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Abstract

The genome and transcriptome of the endosymbiotic flavobacterium Candidatus 
Walczuchella monophlebidarum revealed its role in the synthesis of essential amino 
acids for its host, the wax cochineal Llaveia axin axin. There were, however, missing genes 
in the endosymbiont for some biosynthetic pathways. Here, we characterized TME1, 
another cochineal symbiont that may metabolically complement Walczuchella. TME1 was 
ascribed to the gammaproteobacterial genus Sodalis on a phylogenomic basis using gene 
sequences from 143 proteins core genome sequences and the core average nucleotide iden-
tity (ANI) confirmed its position. Additionally, we describe Sodalis as a coherent genus. 
TME1 genome is around 3.4 Mb and has complete gene sequences for the biosynthesis of 
10 essential amino acids, for polyamines, flagella, nitrate respiration, and detoxification 
among many others. Transcripts from ovaries and bacteriomes allowed the identification 
of differentially transcribed genes from the endosymbionts and host. Highly transcribed 
genes were identified in TME1 and transcripts involved in amino acid biosynthesis were 
found. We review here that cosymbionts that derived from different bacterial classes 
and genera seem to be advantageous for insects that have Flavobacteria as the primary 
endosymbionts.

Keywords: endosymbionts, scale insect, Gammaproteobacteria, Sodalis-like, 
Alphaproteobacteria, fungi
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1. Introduction

All organisms are inhabited by microbes that exert different effects on their hosts. In insects, 
there are many examples of beneficial associations with symbiotic microbes that have been 
linked to the insect ecological success. Symbionts that are vertically transmitted from mother 
to offspring and with an intrinsic interdependence with the insect host are considered as pri-
mary endosymbionts and they have reduced genomes [1, 2]; they do not grow on standard 
laboratory media. In theory, endosymbionts evolved from gut bacteria [3] that are largely 
more complex and may be determined by the diet and the environment. Primary endosymbi-
onts may reside inside insect cells called bacteriocytes that may be found in specialized host 
structures called bacteriomes. Bacteriomes may be equivalent to plant-root nodules consid-

ering that they are host structures harboring particular bacterial species with specific roles 
[4]. But even in plants, cosymbionts have been encountered; for example, the slow-growing 
actinobacteria Micromonospora is found in nodules formed by Bradyrhizobium, Rhizobium, or 

Frankia in several legumes or actinorhizal roots, although Micromonospora is unable to form 
nodules [5]. Micromonospora has been reported to enhance nodulation and promote plant 
growth, may enhance plant defense responses, or inhibit pathogens [6].

In insects, cosymbiosis is not uncommon and there are cases in which two or more bacterial 

symbionts are found in the bacteriome [7, 8]. Additionally, other microbes including fungi 
may be found in the hemolymph or in different insect tissues [9–11]. Fungal symbionts may 
be found as well in specialized insect structures known as mycangia [12] or inside insect cells 
called mycetocytes [13].

In insects, primary bacterial endosymbionts synthesize essential amino acids or vitamins for 
their hosts and reside intracellularly in bacteriomes. In some cases, complementation of meta-

bolic pathways seems to occur among different insect symbionts [14–17]. Additionally, cosym-

bionts may have different roles, and some have been implicated in defense [18–21], tolerance 
to stress [22], resistance to high temperatures [23–25], to virus [26–28], or may manipulate 
sex differentiation [29]. There is an example in which a secondary endosymbiont substituted 
a lost primary Buchnera symbiont in an aphid [30]. Among others, alpha, gamma and beta-

proteobacteria have been found as cosymbionts; for example, the primary endosymbiont 
Candidatus Sulcia muelleri (“Sulcia” from here on) (phylum Bacteroidetes, class Flavobacteria) 
with a highly reduced genome has betaproteobacteria as cosymbionts found in green rice 

leafhoppers [7], stinkbugs [31], and spittlebugs [32, 33]. In leafhoppers, the symbionts occupy 
different types of bacteriocytes that constitute the outer or inner regions of the bacteriome [7]. 
The Sulcia cosymbionts are Hodgkinia, Zinderia, Nasuia [34, 35] with very small genomes, and 
the gammaproteobacteria Baummania, Arsenophonus, or Sodalis, the latter considered as a new 
acquisition. Surprisingly a gammaproteobacterium may be found inside Sulcia cells and be 

transmitted to the next generation [36].

