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Abstract

This chapter discusses about methods used in simulation and modeling of radio fre-
quency (RF)/microwave circuits and components. The main topic that is discussed here
is about one of the most powerful methods, that is, artificial neural networks. In this
chapter, different types of neural network such as dynamic and recurrent neural net-
works will be discussed. Other techniques that are popular in the area of microwave
components simulation and modeling are numerical techniques such as vector fitting,
Krylov method, and Pade approximation. At the end of the chapter, vector fitting as an
example of numerical methods will be discussed.

Keywords: artificial neural networks, circuit simulation and modeling, transient anal-
ysis, function approximation, RF/microwave circuits

1. Introduction

In recent years, ascending development of wireless communication products and huge trend

for commercial market in this ground caused significant improvement in modeling and simu-

lation approaches of radio frequency (RF) and microwave circuits. Such high-frequency cir-

cuits are leading to the development of a large variety of microwave models for passive and

active devices and circuit components [1]. Modeling and computer-aided design (CAD)

methods have an essential role in microwave designs and simulations [2]. The older

approaches were mainly based on slow trial-and-error processes and an emphasis on perfor-

mance at any price, but today seems to be a new era in high-frequency circuit design and

modeling, since development in this ground has enabled microwave engineers to design

larger, more efficient, and more complicated circuits than before [1, 3]. This complexity

requires new materials and technologies that require not only new models but also new

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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algorithms in computer-aided design [4] for RF/microwave circuits, antennas, and systems to

keep up with the advancement of technology with emphasis on time-to-market and low-cost

approaches [1, 3]. In addition to accurate parametric-modeling techniques to describe the

behavior of the microwave device, a reliable description that explains the changes of its

behavior against geometrical or physical parameters is also needed [5].

Also, since circuit models at high frequencies often lack fidelity, detailed electromagnetic (EM)

simulation techniques are needed to improve design accuracy. Although EM simulation tech-

niques are heavily used yet, they are computationally expensive, so there is a demand for design

methodologies to be not only accurate but also fast. Another concerning problem today is

optimization. To meet this purpose, computer-based algorithms that work with iterative circuit

evaluation are needed; this process also needs a highly repetitive computational process.

Another concerning issue according to Ref. [6] is the possibility of employing knowledge-based

tools for initial design, that is, one of the steps toward designing andmodeling process. It is hard

to satisfy all these problems with the traditional CAD technologies [1, 3]. In conclusion, obvi-

ously there is a serious need for a powerful accurate and fast processing and modeling tool.

Neural networks (NNs), or artificial neural networks, are information-processing systems that

can imitate the ability of human brain to learn from observation and generalize by abstraction

to create complex models [7]. Neural network gives a great approximation of system regard-

less of linear or nonlinear correlation between the input data and can be used as knowledge-

based tool (to be employed for initial design in RF/microwave applications) [1]. The ability of

NN to be trained resulted in their use in many diverse fields such as pattern recognition,

system identification, control, telecommunications, biomedical instrumentation, and many

other grounds. Recently, many researchers in communication area are focusing on using

neural network in their modeling and simulation, and NN has been recognized as a useful

alternative to conventional approaches in microwave modeling [1, 3]. Neural network models

are simple and fast, and they can enhance the accuracy of existing models. The basis of neural

network is on the universal approximation theorem, which says that a neural network with at

least one hidden layer can give an approximation of nonlinear multidimensional function to

any intended accuracy [8]. This property makes neural network a favorite modeling tool for

microwave engineers. Neural network approach is generic, that is, the same modeling tech-

nique that can be reused for passive/active devices/circuits. Another advantage of NN is the

ease of updating neural models regarding changes in technology [2]. Neural network is now

used in various microwave modeling and simulation applications, such as vertical intercon-

nect accesses (Vias) and interconnects [9], parasitic modeling [10], coplanar waveguide (CWG)

components [11], antenna applications, nonlinear microwave circuit optimization [12], power

amplifier modeling, nonlinear device modeling, wave-guide filter, enhanced elemental method

(EM) computation, and so on [2].

Artificial neural networks are classified into two main categories: static neural networks and

dynamic neural networks. In this chapter, the first neural network structures will be presented,

and then a general overview of static and dynamic neural networks and different types of

them and their applications in microwave modeling will be discussed. The last part is devoted

to another method called vector fitting (VF) that is a numerical technique used for system

identification and macromodeling [13].
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2. Training neural network

2.1. Basic structure of neural network

The idea behind neural network is similar to the function of human brain. A typical neural

network structure has two types of basic components: the processing elements and intercon-

nection between them. The processing elements are known as neurons, and the interconnec-

tions are called links. Each link is recognized with a corresponding weight parameter. Every

neuron receives stimuli from neighbor neurons connected to it [3]. Input neurons receive

stimuli from the outside of the network and the neurons that produce the output result are

called output neurons, and neurons that not only send but also receive stimuli are called

hidden neurons [1]. There are different ways to connect neurons to each other, so there are

different neural network structures. A neural network structure defines how information is

processed inside a neuron, and how the neurons are connected. In this chapter, we discuss the

models that are more common in microwave simulations and modeling.

