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Abstract

Glucose is the monosaccharide utilized by most eukaryotes to generate metabolic energy, 
and in the majority of eukaryotic systems, glycolysis is the first biochemical pathway 
where glucose breaks down via a series of enzymatic reactions to produce relatively 
small amounts of adenosinetriphosphate (ATP). In 1940, the sequence of these glycolytic 
reactions was elucidated, a breakthrough that was recognized as the very first such eluci-
dation of a biochemical pathway in history. Accordingly, the glycolytic breakdown of glu-
cose ends up either with pyruvate as the final product under aerobic conditions or with 
lactate, to which pyruvate is being reduced, under anaerobic conditions. Consequently, 
pyruvate has been designated and is held to be the substrate of the mitochondrial tricar-
boxylic acid cycle, where it is completely oxidized into CO

2
 and H

2
O, while lactate has 

been defined and being held to as a useless dead-end product, poisonous at times, of 
which cells must discard off quickly. More than four decades after the glycolytic path-
way has been elucidated, studies of both muscle and brain tissues have suggested that 
lactate is not necessarily a useless end product of anaerobic glycolysis and may actually 
play a role in bioenergetics. These studies have shown that muscle and brain tissues can 
oxidize and utilize lactate as a mitochondrial energy substrate. These results have been 
met with great skepticism, but a large number of publications over the past quarter of a 
century have strengthened the idea that lactate does play an important and, possibly, a 
crucial role in energy metabolism. These findings have shed light on a major drawback 
of the originally proposed aerobic version of the glycolytic pathway, that is, its inability 
to regenerate nicotinamide adenine dinucleotide (oxidized form) (NAD+), as opposed 
to anaerobic glycolysis that features the cyclical ability of the glycolytic lactate dehy-
drogenase (LDH) system to regenerate NAD+ upon pyruvate reduction to lactate. An 
examination of scientific investigations on carbohydrate metabolism of brain tissue in the 
1920s and 1930s has already revealed that lactate can be readily oxidized. However, due 
to the prevailing dogma, according to which lactate is a waste product, its oxidation was 
assumed to be a possible mechanism of elimination. This chapter examines both old and 
new research data on glucose glycolysis both in muscle and in brain tissues. This chapter 
consolidates the available data in an attempt to form a more accurate and clear descrip-
tion of this universal and very important bioenergetic chain of reactions.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

Glucose (D-glucose), also known as dextrose, is a monosaccharide found in its free form 
in many fruits and also in the blood of humans and other animals. Glucose is combined 
with fructose to form the disaccharide sucrose (sugar) and is the building block of the 
most abundant polysaccharides, cellulose, starch and glycogen. In the majority of eukary-

otes, from yeasts to humans, glucose is the principal substrate for the production of chem-

ical energy (adenosinetriphosphate ATP), where it is being hydrolyzed via a series of 
enzymatic reactions, known as glycolysis, to entrap the chemical energy found in glucose 
chemical bonds.

Glycolysis was the first biochemical metabolic pathway to be elucidated over 75 years ago [1] 

and thus holds a special place in the annals of our biochemical knowledge. As such, glycolysis 
has always been described as a pathway that could have two different end products. Under 
normal aerobic conditions, glycolysis proceeds through nine enzymatic reactions to produce 
pyruvate; under anaerobic conditions, pyruvate is converted by one additional enzymatic 
reaction to lactate. The latter has been considered a useless end product, of which tissues 
must be rid of, as many investigators, then, and even now, held it to be harmful. This descrip-

tion of the glycolytic pathway has stood unchallenged for more than six decades. However, 
beginning in the 1980s, studies in the fields of both muscle and brain energy metabolism have 
indicated that lactate is not a useless product of anaerobic glycolysis, but rather a potential 
important player in energy metabolism in these tissues and possibly others. The present chap-

ter describes the key biochemical and physiological data both from the early days of research 
on carbohydrate metabolism and those gathered over the past three decades that have chal-
lenged the original, dogmatic layout of the glycolytic pathway. Hopefully, this chapter will 
spur biochemists, physiologists and neuroscientists to consider the reconfiguration of gly-

colysis as proposed here and elsewhere.

