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Abstract

Transcriptome analysis of postmortem brain samples provides more insights to evaluate 
biological dysfunctions by analysis of differential expression and genetic interactions in 
schizophrenia. The growing development of new technologies such as next-generation 
sequencing (NGS) helps to explore detailed and underlying molecular changes from 
global perspective of view, not only focus in single SNP variants. It is implicated that 
schizophrenia genetic and protein interactions may give rise to biological dysfunction 
not only in dopamine dysfunction but also in immune, energy metabolism, mitochon-
drial dysfunction and hemostasis. Epigenetic investigation of schizophrenia provides 
important information on how the environmental factors affect the genetic architecture 
of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. The 
schizophrenia differential methylation genes and differential expression genes were ana-
lyzed to find the potential protein complexes related to the etiology of schizophrenia 
from alteration of DNA methylation. The protein complexes and pathways involved 
in schizophrenia differential methylation network may be responsible for the etiology 
and potential treatment targets. It is implicated that the interaction between differen-
tial expression candidate genes and differential methylation genes may describe the 
global view of disease mechanisms and it has important roles in the pathogenesis for 
schizophrenia.

Keywords: systems biology, protein complexes, methylation, pathway enrichment 
analysis, network analysis, schizophrenia, epigenetics, mitochondria

1. Introduction

Schizophrenia is a debilitating brain disorder. It belongs to a group of multiple pathologies 

and is also known as a complex genetic disorder effected or stimulated by environmental 
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factors. Evidences of gene variations as risk factors of schizophrenia have been accumulated 
since 1938 [1]. Many studies have attempted to resolve the biological and genetic complex-
ity of schizophrenia. However, the molecular mechanism of schizophrenia pathophysiology 

is far from clear, partly because the disease mechanism mainly locates in brain regions and 

sampling affected tissues are hence difficult.

The development of treatment is progressing slowly. Mostly antipsychotics are based on 

the dopamine, serotonin, and γ-Aminobutyric acid (GABA)  theory. But none of the theories 
is conclusive for the disease mechanism. The major treatment of schizophrenia, called the 

antipsychotics, mostly block corresponding receptors in dopaminergic, serotoninergic, and 
GABAergic pathways. However, both traditional and atypical antipsychotics have predomi-
nant and unneglectable side effects such as involuntary movement disorders and metabolic 
syndrome. Besides, these medications may not get into the core targets of schizophrenia. 
Novel treatment strategies have long been anticipated to have more advanced and specific 
approaches and mechanisms.

New technologies such as next-generation sequencing (NGS), mRNA microarray, high-
throughput single nucleotide polymorphism (SNP), and copy number variation (CNV) asso-
ciations with diseases allowed us to propose novel candidate genes or molecular etiology of 

mental disorders [2]. Furthermore, the most comprehensive biological databases for schizo-
phrenia genetic research including SZGene [3] and SZGene database (SZDB) [4] have been 

constructed. The SZGene database (last updated 23 December 2011) has listed 1727 studies 

investigating over 1008 candidate genes, 8788 polymorphisms, and 287 meta-analysis. In these 
extensive studies, one or more genetic markers in genes are hypothesized to be involved in 
the etiology of schizophrenia. SZDB (http://www.szdb.org/) is a comprehensive resource for 
SZ research which includes SZ genetic data, gene expression data, network-based data, brain 
expression quantitative trait loci (eQTL) data, and SNP function annotation information. It 
contains 9,444,230 SNPs with sample size of 82,315, including 35,476 schizophrenia cases and 

46,839 controls. Recent NGS researches including comprehensive and collective postmortem 
brain sample data come from [5].

On the basis of current empirical evidence and mostly consensual assessments of informed 

opinion, it appears that the historical candidate gene literature did not yield clear insights into 

the genetic basis of schizophrenia [6].

The schizophrenia-associated studies have difficulties to conclude a simple disease etiology. 
The important candidate genes varied in literature reviews with low reproducibility. Our 

group has expanded the association interaction of these candidate genes by constructing 
genetic association network. It could represent the whole interaction paths by its association 
trace. Till today, pathway analyses did not enrich smaller ISC p values in hypothesis-driven 
candidate genes, nor did a comprehensive evaluation of meta-hypotheses driving candidate 
gene selection. The hypothesis-driven candidate genes studied in the literature are not found 
enriched for the common genetic variation involved in the etiology of schizophrenia [7]. 