Generally, artificial neural networks have an input data vector, an output data vector, a vector

including all the weight parameters, and a function that mathematically presents the neural

network [14].

AssumeNi andNo to represent the number of input and output neurons of the neural network,

respectively, w to be the vector of weight parameters, and y = y(x,w) to define the function that

represents the neural network. A simple scheme of artificial neural network is shown in

Figure 1.

Given a set of input and output data, a neural network can be constructed and trained. The

network tries to estimate a function, so that it is able to give the closest result to the intended

output. Commonly, a large percentage of input and corresponding output data are used as

Figure 1. A general scheme of a neural network with four input neurons, two output neuron, and one hidden layer. Also,

the links between the neurons are the weights.
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training data and the network will be trained by means of them. The act of training means

identifying the weights, so that they reach the optimum values. The remaining percentage of

data is used as validation and testing. Validation set is used to determine an approximation of

generalized error and is a factor for determining when to stop the process to prohibit over-

learning and under-learning [7]. Testing data obviously is used for checking the accuracy and

correctness of the network after training is completed.

In each level of information processing, the output of each neuron is received by the next

neuron, from input neurons to output neurons. An overview of information processing in

layers is shown in Figure 2. The inputs of a neuron are first multiplied by the corresponding

weight parameters individually, then the results are added to produce a weighted sum of γ,

which then will pass through a neuron activation function σ(.) to produce the final output of

the neuron. This output is the input of the neuron in the next layer, and this process is repeated

for all the neurons, until it reaches the output layer.

Let wi0

l to be the bias for i
th neuron of l

th layer. So the vector of weights is

w ¼ ½w2
10w

2
11w

2
12…w2

2N1
w3

10…wL

NLNL−1
�Tand the output of the neuron is zl

i
¼ σðγl

i
Þ.

There are different types of training in neural network [1], here we explain each of them

shortly:

Figure 2. Information processing inside a neuron.
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1. Sample-by-sample (or online) training: each time a training sample is presented, the

weights (w) are updated based on training error.

2. Batch-mode (or offline) training: after each epoch weights are updated based on training

error from all the samples in training data set.

3. Supervised training: using x and y data for training process, where x is the input of the

neural network and y is the output of the neural network.

4. Un-supervised training: using just x data for training process.

2.2. Activation functions

Activation function, also known as transfer function, is one of the most important units in a

neural network structure, that is, a scalar-to-scalar function transforms a set of input signals

into an output signal. Common types of activation functions are arctangent as shown in

Figure 3, hyperbolic tangent shown in Figure 4, and sigmoid functions which are shown in

Figure 5 [15].

Sigmoid function:

z ¼ σðγÞ ¼
1

1þ e−γ
(1)

Arctangent function:

z ¼ σðγÞ ¼
2

π
arctanðγÞ (2)

Figure 3. Mathematical graph of arctangent function z ¼ σðγÞ ¼ 2
π
arctan ðγÞ:
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Hyperbolic tangent function:

z ¼ σðγÞ ¼
e
γ
−e

−γ

e
γ þ e

−γ
(3)

3. Static neural networks

In the past few years, artificial neural networks have gained attention as a valuable computer-

aided design tool for modeling high-frequency circuits. They can mainly be categorized as

techniques for modeling frequency-domain response of components and time-domain

response of them. For frequency-domain modeling, static neural networks are employed. Their

Figure 4. Mathematical graph of hyperbolic tangent function z ¼ σðγÞ ¼ e
γ
−e

−γ

e
γþe

−γ :

Figure 5. Mathematical diagram of sigmoid function z ¼ σðγÞ ¼ 1
1þe

−γ :
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main architectures are multilayer perceptron (MLP) and radial-basis function (RBF), which

will be discussed in this section.

3.1. Multilayer perceptron (MLP)

Multilayer perceptron structure is the most frequently used structure in many areas including

microwave modeling and optimization problems. This technique belongs to a subcategory of

neural network called feed-forward neural network, which is able to approximate continuous

and integrable functions [1], and their connectivity consists of layer groups that are only linked

to adjacent layers, meaning that there is not a cycle or a recursive path [16].

3.1.1. MLP structure

In MLP structure, neurons are classified into different layers. A typical MLP neural network

consists of one input layer, one or more hidden layers, and one output layer, as shown in

Figure 6. Consider L as the total number of layers, layer 1 is the input layer, layer 2 to layer

(L-1) are hidden layers, and layer L is the output layer. Also, suppose the number of neurons in

lth layer is Nl, l = 2, 3,…, L.

Here, consider xi as the i
th input of the MLP, and zi

l as the output of ith neuron of lth layer. Also,

wij
l is the weight of the link between jth neuron of (l - 1)th layer, and ith neuron of lth layer

1 ≤ j ≤ Nl−1, 1 ≤ i ≤ Nl.