2. Glycolysis circa 1940

In almost every biochemistry textbook published over the past 70 years, glycolysis is 
described thusly: ”Glycolysis is the sequence of reactions that converts glucose into pyruvate with 

the concomitant production of a relatively small amount of ATP” [2]. This usually follows with the 
qualification that under aerobic conditions, the glycolytic pathway leads up to the tricarbox-

ylic acid cycle (TCA) and the electron transfer chain (ETC), the two biochemical processes 
responsible for capturing the majority of energy contained in glucose. Thus, under aerobic 
conditions, pyruvate is the glycolytic product that enters the mitochondria, where through 
the TCA cycle and the ETC, it is being oxidized to CO

2
 and H

2
O. In contrast, under anaerobic 

conditions, such as those existing in working muscles, pyruvate is reduced to lactate.
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The elucidation of the glycolytic pathway was completed in 1940, thanks mainly to studies by 
Meyerhof, Embeden, Parnas, Warburg, Neuberg and Gerty and Carl Cori. It has been the first 
biochemical pathway to be elucidated, opening the door for future such puzzle solutions and 
to the field of biochemistry as we know it today. For those who are interested in refreshing their 
knowledge about the ten or so enzymatic steps of glycolysis and the coenzymes, substrates and 
products of these steps, any recent biochemistry textbook will do (see also Figure 1A and B). 
Nevertheless, despite some uncertainties that have led to unproven assumptions about the role 
and function of the two alternative glycolytic end products, pyruvate and lactate, the glycolytic 
pathway has been accepted as originally proposed in 1940. The first nine reactions of glycoly-

sis are summarily listed in Figure 1A. These nine reactions end with pyruvate, the product 
suggested as the substrate for the mitochondrial TCA cycle under aerobic conditions. Since 

Figure 1. A schematic illustration of the classic glycolytic pathway as originally perceived both under aerobic (A) and 
anaerobic (B) conditions. Under aerobic conditions, pyruvate is assigned as the end-product of the pathway, while 
under anaerobic conditions, lactate is the end product. According to this classic concept, NAD+, an absolutely necessary 

coenzyme that assures the cyclical nature of glycolysis, cannot be regenerated under aerobic conditions. Only under 
anaerobic conditions, with the conversion of pyruvate to lactate, NAD+ is being regenerated. This is one of the main 
drawbacks of the classical aerobic glycolytic pathway. ATP = adenosine triphosphate; ADP = adenosine diphosphate; 
NAD+ = nicotinamide adenine dinucleotide (oxidized form); NADH = nicotinamide adenine dinucleotide (reduced form).
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under anaerobic conditions mitochondrial respiration is halted, a 10th reaction was added to 
the original glycolytic pathway formulation where pyruvate is reduced to lactate by lactate 
dehydrogenase (LDH, Figure 1B). Hence, under anaerobic conditions, glycolysis was postu-

lated to reach a dead-end point.

3. New findings challenge the long-held glycolytic dogma

In 1985, Brooks [3] published results showing that during prolonged exercise of skeletal 
muscle, lactate is both produced glycolytically and consumed oxidatively. A year later, Fox 
and Raichle [4] demonstrated “a focal physiological uncoupling between cerebral blood flow 
and oxidative metabolism upon somatosensory stimulation in humans.” Moreover, Fox et al. 
[5] also showed that “during focal physiologic neural activity, the consumption of glucose is 
non-oxidative.” At the same time, Schurr et al. [6] demonstrated that brain slices in vitro can 
maintain their normal neuronal function in an oxygen atmosphere with lactate as the sole 
energy source. Surprisingly, although contracting muscle anaerobic production of lactate 
has been the dogma ever since Hill’s studies in the early 1900s [7–11], when stimulated brain 
was shown to produce lactate and also utilize it, many scientists exhibited great skepticism 
[12–17]. Brooks’s discovery [3] that skeletal muscle utilizes lactate oxidatively has brought to 
the fore its own skeptics [18–21]. The finding that activated brain tissue produces lactate [5] 