Functional enrichment analysis is used to identify groups of genes or protein complexes 
which are differentially expressed in a large set of gene classes. They may have association 
with disease phenotypes. Statistical approaches help to identify significantly enriched groups 
of candidate gene. NGS and microarray genome-wide association study (GWAS) results could 
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identify hundreds or thousands of candidate genes for analysis. Specific groups of multiple 
genes may link to a specific biological pathway, and the simultaneous change in expression 
level within genes may lead to the difference in phenotypic expression.

2. Next-generation sequencing analysis for mental disorders

2.1. Tissue sample

Different tissue samples obtained from cell culture, blood, postmortem brain, and even cere-
brospinal fluid (CSF) have been used to understand the pathology of schizophrenia. The 
identities of the most significantly dysregulated genes were mostly distinct for each tissue; 
however, the findings also indicated common biological functions and regulatory pathways 
or complexes. For example, increased levels of cytokines and correlated N-methyl-D-aspartate 
(NMDA) receptor change could be found in the peripheral blood and cerebrospinal fluid of 
schizophrenic patients [8, 9]. In addition, the phenotypic insights of iPSC models in schizo-
phrenia include transcriptional dysregulation, oxidative stress synaptic dysregulation, and 
neurodevelopmental abnormalities [10], which might be associated and compatible with the 

antioxidative activity of antipsychotics such as olanzapine and clozaril [11].

In recent years, the postmortem brain tissues from schizophrenia subjects have been exten-
sively studied, which serve as a vital component for illustrating the molecular change of 

schizophrenia. There are some researches using CSF as a target for analysis of specific gene 
expression such as immune system or cytokines [8].

2.2. STEA and schizophrenia

Schizophrenic transcriptome enrichment analysis (STEA) can be used to understand the 

network and pathways for schizophrenia from a global and comprehensive approach. 
Schizophrenia is a multi-genetic and inheritable disorder. Its onset and etiology involves 
many genes with interaction of multiple pathways, as well as the interaction of methylation 

genes with environmental factors or epigenetic insult. For instance, epigenetic changes, like 
DNA methylation and histone modification, are affected by the environment factors such as 
stress, chemical, and oxidative reaction.

DNA methylation is the most well-studied epigenetic change and was recently analyzed using 
STEA in relation to schizophrenia-associated phenotype. Researchers ranked top candidate 
genes for their correlation between methylation patterns and differential expression level in 
each of the phenotypes. This system biology approach might prove promising to look for an 
enrichment of genes and important implications for the disease mechanism that are predicted 

to be targeted in the progression of the disease.

2.3. Next-generation sequencing

As the high-throughput DNA sequencing technologies are becoming more affordable, the 
application of these technologies is expected to discover new genomic variations associated 
within a wide variety of mental disorders. They are also regarded as the key to comprehend-
ing those of multivariate genetic origins. The use of next-generation sequencing technologies 
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is expected to facilitate the discovery of schizophrenia candidate genes. In comparison with 
traditional sequencing, the use of NGS is regarded as an ideal to discover genetic mutations 

and differential gene expression.

Next-generation sequencing (NGS) is a revolutionized sequencing technique; it makes 6–20 
million reads from human genome into pieces at unprecedented speeds to discover novel 

biological applications. The use of NGS has made possible to identify genetic mutations in 

complex diseases. NGS is contributing to a new understanding of these diseases, albeit from 
a different perspective, and thus a new type of research consent is needed. There are different 
NGS platforms including SOLiD, Illumina, GS Junior System, Pacific Biosciences, and more. 
NGS data in psychiatric genetic researches face challenges of drastic developments in the 

understanding mechanisms of schizophrenia. It helps to explore the complex disease from 
global view aspect, not only in specific SNPs or genetic variants but also the genetic interac-
tions and corresponding networks and pathways.