Scale insects (Hemiptera: Coccoidea) feed on plant sap, which is a nutritionally poor diet that lacks 
most of the essential amino acids. Therefore, these insects have built up symbiotic associations 
with bacteria that can synthesize them. Most of the scale insect families that have been analyzed, 
such as Monophlebidae, Coelostomidiidae, Orthezidae, Phenacoccinae from Pseudococcidae, 
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Coccidae, Lecanodiaspididae, Diaspididae, and a clade of Eriococcidae, harbor flavobacteria as 
primary symbionts and enterobacteria as secondary symbionts. [37–39]. It has been reported 
that the families from scale insects Dactylopiidae, some Eriococcidae, and Pseudococcinae from 
Pseudococcidae harbor different endosymbionts, which could indicate that they lost their fla-

vobacteria and enterobacteria and acquired other endosymbionts [39]. Flavobacteria seem to be 
very ancient symbionts, perhaps starting symbiosis before the divergence of scale insects [39] 
(150–250 mya [40]). Although it has been suggested that Flavobacteria have cospeciated only 
within Monophlebidae, Coelostomidiidae, Ortheziidae, and Diaspididae [38–41], and host 
switches seem to have occurred in the other families [39]. Otherwise, enterobacteria have under-

gone more evolutionary events (losses, duplications, and host switches). Some scale insects have 
enterobacteria closely related to Sodalis endosymbionts (Sodalis-like). But others may have sym-

bionts closely related to Pantoea and Klebsiella [39].

Sodalis cosymbionts have been identified mainly by their 16S rRNA but also by other gene 
sequences. They have been found within various insect orders including Diptera, Coleoptera, 
Phthiraptera, and Hemiptera [42–45]. The first described was S. glossinidius, the secondary 

symbiont of tsetse flies [46]. Later, bacteria with related gene sequences were referred as 
Sodalis-like [47] or Sodalis-affiliated but more recently several “Sodalis-like” bacteria and SOPE 
[48] are classified as Sodalis, others have been assigned to different genera. Still, scientists are 
in the process of making correct adscriptions for some of these bacteria [49].

The flavobacteria endosymbiont Candidatus Walczuchella monophlebidarum (“Walczuchella” 

from here on) was sequenced from the giant wax cochineal Llaveia axin axin (Llave) (Coccoidea: 
Monophlebidae) [50]. This insect has been used to obtain a lacquer to coat traditional art crafts 
by native people in Mexico and Guatemala since pre-Hispanic times [51]. The flavobacterial 
genome revealed that the endosymbiont’s major role is to synthesize and provide amino acids 
to the insect host [50]. The Flavobacteria genome was obtained from the analysis of a metage-

nome of L. axin axin. From this metagenome, we could also ensemble sequences from other 
microorganisms. Here, we present the draft genome of another cosymbiont of Walczuchella, 

a Sodalis-like bacteria that is designated here as Sodalis TME1. We also present a comparison 

to the genomes of five other Sodalis, as well as preliminary data of a metatranscriptome per-

formed in the bacteriome of L. axin axin adults and in the ovaries of senescent adults.

2. Materials and methods

DNA, sequencing, and assembly were performed from bacteriomes (Illumina HiSeq 2000) 
and from the homogenized of female adults (pyrosequencing) of L. axin axin collected in the 

state of Chiapas, Mexico, as described [50]. A photograph from L. axin axin female adults is 
shown in Figure 1. RAST and GosthKOALA from KEGG [52] were used for genomic and 
metabolic pathway annotation of the metagenomic data that was previously reported when 
we obtained the Walczuchella genome [50]. Sodalis TME1 genome sequence has been deposited 
at DDBJ/ENA/GenBank under the accession MNBX00000000. The version described in this 
chapter is MNBX01000000.
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Figure 1. L. axin axin adult females on a Jatropha curcas plant.
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Comparative phylogenomic analysis was performed with 20 genomes of gammaproteo-