One of the most commonly used activation functions in MLP structure is sigmoid function [1],

which is shown in Figure 5.

In summary, if we suppose x ¼ ½x1 x2… xn�
T is the input vector, and y ¼ ½y1 y2… ym�

T is the

output vector,

For

l ¼ 1 : zli ¼ xi, i ¼ 1, 2,…, n ¼ N1 (4)

Figure 6. MLP structure with one input layer, several hidden layers, and one output layer.
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For

l ¼ 2, 3,…, L : γl
i ¼ ∑

Nl−1

j¼0

wl−1
ij zl−1j , zli ¼ σðγl

iÞ (5)

And

yi ¼ zLi , i ¼ 1, 2,…,m,m ¼ NL (6)

3.2. Radial-basis function (RBF) networks

Radial-basis function neural network, like MLP, is a subset of feed-forward neural network. It

is used in a wide range of applications related to microwave transistors and high-speed

integrated circuits, and modeling of intermodulation distortion behavior of MESFETs and

HEMTs [1, 17].

3.2.1. RBF structure

A radial-basis function is a real-valued function whose value depends only on the distance

from the origin, so that ϕðxÞ ¼ ϕð∥x∥Þ, or alternatively on the distance from some other point c,

called a center, so that ϕðx, cÞ ¼ ϕð∥x−c∥Þ. Any function that satisfies the property

ϕðxÞ ¼ ϕð∥x∥Þ is a radial function.

The main approach in this structure is based on approximation of a curve that best fits to the

training data set in high-dimensional space by determining λ and c that are standard deviation

and center of the activation functions, respectively, and are parameters of the function [7, 15].

The dimension of the hidden space is related directly to the accuracy of the approximated

model [14]. In this structure, we have

yðxÞ ¼ ∑
N

i¼1

wiϕð∥x−xi∥Þ, (7)

where y(x) is the approximating function that is the weighted sum of radial-basis functions [1].

In RBF structure, there is just one hidden layer, and the function of input and output layers

stays the same like MLP structure. RBF uses the radial basis as activation function [7]. Figure 7

shows a typical RBF neural network.

Radial-basis activation functions include Gaussian and multiquadratic functions.

Gaussian function:

σðγÞ ¼ exp −
γ

λ

� �2
� �

(8)

Multiquadratic function:
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Figure 8. The Gaussian function.

Figure 7. Structure of RBF neural network.

Figure 9. The multiquadratic function. C represents the value of centers.
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σðγÞ ¼
1

ðc2 þ γ2Þα
,α > 0 (9)

The Gaussian and multiquadratic functions are shown in Figure 8 and Figure 9, respectively.

4. Time-domain neural networks

For time-domain modeling of components and systems, time-domain artificial neural network

structures are usually employed in the literature. The main time-domain architectures are

dynamic neural networks (DNNs) and recurrent neural networks (RNNs), which will be

discussed in this section.

Most neural network structures used by engineers are feed-forward neural networks that are

suitable for time-independent static input-output mapping [18]. In feed-forward neural net-

works, the flow of information is straight forward from the first neuron of the first layer to the

last neuron of the output layer, and the procedure is not recursive, so the output of neurons

does not have any effect on the input of the last neurons, although the stability of a neural

network is the result of the absence of feedback in the network. In spite of static NNs, a

dynamic neural network uses feedback between neurons in the same layer, or even neurons

in different layers, also it provides more computational advantages [19]. Feedback-based

neural networks are good approaches for modeling, identification, and control of systems,

since most of systems in real world such as airplanes, rockets, and so forth are nonlinear

dynamical systems [18, 20].

4.1. Recurrent neural networks (RNNs)

Recurrent neural network is a discrete time-domain neural network that allows time-domain

behaviors of a dynamic system to be modeled [1]. Its structure is suitable for modeling tasks

such as dynamic system control and finite-difference time-domain (FDTD) solutions in elec-

tromagnetic modeling [21]. The output of the neural network is a function of its present inputs

and a history of its inputs and outputs [22]. The delayed outputs are fed back to the inputs and

the feed-forward network along with the feedback delay constructs the recurrent neural

network structure. In this architecture, we suppose the inputs and outputs to be a function of

time, representing this functionality with parameter t, also τ which is the delay representing

the effect of history of the neural network inputs and outputs.

Suppose the external single input of the neural network to be x(t) so the history of it would

be x(t-τ), x(t-2τ), x(t-3τ), …, x(t-ατ) where α is the maximum number of delay steps for x,

and suppose the single output of the RNN to be y(t) with history of it demonstrating as y(t-

τ), y(t-2τ), y(t-3τ), …, y(t-βτ) that β is the maximum number of delay steps for y. The

architecture of the RNN is shown in Figure 10. The corresponding formulation is
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yðtÞ ¼ f
�

yðt−τÞ, yðt−2τÞ, :::, yðt−βτÞ, xðtÞ, xðt−τÞ, xðt−2τÞ,…, xðt−ατÞ
�

(10)

Suppose a three-layer discrete-time MLP neural network as above, with activation function z =

σ(γ). Applying the delays to the process, the output of the ith neuron at t is

yiðtÞ ¼ σ
�

γiðt−τÞ
�

(11)

in which,

γiðtÞ ¼ xiðtÞ þ∑
T

j¼1

wijyjðtÞ (12)

where T is the total number of neurons, xi is the external input, i = 1, 2, 3, …, T, yi is the output

of neuron itself, also yj is the output of other neurons, j = 1, 2, 3, …, T, i ≠ j.

