case (a), an iteration method has been used.

2.3.2. Gradual decrease in the stiffness of the basement rock

In case (b) (see Figure 2), the interaction parameter Cz decreases gradually. The develop-
ment of the Cz values is constant up to the place that is, in all likelihood, affected by water 
 penetration. From that point onwards, the stiffness is linear up to the point 1 where the stiff-
ness of the basement rock is assumed to be zero. Resulting values are listed in Table 2. The 

development of the values is shown in Figure 4.

2.3.3. Gradual washing-away of soil and washing-off of fine-grain particles

Combination of both the previous situations represents the case ’c’. Here, the Cz is consid-
ered to be constant below the point 1 (see Figure 2). The soil is washed off gradually, thus 
 decreasing Cz. Resulting values are listed in Table 3. From the chart in Figure 4, it is evident 

Figure 4. Dependency of the rotation of the foundation surface for x values.
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that the tensile stress in the contact surface appears as early as in the first phase. The pro-
cedure has been similar to that used in case (a). An iteration method has been used for case 
(c). The case (c*) describes the situation where the basement rock is subjected to the tension.

2.3.4. Step decrease in the parameters of the basement rock

Because the soil is saturated with water and fine-grain particles have been washed off, the 
stiffness will decrease (see Figure 2). In contrast to the calculation with the linear distribution 
(case ’b’), a step division of Cz has been chosen. When modelling by means of two parameters, 
the entering of values is simpler and faster. When modelling the linear development, the 
entering of values is more complex and Cz is different for each element. Table 4 and Figure 4 

give the values for case ’d.

x [m] Origin (1.9 – x) 

[m]

w
1
 [mm] w

2
 [mm] Δw = w

2
 – w

1
 

[mm]

Rotation of 

foundation [deg]

Max. stress on foundation 

surface [MPa]

0.0 1.9 6.92 11.98 5.06 0.152 0.299

0.1 1.8 6.29 13.30 7.02 0.212 0.321

0.2 1.7 5.60 14.81 9.21 0.278 0.344

0.3 1.6 4.88 16.52 11.64 0.351 0.364

0.4 1.5 4.12 18.42 14.31 0.431 0.381

0.5 1.4 3.33 20.54 17.21 0.519 0.396

0.6 1.3 2.53 22.85 20.32 0.613 0.405

0.7 1.2 1.74 25.36 23.63 0.712 0.410

0.8 1.1 0.96 28.05 27.09 0.817 0.409

0.9 1.0 0.22 30.90 30.69 0.925 0.401

1.0 0.9 –0.35 33.78 34.13 1.029 0.392

Table 2. Deformation of the foundation for the case ’b’.

x [m] Origin (1.9 – x) [m] w
1
 [mm] w

2
 [mm] Δw = w

2
 – w

1
  

[mm]

Rotation of 

foundation [deg]

Max. stress on foundation 

surface [MPa]

0.0 1.9 –3.57 59.18 62.75 1.893 0.38

0.1 1.8 –9.10 74.74 83.84 2.530 0.427

0.2 1.7 –18.68 98.10 116.78 3.526 0.49

0.3 1.6 –36.13 135.23 171.35 5.181 0.574

0.4 1.5 –70.31 199.51 269.82 8.192 0.691

0.5 1.4 –141.30 319.79 461.09 14.184 0.861

0.6 1.3 –323.69 602.49 926.18 30.374 1.182

0.7 1.2 –669.93 1253.43 1923.36 91.693 2.009

Table 3. Deformation of the foundation for the case ’c’.
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3. Conclusion

Figure 4 summarises the results of the conditions described above. Also, the chart shows 
the rotation of the foundation surface. Table 1–4 can be used to determine the values for 

a specific case and to determine the maximum stress that appears in the contact surface. 
The structure collapses if the basement rock plasticizes and the load-carrying capacity is 
lost. According to the limiting rotation requirements by CNI (1988), the ratio Δw/b = 0.003 
applies to the concrete foundation structure. The rotation angle is φ = 0.17°. It follows from 
the calculation that the structure does not meet this requirement when the x-parameter 
(case ’b’) decreases below the foundation surface 0.1 m. This is the beginning of the condi-
tion when the fine-grained particles start washing away. Most adverse results occur in the 
case ’c’ when the lower stiffness of the basement rock is combined with the loss of contact 
with the basement rock. Because of the lost contact between the foundation and basement 
rock, the stress re-distributes and tensile stress appear in the contact surface. It is clear from 
the chart that there is a difference in the calculations (case ’a’ and case ’c’) where the tensile 
stress is, or is not, considered for the contact surface. The situation where the tensile stress 

exists is marked with an asterisk. The results are absolutely different. Therefore, the tensile 
stress in the foundation surface should not be taken into account.
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x [m] Origin (1.9 – x) [m] w
1
 [mm] w

2
 [mm] Δw = w

2
 – w

1
  

[mm]

Rotation of 

foundation [deg]

Max. stress on 

foundation surface [MPa]

0.0 1.9 6.92 11.98 5.06 0.152 0.299

0.1 1.8 6.29 13.30 7.02 0.212 0.321

0.2 1.7 5.65 14.75 9.09 0.274 0.342

0.3 1.6 5.06 16.27 11.21 0.338 0.369

0.4 1.5 4.52 17.84 13.31 0.401 0.372

0.5 1.4 4.09 19.39 15.30 0.461 0.38

0.6 1.3 3.77 20.87 17.10 0.516 0.382

0.7 1.2 3.59 22.24 18.65 0.562 0.379

0.8 1.1 3.56 23.45 19.88 0.600 0.372

0.9 1.0 3.69 24.17 20.48 0.618 0.36

1.0 0.9 3.96 25.29 21.33 0.643 0.346

Table 4. Deformation of the foundation for the case ’d’.
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