bacteria from GeneBank. Gene calling of all genomes was performed using GeneMark 
version 2.5 [53]. The pangenome and core genome from orthologous genes of all strains 
were obtained by GET_HOMOLOGUES version 2.0 software [54] with -A -c -t 0 -M -n 35 
and -A -c -t 0 -G -n 35 parameters. We selected a set of 143 unique single-copy orthologous 
genes from the core genome. Translated coding sequences of each gene were concatenated 
using BioEdit Version 7.2.5 and aligned with Clustal Omega version 1.2.1 [55]. Prottest3 
version 3.4.2 [56] was used to select the best amino acid substitution model using the AICc 
correction. The edited alignment contained 47,803 amino acid positions. Maximum likeli-
hood phylogeny was performed by PhyML software version 3.1 [57] using the CpREV 
model with the Shimodaira–Hasegawa-like procedure for internal branch support [58]. 
The genome of Escherichia coli K-12 MG1655 was used as outgroup.

Comparative genomics was carried out with the following Sodalis genomes: S. glossin-

idius morsitans from tsetse fly, Sodalis-like endosymbiont from the blood-feeding lice 

Proechinophthirus fluctus (an obligate ectoparasite of fur seals), S. pierantonus SOPE from 
rice weevils Sitophilus oryzae, the free-living S. praecaptivus, and Sodalis-like symbiont of the 

meadow spittlebug Philaenus spumarius. Orthologous genes and the core genomes were 
obtained by GET_HOMOLOGUES as described above. Core genome matrix was parsed from 
GET_HOMOLOGUES result, using the parsing_pangenome_matrix.pl script. Shared genes 
between Sodalis-like TME1 and all other strains were retrieved by parsing the core matrix 

Figure 2. Dissected L. axin axin adult females used for the metatranscriptome analysis. (A) early stage and (B) late stage 
or senescent adults.
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using custom perl scripts. Annotation of each gene cluster was carried out by BLASTp 2.2.30+ 
[59] searches against Uniref100 database. Furthermore, average nucleotide identity (ANI) 
was determined for all Sodalis genomes described above using the ANIcalculator software 
described by Varghese et al. [60] with the default parameters.

RNA was extracted from the bacteriome of L. axin axin female adults and from the ovaries 
of senescent female adults that do not possess the structure of the bacteriomes (bacteriomes 
degrade in senescent adults) (Figure 2). Sequencing of cDNA was performed by SOLID tech-

nology. The sequences were mapped to the genomes of Walczuchella, Sodalis-like TME1, and 

two insect reference genomes, Drosophila melanogaster and to the aphid Acyrthosiphon pisum. 

Differentially expressed genes were identified by comparing expression values between sam-

ples and using Kal's Z-test of proportions [61]. Genes with a change in the expression more than 
twofold and a p-value of <0.01 in the Z-test were considered as differentially expressed genes.

To determine the uric acid and uricase activity, L. axin axin adult females were individually 
dissected under sterile conditions. Guts including the Malpighian tubules were extracted and 
metabolic activities were detected as described [62].

3. Results

We found gene sequences of an enterobacterium (gammaproteobacterium) related to Sodalis in 

the metagenome of the wax cochineal L. axin axin [50]. The phylogeny with a set of 143 conserved 
genes shows that the enterobacterium of L. axin axin is closely related to other Sodalis-like endo-

Figure 3. Maximum likelihood phylogeny of sequenced enterobacterial endosymbionts performed with 143 conserved 
genes. Sodalis endosymbionts of plant feeding host: green; blood feeding host: red; free-living style: blue. * : Sodalis TME1 

used in this study. Scale bar indicates 1 % estimated sequence divergence. SH-aLRT values > 50 are indicated.
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symbionts, especially close to the free-living S. praecaptivus [63] (Figure 3). The small branches in 

the Sodalis group may indicate that they have recently diverged while the large differences found 
in genome sizes among these endosymbionts indicate that e volution may be occurring mainly 
by genome reduction when compared to the larger genome of the free-living Sodalis (Figure 3).