5. Dynamic neural networks (DNNs)

Dynamic neural network is a continuous time-domain neural network that is one of the best

formulations for modeling nonlinear microwave circuits [9]. DNN is highly efficient in theory

and practice. It is suitable for a wide range of needs in nonlinear microwave simulations, for

example, it is suitable for both time- and frequency-domain applications, multitone simula-

tions, and so on [12]. In comparison with other neural network methods, DNN provides a

faster and more accurate network modeling that is significantly required in today’s efficient

CAD algorithms in high-level and large-scale nonlinear microwave designs. DNN also can be

Figure 10. Recurrent neural network.
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developed directly from input-output data without a need to depend on internal details of the

circuit [12]. In DNN, the outputs are a function of inputs and their derivatives, and also a

function of derivatives of outputs. Figure 11 shows the architecture of dynamic neural network

and the process occurring at each level.

In Figure 11, y(n)(t) is the nth derivative of y(t) and is integrated and fed back as an input to the

system along with the inputs x(t) and their derivatives, x(i)(t). yðnÞðtÞ ¼ f
�

yðn−1ÞðtÞ, yðn−2ÞðtÞ,…,

yðtÞ, xðnÞðtÞ, xðn−1ÞðtÞ,…, xðtÞ
�

, in which f (.) represents the MLP nonlinear function and y(i)(t)

represents ith derivative of y(t).

The DNNmodel can represent a nonlinear circuit when trained and tested with an appropriate

data set, measured or obtained from the original circuit.

5.1. State-space dynamic neural network (SSDNN)

State-space dynamic neural network (SSDNN) is a technique for modeling nonlinear transient

behaviors especially in high-speed IC and nonlinear circuits. The SSDNN-modeling technique

is based on DNN structure and is a combination of DNN and state-space concept, which

expands continuous DNN into a more general and flexible approach for nonlinear transient

modeling and design with good accuracy [23].

Let v ∈ ℝ
N be the transient input signal of a nonlinear circuit, and let y ∈ ℝ

M be the transient

output signal of a nonlinear circuit, where N and M are the number of inputs and outputs of

the circuit, respectively, w also is the weight parameter matrix that is divided into three

matrixes: wv, ws, wo, which are weights connecting to the inputs (v), weights connecting to the

state variables, and weights connecting the hidden neurons of the hidden layer to the outputs,

respectively. Also, η is a constant scaling parameter. SSDNN model formulation can be

represented by the equations as follows:

Figure 11. Dynamic neural network.
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_xðtÞ ¼ −xðtÞ þ ηgANN

�

vðtÞ, xðtÞ,w
�

yðtÞ ¼ BxðtÞ

)(

(13)

where x = [x1,…, xL]
T
∈ ℝ

L and is a vector of state variables, with initial condition x(0) = x0 and

L is the dimension of the state space, that is, the order of the model, gANN ¼ ½gANN−1,…,

gANN−L�
T is a representation of feed-forward MLP neural network, which has N + L input

neurons and L output neurons, also B ¼ ½bij�∈ℝ
LM is the matrix which maps state space into

output space [23]. A simple structure of SSDNN is shown in Figure 12.

5.1.1. Adjoint state-space dynamic neural network (ASSDNN)

Adjoint state-space dynamic neural network (ASDNN) method, like SSDNN method, is used

for modeling the transient behavior of nonlinear electronic and photonic components. It is an

extension of SSDNN technique that is capable of adding the derivative information of the

output to the training patterns of nonlinear components simultaneously, so that the training

process can be done more efficient requiring less data without sacrificing model accuracy and

efficiency [23, 24]. It has been shown in Ref. [24] that testing error from the model trained by

ASSDNN method is much less than that obtained from SSDNN. Here is the formulation of

ASSDNN using notation similar to SSDNN mentioned already, and an overview of structure

of ASSDNN is shown in Figure 13.

Figure 12. Structure of SSDNN model.
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_xðtÞ ¼ −xðtÞ þ ηgANN

�

vðtÞ, xðtÞ,w
�

yðtÞ ¼ BxðtÞ
_yðtÞ ¼ B _xðtÞ

8

>

<

>

:

9

>

=

>

;

(14)

6. Other methods in microwave modeling

There are other methods which are not based on neural networks for modeling microwave

components such as Krylov method [25], finite element [26], mode-matching method [27],

vector-fitting method, and so forth [28]. In the preceding section, we present vector-fitting

method. This technique has been used in many microwave simulations and modeling

researches [29–31].