should not have been that surprising, since it indicates that activated brain tissue resorts to 
non-oxidative energy production similar to activated muscle tissue. However, the findings 
by both Brooks [3] and Schurr et al. [6] that muscle and brain tissues, respectively, utilize 
lactate as an oxidative energy substrate shook the field of energy metabolism. Consequently, 
one must wonder why it took over four decades to produce results that challenge the dogma 
of two separate glycolytic pathways, aerobic and anaerobic. Alternatively, could it be that 
earlier findings in both muscle and brain tissues had already pointed at the possibility that 
lactate is more than just a useless end product of glycolysis, but for obscure reasons were 
ignored? In a review article, Schurr [22] examined the history of carbohydrate energy metab-

olism from its earlier stages at the end of the nineteenth century to the elucidation of the gly-

colytic pathway in 1940 and beyond. That review has unearthed some intriguing findings, 
both about the scientists who were leading the field at the time and the interpretation of their 
own research data. The scientific debate that ensued following the publications by Brooks [3] 

and Schurr et al. [6] is still raging on today due, at least in part, to a psychological phenom-

enon described as “habit of mind” [23] that is known to “afflict” scientists when dealing with 
a new breakthrough when it appears to contradict common knowledge.

4. The sour reputation of lactate is largely responsible for misconstruing 
the glycolytic pathway

Sour milk, where lactic acid (lactate) was first discovered, sets the tone for what has become 

for years to come the negative trademark of this monocarboxylate. Once found in work-

ing muscle, lactate was immediately blamed for muscle fatigue and rigor. As early as 1898, 
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Fletcher [24] demonstrated that lactic acid he used (0.05–5.0%) produced rigor mortis in an 
excised frog Gastrocnemius muscle immersed in it. The higher the lactic acid concentration, the 
quicker the rigor mortis sets in. Moreover, Fletcher and Hopkins [25] have shown that in the 
presence of oxygen, the survival of the excised muscle was prolonged and so did the accel-
eration of the disposal of lactate from it. These researchers highlighted the recognition that 
the body has the means to rid itself from muscular lactate and that there is ample evidence 
that such disposal is most efficient under oxidative conditions. Thus, the dogma of lactate as 
a muscular product responsible for fatigue and rigor, one that aerobic conditions enhance 
its disposal, was already well entrenched among scientists at the beginning of the twentieth 
century. It is still entrenched today among athletes and their coaches. Hill [7, 8] went even 
further than Fletcher by suggesting that the role of oxygen in muscle contracture is twofold, 
to decrease the duration of heat production and to remove lactate from it. Hill’s position and, 
eventually, the position of the majority of the scientists working in this field of research were 
that lactate is not a fuel. Hill argued that the measured heat production of lactate oxidation 
was much lower than the calculated value of its complete combustion. It is somewhat perplex-

ing that a scientist of the stature of Hill would argue that if lactate were a fuel, all the energy 
of its oxidation would be released as heat. The fact that the measured heat of lactate oxidation 
was only 12% of the calculated heat production should have indicated to him and others that 
the majority of the energy released from lactate oxidation, 88% of it, could be a conversion to 
another form of energy or controlled utilization. The leading investigators in the field at the 
time actually concluded that lactate is a separate entity from the one that is oxidized during 
muscle respiration and which yields energy and CO

2
. Moreover, they held that the energy 

yielded in respiration is utilized for lactate disposal.