2.4. The new research models for schizophrenia

The thorough understanding of the potential etiology and pathology of schizophrenia is 

essential to rapidly improve its diagnoses and more effective therapies. By the understand-
ing of epigenetic changes, gene-gene interaction network using systems biology approaches 
makes it possible to approach the mechanism of schizophrenia. New analytical technologies 
such as next-generation sequencing, IPSC neuron model, SZDB, expression pattern analysis, 
and protein-protein interaction analysis are promising approaches to provide novel insights 
of pathology which may lead to new treatment strategies for schizophrenia [12]. These 

approaches may lead to the discovery of underlying epigenetic and genetic factors for schizo-
phrenia and may thereby identify corresponding complexes or pathways and reveal novel 
therapeutic targets for this devastating disorder [13].

The next-generation data of RNA sequences by big data analysis could bring new insights 
into the comprehensive and global view and revealed more detailed transcriptional alteration 

in schizophrenia. Recent developments of DNA sequencing technology and whole genome 
studies implicated that mutations play a vital role in the genetic architecture of schizophrenia 

and implicated in several molecular pathways, including chromatin regulation, activity-regu-
lated cytoskeleton, postsynaptic density, and N-methyl-D-aspartate (NMDA) receptor, which 
are associated with schizophrenia [14]. Schizophrenia-network pathway complex analysis 
(SCZ-NPCA) has included enrichment analysis which demonstrates the role of the implicated 
pathways in schizophrenia, such as transcription activity, signaling pathway, cancer-related 
pathway, tumor suppression, coagulation, insulin secretion, cell cycle, cell differentiation, 
and apoptosis [5].

2.5. Epigenetics and DNA methylation profiles in schizophrenia

External factors such as environmental stress are known to cause the onset of schizophrenia. 
Exposure to stress induces stable changes by transcriptional dysfunction, resulting in aberrant 
changes of genetic expression, neural circuit functions, and ultimately behavior changes and 
disease symptoms [15]. Epigenetic factors such as aberrant DNA methylation have important 
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roles in regulating gene expression [16]. Epigenetic changes may be one of the pivotal features 

of many human mental disorders.

Methylation of genomic DNA could mediate gene expression. Although there are no specific 
methylated gene patterns identified in schizophrenia, there are significant associations between 
promoter CpG islands (CGI) hypermethylation with gene repression and CGI hypomethylation 

with increased gene expression [17]. CGIs have been suggested to suppress gene expression by 
blocking the promoters. Recent researches focus on methylation array in postmortem brain 
studies such as hypermethylation of RELN, hypermethylation and downregulated transcrip-
tion of SOX10, and hypomethylation of MB-COMT in promoter [18]. Methylation gene discov-
ery in schizophrenia including COMT, REELIN, dopaminergic, serotonergic, and GABAergic 
pathways shows differential methylation profiles in schizophrenia [19]. Global hypomethyl-
ation has also been noted in schizophrenia patients in experiments with larger sample sizes 
[20].

Previous studies were mostly done on mouse models or stem cell lines [21, 22]. Nonetheless, a vast 

amount of methylation arrays of postmortem human brains have been released recently [23, 24]. 

These latest advances may implicate the importance of methylation patterns in schizophrenic 
patients. Previous researches of genetic methylation of mental disorders focus on the descriptive 

finding of differential methylation patterns. But how differentially methylated susceptible genes 
affect the expression levels of target genes remains to be further systematically analyzed. The rela-
tionship between the genetic differential methylation levels and differential expression patterns 
was explored in schizophrenia. They could be identified as disease biomarkers.

Recent researches gradually focus on novel methylation profile of susceptible genes by net-
work biology analysis. There have been many studies focusing on the discovery of differential 
expression of schizophrenic candidate genes and the construction of PPI networks and related 
pathways for the hope of a better understanding of schizophrenia [5, 25–28]. Differentially 
expressed disease genes from postmortem brain samples of schizophrenia reveal the over-
all relationships between maker genes and schizophrenia. The constructed disease network 
and underlying pathways, protein complexes, provided the potential treatment strategy for 
schizophrenia. It could be proposed as potential targets for developing new treatments due to 

their functional and topological significance [26].