6.1. Vector-fitting method

Vector fitting (VF) is a robust numerical technique for rational approximation of transfer

functions and s-parameter in the frequency domain, especially in microwave devices using

poles and residues [32]. It allows calculating multiport models directly from measured or

computed frequency responses. The resulting approximation has guaranteed stable poles that

are real or come in complex conjugate pairs, and the model can be converted directly into a

state-space model [13].

Basically, vector fitting is a pole relocation method where the poles are improved in an iterative

manner. This is achieved by repeatedly solving a linear problem until convergence is achieved

[13]. The VF formulation avoids the ill-conditioning problems encountered with some alterna-

tive approaches, as the formulation is given in the form of simple fractions instead of poly-

nomials. Unstable poles are flipped into the left-half plane to enforce stable poles. This makes

VF applicable to high-order systems and wide frequency bands [33].

Figure 13. Structure of ASSDNN-based model.
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Mathematical representation of vector-fitting method is presented briefly in this section.

Let {pn} be a set of unknown poles, and {rn} be residues, H(s) is the given rational function:

HðsÞ ¼ ∑
M

n¼1

rn
s−pn

 !

(15)

in which M is the order of the macromodel. The poles are identified by solving the linear

problem shown in Eq. (16) for ith iteration,

∑
M

n¼1

rin
s−pin

≈ ∑
M

n¼1

γi
n

s−pin

 !

þ 1

 !

HðsÞ (16)

in which rn
i is rn for i

th iteration, the same is pn
i, and γn

i is found in matrix x. In Eq. (6), we call

∑
M

n¼1
rin
s−pin

� �

þ 1
� �

as σi(s), and∑
M

n¼1
rin

s−pin
as σHi(s) which are unknown rational functions with

given poles. By writing Eq. (16) for several frequency points, we have an overdetermined

linear problem with a frequency-sampled data point ft:

Atx ¼ Htðf tÞ, (17)

in which t = 1, 2, …, Nf, At ¼
1

sþpi
1

…

1
sþpin

1
−Hðf tÞ

sþpi
1

…

−Hðf tÞ

sþpin

h i

, and x ¼ ½ri1…riN0γ
i
1…γ

i
N� that can

become a linear equation problem that is,

½AT
1A

T
2…AT

Ns
�Tx ¼ ½H1H2…HNf

�T (18)

It can be proven that the poles of H(s) are equal to the zeroes of σi(s), also the zeroes of σi(s) can

be calculated by solving an eigenvalue problem as shown in Eq. (19) [33]

ϕ ¼

pi1
pi2

pi3
⋱

piN

2

6

6

6

4

3

7

7

7

5

−

1
1
1
⋮

1

2

6

6

6

6

4

3

7

7

7

7

5

�

γi
1

γi
2

γi
3

⋮

γi
N

2

6

6

6

6

4

3

7

7

7

7

5

T

(19)

Also for initialization there are different approaches. Basically, initial poles should be complex

with weak attenuation and can be obtained by a simple calculation such as Prony method [13]

or simply can be spaced within the desired range of frequency, for example, between 50 Hz

and 1 MHz [17], and the advantage here is even if the starting poles were selected poorly, the

result does not change significantly [32]. By solving Eq. (19), new set of poles are identified.

After identifying all the poles, residues are calculated by solving Eq. (16) which is again a

linear problem. As a conclusion, VF method samples the given function with an appropriate

sample rate, and in this way a summation of partial fractions can be found, that is, the discrete-

function approximation of the original transfer function.
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7. Related work

This part of the chapter briefly discusses about the application of computer-aided design

(CAD) techniques in modeling and simulation of RF and microwave-passive components.

Neural network-based modeling approaches have been widely used for modeling variety of

RF and microwave-passive components such as coupled-line filters, coplanar waveguides,

Vias and multilayer interconnects, and some other passive components.

7.1. General procedure of modeling

Here, we provide a brief review of procedure used in neural network-based modeling of RF

and microwave-passive components.

For modeling microwave components in frequency domain [1], first input and output param-

eters of the components should be selected in a wide range of frequencies. In most ANN

models, it is desired to represent the parameters in terms of scattering parameters (S-parame-

ters). The next step is data generation. For passive component models, electromagnetic simu-

lation approach is widely used for generating data. EM simulators, which are used in the

process of developing ANN models, produce S-parameter for the components. After data

training, there should be a criterion for deliberation of the accuracy of the model, so error of

the model in different formulations is measured. In most EM-ANN models, the absolute

average and standard deviation of error is measured for each output.

After training and verification of the EM-ANN model, based on the usage they can be used

either in stand-alone mode or in integrated mode along with microwave circuit simulators. In

integrated mode, there is a linear model subroutine that connects models to the simulator. This

subroutine returns S-parameter of a component back for further simulation. When the simula-

tion is running, the simulator passes parameters such as frequency of a component. For

computation of S-parameter, there is a feed-forward ANN subroutine that receives input vari-

ables and also it holds the algorithm for finding the output of the ANNmodel. Besides, models

can be connected to the circuit simulator as a group, where these collections of models are

called libraries [34].