With such reputation, attempts were made to blame lactate for the racking effects of cocaine 
use, since increased lactate levels in the blood stream of cocaine users were detected [26] 

or that increased lactate production is the cause of diabetes’ devastating consequences [27]. 
By the 1920s [28, 29], the central theme of these studies and many others had been muscle 

tissue and its glycolytic formation of lactate. The process had been postulated to always 
be anaerobic and mainly through the breakdown of glycogen. In addition, when aerobic 
oxidation takes place, it occurs only after the muscle contracts and its main purpose is the 
removal of accumulated lactate and its accompanied acidosis. Furthermore, CO

2
 released 

in the process is due to the acid action on the tissue’s bicarbonate. That theme clearly high-

lights lactate’s sour reputation, at least where energy metabolism of muscle is concerned. 
The relationship between lactate and glycogen in muscle and, eventually, in other tissues, 
including brain, has been a complicating issue in the understanding of glycolysis. “Otto 
Meyerhof and Archibald Hill were co-awarded the Nobel Prize in Physiology or Medicine 
in 1923 for their discovery of the fixed relationship between the consumption of oxygen 
and the metabolism of lactate in muscle” [22]. While the muscular conversion of glycogen 
to lactate is still in dispute today [30], both Nobel laureates had a long-lasting influence on 
this field of research. By the mid 1920s, “blaming” lactate as the culprit for any physiologi-
cal disorder or abnormal condition had become a “habit of mind” [23]. More details on the 
tendency of scientists in those days to “demonize” lactate are available [22]. Since the major-

ity of scientists in the field of carbohydrate metabolism in those days studied muscle tissue, 
their interpretation of and opinions about the results of their studies greatly influenced 
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those who studied carbohydrate metabolism of other tissues, especially brain. Thus, the 
small scientific community that investigated cerebral glycolysis in the late 1920s and early 
1930s adopted the opinions of their peers in the field of muscle glycolysis and accepted the 
popular dogma, according to which, lactate is a useless end product that the brain eliminates 
via oxidation. That concept stood against their own notion that the results of their studies 
could indicate lactate oxidative utilization by brain tissue. While Hill and Meyerhof were 
the leading scientists in the field of muscle carbohydrate metabolism in the 1920s and 1930s, 
E.G. Holmes was their counterpart in the field of cerebral carbohydrate metabolism. The lat-
ter was joined by his wife, B.E. Holmes, to publish a series of four excellent research papers 
they titled “Contributions to the study of brain metabolism” [31–34]. First, they showed 
that brain carbohydrates are not the source of brain lactate; however, the brain is capable of 
forming lactate from added glucose [31]. In their second study, they determined that brain 
lactate levels fall when there was a fall in blood sugar level, which results in shortage of 
glucose in the brain [32]. In the third paper of the series, the Holmes found that brain tissue 
in room temperature or under anaerobic conditions does not exhibit a significant increase in 
lactate level or a significant fall in glycogen level, but that under aerobic conditions, lactate 
rapidly disappears, while glycogen level remains unchanged [33]. Thus, the Holmes estab-

lished that glucose is the precursor of lactate in the brain and that under aerobic conditions, 
brain lactate content decreases. Additionally, these investigators showed that brain lactate 
is formed from glucose supplied by the blood and that its levels rise and fall with blood 
glucose levels, under both hypo- and hyperglycemic conditions. Moreover, they showed 
that the diabetic brain is not different from the normal brain, where lactate formation and 
its removal under aerobic conditions are concerned [34]. By 1929, Ashford joined Holmes 
and the two were able to demonstrate that the disappearance of lactate and the consump-

tion of oxygen are correlated, which, in essence, indicates an aerobic utilization of lactate 
by brain tissue. Furthermore, these investigators also showed that sodium fluoride (NaF), 
the first known glycolytic inhibitor, blocked both glucose conversion to lactate and oxygen 
consumption. Holmes [35] showed in brain gray matter preparation that oxygen consump-