Analyses of DNA methylation identified potential biological processes that regulate gene 
expression and contribute to disease mechanisms. We constructed the differential meth-
ylation and expression networks to interactions of methylated genes. Therefore, large-scale 
analyses for differential methylation of schizophrenic susceptible genes were conducted and 
integrated with the differential expression data of schizophrenic susceptible genes to build 
the methylation-to-expression genetic network. The network explored the epigenetic mecha-
nism of schizophrenic methylation networks, differential methylation pathways, complexes, 
and corresponding biological functions. The genetic, epigenetic, and transcriptomic informa-
tion was integrated to give a comprehensive overview of schizophrenia.

The schizophrenic differential methylation network (SDMN) was constructed for the com-
prehensive view of methylation profile in schizophrenia. The SDMN was generated by 
query-query protein-protein interaction (QQPPI) [29] and genetic interactions in Pathway 
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Commons database of schizophrenic differential methylation genes (SDMGs) [30]. Pathway 

Commons database [30] which collects BIND [31], BioGRID [32], CTD [33], DIP [34], HPRD 
[35], HumanCyc [36], IntAct [37], KEGG [38], NetPath [39], PANTHER [40], PhosphoSitePlus 

[41], PID [42], Reactome [43], SMPDB [44], TRANSFAC [45], MiRTarBase [46], DrugBank [47], 

Recon 2 [48], and WikiPathways databases [49] contain 34,661 molecular pathways.

The regulatory relations for genetic interactions or the potential pathways may be respon-
sible for disease mechanism of schizophrenia. The differentially expressed genes in the 
BA22 brain samples of schizophrenia are proposed as schizophrenia candidate marker 
genes (SCZCGs) [5]. For the exploration of modulation and regulation relations between 
schizophrenic hypermethylated promotors and differential expression genes, we analyzed 
hypermethylation promotors and extended protein-protein interactions (PPIs) of SCZCGs 
to their level one interactions to construct the hypermethylation to differential expression 
networks (HyDEN).

There are 688 (39.6%) genes (16 hypermethylated/672 hypomethylated, ratio 2.38%) differ-
entially methylated in promotor regions from total 1,869 schizophrenic differentially meth-
ylated genes. 639 (36.9%) genes (24 hypermethylated/615 hypomethylated, ratio 3.90%) are 
differentially methylated in intron. 481 (27.7%) genes (23 hypermethylated/458 hypomethyl-
ated, ratio 5.02%) are differentially methylated in exon region. The Venn diagram revealed 
the most differential methylation genes appear in promotor regions (39.6%) and least dif-
ferentially methylated in exon regions (27.7%) of the schizophrenic methylation profile on 
specific gene location. It is indicated that the highly differential methylation in promotor 
regions may be one of the etiologies for schizophrenia. Recent researches focus on evidences 
of epigenetic profile of common genetic variants in schizophrenia. In the epigenetic profile 
of DNA methylation, the phenomena of predominant hypomethylation in promotors were 

noted in schizophrenia.

The ten schizophrenic hypermethylation genes discovered by SDMN are founded to be asso-
ciated with biological functions such as cell structure, energy metabolism, mitochondrial 

function, GABA metabolism, signaling transduction, and zinc finger functions. The influence 
of schizophrenic hypermethylation genes may play a vital role in the etiology of schizophre-
nia. The previous studies have validated the relationships between the hypermethylation 

genes and schizophrenia, yet, little is known about how methylation profile modulates the 
disease phenotype. By the analysis of SDMN, we could investigate the relationship between 
the hypermethylation genes and epigenetic mechanism in which the future experimental 
 validation was needed. It may be one of the important disease mechanisms which are respon-
sible for pathogenesis of schizophrenia.

2.6. Potential complexes and pathways for schizophrenia

How does the disease affect human body? Or how does schizophrenia affect the perfor-
mance of brain? Pathway analysis is the building process of identifying protein interactions, 
 associated annotation, and domain knowledgebase [50]. The pathway enrichment analysis 

was performed with PID [42], Reactome [51], Cell-Map [30], and HumanCyc [52] databases to 

obtain the potential pathways for the pathophysiology of schizophrenia. Pathways reported 
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to be associated with pathogenesis of schizophrenia include apoptosis [53], immune sys-
tem [54], TNF signaling pathways [55], hemostasis [56], p53 pathway [57], BARD1 signaling 
pathway [58], ceramide signaling pathway [59], ErbB2 signaling pathway [60], and androgen 

receptor pathway [61] and HDAC signaling pathway [62, 63].