7.2. Parametric modeling of a coupled-line filter

In this example, we demonstrate the use of ANN techniques to develop a model for a family of

coupled-line filters [35]. Here, S1 and S2 are the spacing between lines and D1, D2, D3 are offset

distances from the ends of each coupled lines to the corresponding fringes. This model has six

inputs that are x = {S1, S2, D1, D2, D3, ω} and four outputs as S-parameters RS11, IS11, RS12, IS12
which are real and imaginary parts of S-parameters S11 and S12. The testing and training data

were obtained from CST microwave studio [36]. Table 1 shows the final testing and training

results after developing the ANN model for coupled-line filter. In the table, 6-40-4 as neural

network structure means a neural network with four inputs, 40 hidden neurons, and four

outputs that was used to develop the model for this component. As it can be seen from the

table, the ANN model matches the desired data obtained from the simulation tool with very

good accuracy, which validates the usage of this method for model creation.
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7.3. EM-ANN models for CPW components

The use of coplanar waveguides (CPWs) in RF and microwave-integrated circuits has brought

many advantages. Accurate modeling of these components is necessary for accurate simula-

tion of circuits. One of the fields that experts recently have been working on is toward the

development of accurate and efficient methods for EM simulation of CPWdiscontinuities, but

the challenge of using these tools for iterative CAD and circuit optimization [37] is the time-

consuming nature of EM simulation. To overcome this problem, EM-ANN models have been

suggested [38]. The models include CPW transmission line, short- and open-circuit stubs, step-

in width discontinuities, and T-junctions. These EM-ANN models are linked to microwave

circuit simulators and allow for the accurate and very fast EM circuit optimization in the

framework of circuit simulator [1]. A general schematic of a coplanar waveguide is shown in

Figure 14. In this figure, W is the center conductor width, G is the spacing between conductor

and ground plane, and L is the center conductor length.

7.4. Vias elements in microstrip circuits and multilayer Vias connectors

Progress in technology caused merging large number of microwave circuits and creating

multilayer complexities that leads to investing much effort on optimizing and lowering the

cost and weight of these circuits. Besides, accuracy and efficiency are important factors that

should be satisfied in designs to have desirable simulation results. EM-ANN-based methodol-

ogy despite other solutions that have been suggested was enormously successful in modeling

Vias elements in microstrip circuits and multilayer Vias connectors [39]. Some other sugges-

tions had limitations such as heavily computational expenses or limited range of frequency. As

Model type

Neural network

structure

Average training error

(%)

Average testing error

(%)

ANN model using 120 sets of training

data

6-40-4 0.897 0.989

ANN model using 40 sets of training

data

6-35-4 1.073 4.357

Table 1. Final testing and training results of ANN model (from Ref. [35]).

Figure 14. Simple coplanar waveguide.
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an example, microstrip transmission line model is one of the implemented ANN-based models

in this case. In this model, input parameters are frequency which is in the range, log
�

W I

Hsub

�

in

which WI is the microstrip width and Hsub is the substrate height which varies between -1 and

1, and εr relative dielectric constant of the substrate in the range of 2–13. A simple schematic of

microstrip transmission line is shown in Figure 15.

Output parameter is Z0 which is the characteristic impedance, and εeff is the effective dielectric

constant. A total of 155 data were used as training, 100 for validation, and 10 hidden neurons

to create the model. To test the model, standard deviation and average error criteria were used.

Error results for microstrip transmission line are shown in Table 2.

8. Conclusion

In this chapter, a review of some tools commonly used in RF/microwave simulation and

modeling has been presented. In the last few decades, high-frequency effects have become an

important factor in RF/microwave area. These effects can be found in all levels of design from

tiny chips to packaging structures. In order to capture these effects, it is common to use

physics-based models or electrical models which lead to large equations and large computa-

tional efforts for solving and simulating them, which is extremely time-consuming and expen-

sive. Artificial neural networks recently have become popular among computer-aided design

tools. The main topic in this chapter was a discussion on neural network which was mentioned

as a powerful tool in modeling and simulation areas, also two main types of neural network

structures including static and dynamic neural networks and their different types has been

Figure 15. Simple schematic of microstrip transmission line.

Z0(%) τeff(%)

Training data average error 1.161 0.377

Training data SD 1.157 0.376

Validation data average error 0.774 0.293

Validation data SD 0.875 0.223

Table 2. Average and standard deviation (SD), for absolute error training (from Ref. [1]).
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presented. In static neural network section, we talked about multilayer perceptron (MLP) and

radial-basis function (RBF) structure, and in time-domain part we discussed recurrent neural

network (RNN), dynamic neural network (DNN), state-space dynamic neural network

(SSDNN), and adjoint state-space dynamic neural network (ASSDNN) methods. Other than

neural network, as mentioned already, there are several numerical methods that are being used

in the procedure of simulation and modeling microwave components such as Krylov method,

finite-difference time-domain (FDTD), finite-element time-domain (FEDT), and vector fitting

(VF). Here, we presented vector-fitting method that is widely used for modeling microwave

and electromagnetic components with good performance. VF despite other system identifica-

tion methods avoids ill-conditioning calculation, and because of this, it works more efficiently.