tion was completely inhibited by NaF in the presence of glucose. However, when lactate 
was used instead of glucose, oxygen consumption was not inhibited by NaF. Consequently, 
Holmes concluded that the conversion of glucose to lactate must take place prior to its oxi-
dation by brain gray matter. These results and their straightforward conclusion have been 
completely ignored for over eight decades. This ignorance is especially glaring when one 
considers the fact that by the time the glycolytic pathway was elucidated in 1940, Holmes 
and Ashford papers were already available for at least a decade [35, 36] and should have 
been taken into account prior to the announcement of that elucidation. Hence, 76 years ago, 
we could have been presented with somewhat different view of the glycolytic pathway 
instead of the one in which, depending on the presence or absence of oxygen, ends up with 
either pyruvate or lactate, respectively. One should be able to confidently postulate such 
a scenario, since the main players involved in the configuration of the glycolytic pathway 
were clearly aware of the existence of the TCA cycle [37–40] and its dependence on the end 
product of glycolysis, one which they assumed to be pyruvate based mainly on Krebs and 
Johnson’s [37] own suggestion that pyruvate is the TCA cycle substrate (see below).
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Krebs and Johnson were careful to place a question mark following their suggestion that 

pyruvate is the TCA cycle substrate. However, the elucidators of the glycolytic pathway took 
a leap of faith, accepting Krebs and Johnson’s suggestion as a fact and an easy choice, when 
one considers the prevailing dogma of lactate being the anaerobic product of muscle glycoly-

sis and of such bad repute that no one would have considered it to be a substrate for the TCA 
cycle. Hence, lactate’s negative reputation entrenched itself in the minds of the scientists who 
worked with brain tissue, demonstrated the oxidation of lactate and opined that for glucose to 
be oxidized, it must be first converted to lactate. Thus, the work by the Holmes couple [31–34], 

Ashford and Holmes [36] and Holmes and Ashford [41] on brain carbohydrate metabolism 

has been ignored and remained obscure even today, due mainly to habit of mind [23]. This 
habit of mind prevents many scientists from accepting more recent data that challenge the 
old dogma of a glycolytic pathway that has two possible outcomes, aerobic and anaerobic. 
Nevertheless, we must not forget that in 1940, both the fact that the TCA cycle enzymes are 
located in mitochondria and the role these organelles play in respiration were unknown. Also 
unknown at the time was the fact that mitochondria contain in their membrane the enzyme 
lactate dehydrogenase (LDH), which can convert lactate to pyruvate [42–51]. Ignorance is 
understandable where the general public is concerned as both coaches and athletes continue, 
unabated, to blame lactic acid for muscle pain following anaerobic effort, even as recently 
as during the Rio Olympic games despite the fact that this claim has been refuted [52]. 
Nevertheless, ignorance cannot explain the persistence of the dogmatic aerobic and anaerobic 
glycolysis concept among scientists, since the knowledge available today does not support 
this dogma. Hence, the choice by many scientists to ignore or circumvent this knowledge Is 
most probably due to habit of mind [23].

5. A single glycolytic pathway with glucose as its substrate  
and lactate as its end product

The preceding sections have attempted to explain why the pioneers who formulated the gly-

colytic pathway decided to branch it into two types, aerobic and anaerobic. It is clear from 
the review of the studies that led to this formulation that these pioneers had to overcome 
several hurdles while gathering the existing information, including, among others, contradic-

tory results and some unknowns. Nevertheless, their formulation of glycolysis has remained 
unchanged until this day, regardless of some major predicaments it created as the field of 
energy metabolism has progressed over the years. Many biochemical pathways have been 
redrawn as research progresses over time, and yet, the one pathway that has never been sub-

jected to any redrawing throughout its 76 year history has been the glycolytic pathway. The 
reluctance of many scientists in the field to suggest corrections to or even consider its reformu-

lation is unexplainable. Although many argue that reformulation is unnecessary, the simple 
fact that “lactate as an oxidative energy substrate” is undisputed should have forced one to 

reconsider the original, outdated formulation. Most importantly, the originally drawn path-