Recent research focuses on the methylation gene groups interact with differential expres-
sion gene groups to explore the integrated biological pathways designated to reveal disease 
pathways discovered in systems biology research which may implicate the mechanism of 

schizophrenia. External factors such as environmental stress are known to cause the onset 
of schizophrenia. Exposure to stress induces stable changes by transcriptional dysfunction, 
resulting in aberrant changes of genetic expression, neural circuit functions, and ultimately 
behavior changes and disease symptoms [15].

Epigenetic factors such as aberrant DNA methylation have important roles in regulating gene 

expression [16]. Epigenetic changes may be one of the pivotal features of many human mental 

disorders. The pathway enrichment analysis may indicate the biological functions influenced 
by SDMGs. It could reveal the potential disease mechanism and novel therapeutic strategy 

for schizophrenia.

There are corresponding pathways found in enrichment analysis from SDMGs which may 

implicate the underlying disease mechanisms and characteristics for schizophrenia under the 

regulatory role of SDMGs. Top-ranked pathways with FDR p-value <0.05 are TGF beta recep-
tor, pyrimidine metabolism, metabolic pathways, Wnt pathway, folate biosynthesis, nicotin-
ate and nicotinamide metabolism, and purine metabolism.

In order to understand the involved protein complexes in schizophrenia of how SDMGs inter-
act with the expression level of SCZCGs, we searched the comprehensive resource of mam-
malian protein complexes (CORUM) [64] for the potential protein complexes responsible for 
the regulation and epigenetic mechanism in schizophrenia. The clique and complex analysis 
was performed with data of the CORUM database which has a collection of experimentally 
verified mammalian protein complexes to reveal the corresponding clique complexes. The 
gene groups from SDMGs and SCZCGs were analyzed and searched against CORUM to find 
the potential protein complexes related to the etiology of schizophrenia from alteration of 
DNA methylation. The most important protein complexes involved in SDMGs and SCZCGs 
may include Nop56p-associated pre-rRNA complex, ribosome-related subunit,  mitochondrial 
respiratory chain complex I, TATA-binding protein-free TAF-II-containing complex (TFTC 
complex), and P300/CBP-associated factor complex  (PCAF complex).

The biological functions of those complexes are associated with ribosome biosynthesis, mito-
chondrial dysfunction, and pre-rRNA processing. However, the top-ranked complexes repre-
sented in SDMGs include SRB/MED-containing cofactor complex (SMCC complex), mediator 
complex, Nop56p-associated pre-rRNA complex, CDC5L complex, CF IIAm complex, and 55S 
mitochondrial ribosome complex [65]. These complexes are translated by aberrant SDMGs to 
perform specific protein functions, which might be the potential molecular mechanism in 
epigenetic regulation for schizophrenia. The inheritable alterations of these complexes might 
explain the roles of hereditary factors in the etiology of schizophrenia with DNA methylation 
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[66]. In cancer etiology, the promoter hypermethylation also plays a major role by aberrant 

transcription of critical regulator genes such as tumor suppressor genes with the implications 

for the hypomethylation factors in the novel treatment strategy of cancer [67].

Epigenetic mechanism produces DNA methylation which alters gene expression without 
altering underlying DNA sequence. Epigenetic changes may be passed on for multiple generations 

by cell division [68]. Evidences of linkage analysis in schizophrenic family suggest a heredi-
tary susceptibility [69]. The methylation of DNA confers long-term epigenetic silencing which 
could be reprogrammed by demethylation of DNA repair [70]. It is implicated that the epi-
genetic change, especially from the differentially expression genes, regulates the methylation 
of SDMGs and the production of corresponding protein complexes.