Also, this method is very robust; it performs well even for high-order fitting and does not

disturb by poorly selected starting poles. VF technique is very easy to implement in a com-

puter program, since it is constructed upon matrices from simple fractions, and the problems

in this case are easy to solve.

As a conclusion, the ANN-based methodologies and other mentioned methods are capable of

applying to RF/microwave modeling and components simulation and are shown to have both

speed and accuracy advantage for modeling nonlinear functions, despite many other conven-

tional techniques.

Author details

Sayed Alireza Sadrossadat* and Farnaz Mohammadi

*Address all correspondence to: Alireza.sadr@ece.ut.ac.ir

Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

References

[1] Zhang Q. J., Gupta K. C. Neural Networks for RF and Microwave Design. Boston: Artech

House; 2000. 369 p.

[2] Zhang Q. J., Gupta K. C., Devabhaktuni V. K. Artificial Neural Networks for RF and

Microwave Design – From Theory to Practice. IEEE Trans. Microwave Theory Tech. 2003;

51(4): 1339–1350.

[3] Kabir H., Zhang L., Yu M., Aaen P. H., Wood J., Zhang Q. J. Smart Modeling of Micro-

wave Devices. IEEE Microwave Mag. 2010; 11(3): 105–118.

[4] Burrascano P., Fiori S., Mongiardo M. A Review of Artificial Neural Networks Applica-

tions in Microwave Computer-Aided Design. Int. J. RF Microwave CAE. 1999; 9: 158–174.

[5] Steer M. B., Bandler J. W., Snowden C. M. Computer-Aided Design of RF and Microwave

Circuits and Systems. IEEE Trans. Microwave Theory Tech. 2002; 50(3): 996–1005.

Modeling and Simulation Techniques for Microwave Components
http://dx.doi.org/10.5772/66356

37



[6] Gupta K. C. ANN and Knowledge-Based Approaches for Microwave Design. In Direc-

tions for the Next Generation of MIMIC Devices and Systems, N. K. Das and H. L.

Bertoni, Eds. NY: Plenum. 1996; 389–396.

[7] Engelbrecht A. P. Computational Intelligence: An Introduction. John Wiley & Sons, New

York; 2007[23]. 581 p.

[8] Hornik K., Stinchcombe M., White H. Multilayer Feed-Forward Networks Are Universal

Approximators. Neural Netw. 1989; 2: 359–366.

[9] Watson P. M., Gupta K. C. EM-ANN Models for Microstrip Vias and Interconnects in

Dataset Circuits. IEEE Trans. Microwave Theory Tech. 1996; 44(12): 2495–2503.

[10] Sen P., Woods W. H., Sarkar S., Pratap R. J., Dufrene B. M., Mukhopadhyay R., Lee C.,

Mina E. F., Laskar J. Neural-Network-Based Parasitic Modeling and Extraction Verifica-

tion for RF/Millimeter-Wave Integrated Circuit Design. IEEE Trans. Microwave Theory

Tech. 2006; 54(6): 2604–2614.

[11] Nihad D., Jehad A., Amjad O. CAD Modeling of Coplanar Waveguide Interdigital

Capacitor. Int. J. RF Microwave Computer-Aided Eng. 2005; 15(6): 551–558.

[12] Xu J. J., Yagoub M. C. E., Ding R., Zhang Q. J. Neural-Based Dynamic Modeling of

Nonlinear Microwave Circuits. IEEE Trans. Microw. Theory Tech. 2002; 50(12): 2769–2780.

[13] Lei C., Wang Y., Chen Q., Wong N. On Vector Fitting Methods in Signal/Power Integrity

Applications. Proc. Int. Multi-Conf. Eng. Comp. Scient. 2010; 2: 1407–1412.

[14] Haykin S., Lippmann R. Neural Networks, a Comprehensive Foundation. International

Journal of Neural Systems; 1994. 823 p.

[15] Karlik B., Vehbi O. A. Performance Analysis of Various Activation Functions in General-

ized MLP Architectures of Neural Networks. Int. J. Artificial Intellig. Expert Syst. 2011; 1

(4): 111–122.

[16] Dorffner G. Unified Frameworks for MLP and RBFNs: Introducing Conic Section Func-

tion Networks. Cybern. Syst. 1994; 25: 511–554.

[17] Gustavsen B. Improving the Pole Relocating Properties of Vector Fitting. IEEE Trans.

Power Deliv. 2006; 21(3): 1587–1592.

[18] Sinha N. K., Gupta M. M., Rao D. H. Dynamic Neural Networks: An Overview. Proc.

IEEE Int. Conf. Industr. Technol. 2000; 2: 491–496.