way forces those who object to any reformulation which circumvents the more straightforward 
one according to which the glycolytic pathway always terminates with lactate production. 
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Consequently, solutions are being offered for the deficiencies of the old dogma of aerobic gly-

colysis, that is, its inability to regenerate NAD+, the coenzyme without which the maintenance 
of this pathway’s cyclical nature is impossible. In contrast, the cyclical requirement of the path-

way is met in anaerobic glycolysis upon the conversion of pyruvate to lactate and nicotinamide 
adenine dinucleotide (reduced form) (NADH) to nicotinamide adenine dinucleotide (oxidized 
form) (NAD+) (Figure 1). Therefore, aerobic glycolysis, as held today, is not capable of regener-

ating NAD+. Although it is unknown how oxygen “converts” anaerobic, lactate-producing gly-

colysis into an aerobic, pyruvate-producing glycolysis, and no theoretic mechanism has ever 
been offered for such conversion, it has, somehow, become axiomatic. It stands in complete 
disagreement with the fact that the glycolytic pathway of erythrocytes, the richest of all tissues 
in oxygen concentration, produces largely lactate from glucose and only minimal amounts 
of pyruvate [53]. Despite the fact that red blood cell glycolytic pathway is identical to that of 
other tissues, it produces lactate, both in the presence and absence of oxygen. However, for an 
unexplained reason, aerobic glycolysis of all other oxygenated tissues supposedly produces 
mainly pyruvate. Since erythrocytes lack mitochondria, one should doubt that the addition 
of mitochondria to erythrocytes in a test tube experiment would somehow change red blood 
cells’ lactate production to pyruvate production. Understandably, this paradox has remained 
unresolved throughout the second half of the twentieth century. However, the cumulative data 
gathered since the late 1980s are more than sufficient to suggest that this paradox is actually 
a misconception. Hence, it is bewildering that the majority of scientists in the field of energy 
metabolism prefer to accept such a paradox, rather than to correct a deficient formula of this 
biochemical pathway. Consequently, since the original aerobic glycolysis cannot regenerate 
NAD+, investigators had to propose alternative pathways for the production of NAD+.

The malate-aspartate shuttle (MAS) in brain a major redox shuttle supposedly capable to 
regenerate NAD+ when aerobic glycolysis is functional has been proposed as one such alterna-

tive [54, 55]. It has been argued that the MAS is a major supplier of NAD+ in the brain when 
aerobic glycolysis is operational [56]. Dienel and colleagues have published several studies 
and reviews over the years adamantly rejecting the postulate that lactate may be utilized oxi-
datively instead of glucose, since glucose is an obligatory energy substrate in the brain. Dienel 
[56] argues that lactate aerobic utilization requires a stoichiometric MAS activity to oxidize 
NADH to NAD+ by cytoplasmic LDH, ignoring the possibility of lactate oxidation to pyruvate 
by mitochondrial LDH. Under such circumstances, any NADH is formed in the mitochondria, 
not in the cytoplasm. LDH localization in the mitochondrial membrane and that mitochondria 
are capable of utilizing lactate as a substrate of the TCA cycle have been demonstrated by many 
investigators [42–51, 57]. Hence, the presence of a functional mitochondrial LDH could exclude 
the need for cytoplasmic MAS to transport NAD+ into the mitochondria. For those who insist 

that the original formulation of the glycolytic pathway is correct and accurate, the existence of 
membranous mitochondrial LDH presents a real dilemma, since one must question the role of 
such enzyme there, as it is unlikely for the reduction of pyruvate to lactate. Consequently, an 
aggressive push back was mounted against the findings of Brooks et al. [43], demonstrating 

LDH presence in mitochondria and its postulated role in lactate oxidation [18–21].