Recent study suggests that the hypomethylated genes are predominant in schizophrenia. 
Reducing hypomethylation of SDMGs or SCZCGs could be a novel therapeutic treatment 
method for schizophrenia. There might be the protective factors as per the etiology of cancer 

[25], in which most promotors are hypermethylated. Some hypermethylating agent, such as 

vitamin B1, induces upregulation of methyltransferase and reversion of hypomethylation as 
an adjuvant treatment in schizophrenia [71]. It has postulated that deficiency of vitamin B1 
may result in genetic methylation and biochemical lesion relating to neurotransmitter metab-
olism in the brain, leading to psychotic manifestations [72].

2.7. Mitochondrial dysfunction in schizophrenia by genetic interaction network

By the analysis of transcriptome profiles in postmortem brain tissues and interactions 
between differential expression candidate genes, the novel finding of potential complexes and 
pathways could facilitate the investigation of potential schizophrenic pathoetiology. Recent 
researches focus on theories related to the hypofunction of mitochondria which may contrib-
ute to the pathogenesis of schizophrenia, especially negative symptoms such as anhedonia, 

lack of emotional expression, flattening, poor social and interpersonal activities, and poor 
self-care. Some advanced techniques propose the replacement of mitochondria; even restora-
tion of mitochondrial function might be potential treatment for alleviation of the negative 

symptoms of schizophrenia. Since the mitochondria are responsible for vital biological pro-
cesses such as energy metabolism, calcium buffering, and apoptosis, it indicates the impor-
tance of mitochondria dysfunction in the manifestation of schizophrenia [73].

The genetic profile of mitochondria and energy metabolism in the analysis of brain samples 
may contribute to reveal the novel insight to the etiology of schizophrenia [73, 74]. The genetic 

interactions and intermediate mediators among mitochondrial genes and many under-
expressed SCZCGs indicate the genetic predisposition of mitochondria dysfunction in schizo-
phrenia. The genetic interactions between mitochondria and schizophrenia may be revealed 

by the DRD2-NDUFS7 and the FLNA-ARRB2 interactions [5].

In SDMG, NDUFA10 has been found to be associated with the abnormalities of mitochon-
drial function in schizophrenia [75]. It plays a key role in respiratory electron transport chain 
responded to the exposure of antipsychotics [76]. NDUFA10 mutation causes mitochondrial 
complex I deficiency. It is associated with the progressive neurodegenerative disease such as 
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Leigh syndrome [77], which possibly shares the same etiopathogenesis with schizophrenia 

[78]. The mechanism involving NDUFA10 could be novel targets for schizophrenic therapeu-
tic treatments. BARD1, RBMS1, PRKAB1, UBE2L3, SCO2, PIN4, MRPL43, BAG6, NDUFB11, 
CAPN1, STAT3, MPST, TCOF1, and SEC24C are all under-expressed genes which interact 
with the respiratory chain complex I in mitochondria.

3. Novel treatment strategy of antipsychotics

If the SCZCGs are responsible for the gene targets of disease mechanism of schizophrenia, 

the associated complexes or drugs derived from SCZCGs may contribute to novel treatment 
for schizophrenia whether they were traditional or atypical antipsychotics related. From the 

analysis of important cliques in SCZCGs, some of the drugs derived from clique analysis and 

mapped to the gene targets from DrugBank such as lovastatin and retinoid acid.

Lovastatin, a cholesterol-lowering agent is targeted by HDAC2. It was also the principal 
statin produced from Monascus purpureus derived from red yeast rice [79]. It has been impli-
cated that statins target many of the pathways to neuroprogression in schizophrenia [80]. 

Adapalene, Tazarotene, and Tamibarotene are retinoids which involved RARA gene with 
multiple functions including eye vision, immune function, and activation of tumor suppres-
sor genes. Retinoic acid has been reported for the treatment of schizophrenia. More and more 
evidence regarding retinoid dysregulation in schizophrenia implicated targeting retinoid 

receptors may be a novel approach to treat schizophrenia [25, 81].

Although there is not yet a clear and well-evidenced disease mechanism for schizophrenia, 
the current findings may contribute to novel indications or drug repurposing for schizophre-
nia. However, further evaluation and validation are needed in the near future.
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