[19] Bertsekas D. P., John N. T. Neuro-Dynamic Programming: An Overview. Proc. 34th IEEE

Conf. 1995; 1: 560–564.

[20] Narendra K. S., Parthasarthy K. Identification and Control of Dynamical Systems Using

Neural Networks. IEEE Trans. Neural Netw. 1990; 1(1): 4–27.

[21] Wu C., Nguyen M., Lima J. On Incorporating Finite Impulse Response Neural Network

with Finite Difference Time Domain Method for Simulating Electromagnetic Problems.

IEEE AP-S Antennas Propag. Int. Symp. 1996; 3: 1678–1681.

Microwave Systems and Applications38



[22] Aweya J., Zhang Q. J., Montuno D. A Direct Adaptive Neural Controller for Flow Control

in Computer Networks. IEEE Int. Conf. Neural Netw. (Anchorage, Alaska). 1998; 1: 140–

145.

[23] Cao Y., Ding R., Zhang Q. J. State-Space Dynamic Neural Network Technique for High-

Speed IC Applications: Modeling and Stability Analysis. IEEE Trans. Microwave Theory

Techn. 2006; 54(6): 2398–2409.

[24] Sadrossadat S. A., Gunupudi P., Zhang Q. J. Nonlinear Electronic/Photonic Component

Modeling Using Adjoint State-Space Dynamic Neural Network Technique. IEEE Trans.

Comp. Packaging Manufact. Technol. 2015; 5(11): 1679–1693.

[25] Chaniotis D., Pai M. A. Model Reduction in Power System Using Krylov Subspace

Methods. IEEE Trans. Power Syst. 2005; 20: 888–894.

[26] Singh T. Design and Finite Element Modeling of Series-Shunt Configuration Based RF

MEMS Switch for High Isolation Operation in K-Ka Band. J. Comput. Electr. 2015; 14(1):

167–179.

[27] Kordiboroujeni Z., Bornemann J., Sieverding T. Mode-Matching Design of Substrate-

Integrated Waveguide Couplers. Asia-Pacific Symp. Electromag. Compatib. Singapore.

2012; 1: 701–704.

[28] Bai Z. Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dynam-

ical Systems. Appl. Numer. Math. 2002; 43(1): 9–44.

[29] Li E. P., Liu E. X., Li L. W., Leong M. S. A Coupled Efficient and Systematic Full-Wave

Time-Domain Macromodeling and Circuit Simulation Method for Signal Integrity Anal-

ysis of High-Speed Interconnects. IEEE Trans. Adv. Packag. 2004; 27(1): 213–223.

[30] Antonini G. SPICE Equivalent Circuits of Frequency-Domain Responses. IEEE Trans.

Electromagn. Compat. 2003; 45(3): 502–512.

[31] Cai Y., Mias C. Faster 3D Finite Element Time Domain-Floquet Absorbing Boundary

Condition Modeling Using Recursive Convolution and Vector Fitting. IET Microwaves

Antennas Propag. 2009; 3(2): 310–324.

[32] Gustavsen B., Semlyen A. Rational Approximation of Frequency Domain Responses by

Vector Fitting. IEEE Trans. Power Deliv. 1999; 14(3): 1052–1061.

[33] Semlyen A., Gustavsen B. Vector Fitting by Pole Relocation for the State Equation

Approximation of Nonlinear Transfer Matrices. Circuits Syst. Signal Process. 2000; 19(6):

549–566.

[34] Cao Y., Wang G., Gunupudi P., Zhang Q. J. Parametric Modeling of Microwave Passive

Components Using Combined Neural Networks and Transfer Functions in the Time and

Frequency. Int. J. RF Microwave Comp. Aid. Eng. 2013; 23: 20–33.

[35] Sadrossadat S. A., Cao Y., Zhang Q. J. Parametric Modeling of Microwave Passive Com-

ponents Using Sensitivity-Analysis-Based Adjoint Neural-Network Technique. IEEE

Trans. Microwave Theory Techn. 2013; 61(5): 1733–1747.

Modeling and Simulation Techniques for Microwave Components
http://dx.doi.org/10.5772/66356

39



[36] CSTMicrowave Studio. CSTAG, Darmstadt, Germany, 2010 [Online]. Available at: http://

www.cst.com.

[37] Doerner R., et al. Modelling of Passive Elements for Coplanar SiGe MMIC‘s. Microwave

Symp. Digest IEEE MTT-S Int. Orlando, FL, USA. 1995; 3: 1187–1190.

[38] Watson P. M., Kuldip C. G. Design and Optimization of CPW Circuits Using EM-ANN

Models for CPW Components. IEEE Trans. Microwave Theory Techn. 1997; 45(12): 2515–

2523.

[39] Cao Y., Zhang Q. J. Neural Network Techniques for Fast Parametric Modeling of Vias on

Multilayered Circuit Packages. IEEE Electr. Design Adv. Pack. Syst. Symp. 2010; 1: 1–4.

Microwave Systems and Applications40