With the abundance of published studies over the past 30 years, all pointing in one way or 
another at a simpler, straight forward, singular glycolytic pathway, it is of utmost importance 
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to redefine “glycolysis” as a cytosolic biochemical pathway, of which glucose is its substrate 
and lactate is always its end product. NAD+, which is being reduced to NADH during the gly-

colytic pyruvate formation, is then being regenerated by the glycolytic LDH (cLDH, Figure 

2) as pyruvate is converted to lactate. That reaction affords this portion of glycolysis its cycli-
cal capacity. Under aerobic conditions, lactate is the main substrate of the TCA cycle and, as 
such, must be considered as the main molecule coupling between the glycolytic and the TCA 
cycle pathways, one in the cytosol and the other in the mitochondrion, respectively. Lactate 
is transported from the cytosol into the mitochondrion via a monocarboxylate transporter 
(MCT) [58, 59], where it is oxidized to pyruvate by mitochondrial LDH (mLDH, Figure 2) and 
also provides the mitochondrion with NADH. This in turn could circumvent the need for the 

Figure 2. A schematic illustration of the glycolytic pathway as has been proposed based on numerous studies over the 
past three decades where glycolysis has only one end product, lactate, whether under aerobic or anaerobic conditions. 
According to this proposed pathway, NAD+ is being regenerated regardless of the conditions under which glycolysis 
is operated. Under aerobic conditions (O

2
), lactate is being utilized, being the substrate of mitochondrial lactate 

dehydrogenase (mLDH), which converts it to pyruvate that enters the TCA cycle. Under anaerobic conditions (N
2
), 

lactate is accumulated in the cytosol. NAD+ = nicotinamide adenine dinucleotide (oxidized form); NADH = nicotinamide 
adenine dinucleotide (reduced form).
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proposed function of the malate-aspartate shuttle (MAS; but see Ref. [60]). Under anaerobic 
conditions, glycolysis continues to function unabated, resulting in lactate accumulation, as 

the TCA cycle is nonfunctional (Figure 2). When lactate is accumulating, under anaerobic 
conditions, it becomes upon return to aerobic conditions the principal energy substrate until 

its levels are falling back to their minimal, normal levels [57, 61–63].

In a recent online Research Topic Ebook published by Frontiers Media SA entitled “Glycolysis 
at 75: Is it Time to Tweak the First Elucidated Metabolic Pathway in History?” the reader can 
find research studies, reviews, opinion papers and commentaries highlighting both the grow-

ing consensus regarding glycolysis as a pathway with one end product, lactate, and the role 
of the latter in energy metabolism [22, 60, 64–70].

6. Summary

Lactate is a glycolytic metabolite that has earned a negative reputation ever since its discovery 
over two centuries ago. Consequently, with the progress of biochemistry and the elucidation of 
the different pathways of carbohydrate metabolism and bioenergetics, medical or physiological 
conditions where lactate appeared to accumulate have been assumed to potentially be harm-

ful or damaging. As a result, the medical literature still emphasizes the benefit of reactions or 
treatments that could minimize lactate concentration. In the early days of carbohydrate metabo-

lism research, the majority of scientists worked with muscle tissue, determining the tone and 
the direction of this field. They influenced parallel research in other tissues and especially in 
brain, skewing the interpretation of the results of that research. Therefore, when studies in the 
mid-1980s have appeared to challenge the prevailing dogma of glycolysis, by postulating a pos-

sible role for lactate in oxidative energy metabolism, great number of scientists, then, and even 
now, allowed their habit of mind to form a barrier that prevents their accepting such a role for 
lactate, notwithstanding the mounting evidence in support of such role. This chapter details 
some of the attitudes held by key scientists involved over the years in carbohydrate metabo-

lism research, the possible reasons for them holding those attitudes that eventually led to the 
description of glycolysis as a biochemical pathway with two different outcomes, aerobic and 
anaerobic, ending either with pyruvate or lactate, respectively. Also detailed are the original 
breakthrough studies that have challenged that dogma of glycolysis and instead proposed a 
singular glycolytic pathway independent of oxygen. Accordingly, this pathway begins with 
glucose as its substrate and terminates with the production of lactate as its main end product.
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