TME1 was compared with the ANI (average nucleotide identity) metric to other Sodalis using 
the same core genome used in the phylogenomic analysis. TME1 showed ANIs well over 95% 
that is used to delineate species with S. pierantonius SOPE and S. praecaptivus HS1, but lower 
than 95% with S. glossinidius morsitans, Sodalis-like SPU, and Sodalis-like SPI-1 (Table 1). There 

was a good correlation of the ANI values obtained and phylogenetic positions that allowed the 
identification of three groups within Sodalis (Figure 3 and Table 1).

The draft assembly of the enterobacterial endosymbiont Sodalis TME1 genome consisted 

of 679 scaffolds with an N50 of 7713 and an average G + C content of 55.6%. The scaffolds 
sum 3.4 Mb [50]. A total of 3067 genes were identified to which a functional annotation was 
assigned. The functional categories more represented by the annotated genes were catabolic 
and cellular process as well as carbohydrate, amino acid and transcription DNA dependent 
metabolism (Figure 4). Interestingly, many phage-related sequences were found as well as 
genes for different multidrug efflux pumps and type III and IV secretion systems. TME1 has 
genes for polyamine biosynthesis and excretion as well as Ankyrin repeat domains and for 

a lactoyl-glutathione lyase that is a detoxifying enzyme [64]. Among the conserved genes in 
the core genome of Sodalis TME1, S. pierantonius str. SOPE and S. praecaptivus str. HS1 are 
genes for the synthesis of flagella and for nitrate reduction (narGHI) and nitrite reduction 
(nfrABCD). Maybe nitrate serves in Sodalis as an electron acceptor in anaerobiosis as occurs 
in bacterial symbionts of marine bivalves Lucinoma aequizonata [65]. Sodalis TME1 genome has 

genes for uric acid utilization such as uricase (uaZ), allantoinase (allB), allantoate deiminase 
(allC), and urease (ureC and ureD). Comparative genomics with all Sodalis strains show that 

allC and the alpha subunit for urease gene (ureC) orthologous were only present in Sodalis 

TME1. Experimentally, uric acid and uricase activity were quantified in L. axin axin female 

adults. We detected 5.86 ± 0.77 ng of uric acid per tissue µg−1 and 32.87 ± 5. 25 mU of uricase 
per tissue µg−1 in female cochineals.

Table 1. Average nucleotide identity (ANI) percentage among Sodalis strains. Values in bold are >95%. Colors correspond 
to green, plant-feeding host; red, blood-feeding host; blue, free-living style..
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We obtained 11,042,037 and 11,042,428 reads from the cDNA sequence of the bacteriome 
and the ovaries, respectively. These two organs were selected for studying the differentially 
expressed genes because endosymbionts are transferred from bacteriomes to the ovaries for 
vertical transmission to their offspring. It was expected to find genes related to the migration 
of the endosymbionts from the bacteriome and the colonization of the ovaries. Reads mapped 
to the reference genomes are shown in Table 2. The number of genes that were statistically 
differentially expressed is shown in Table 3.

Walczuchella in the bacteriome tissue showed only two genes that exhibited differential expres-

sion, a putative hydrolase and the chaperone GroEL. Other genes showed a change in expres-

sion less than twofold compared to their expression in the ovary. The chaperonin GroES is 
almost at the limit for differential expression with 1.86-fold (Table 4).

From the ovary tissue, we found differential expression of Walczuchella genes that code for 

some ATP synthase subunits (some of them annotated previously as pseudogenes), cyto-

Figure 4. Gene functional categories of Sodalis TME1.

Reference genome Bacteriome Ovaries

Drosophila melanogaster (exons) 2,019,585 2,008,381

Acyrthosiphon pisum (mRNA refseq) 3,082,319 2,912,207

Walczuchella 1,052,077 87,502

Sodalis TME1 409,128 483,601

Table 2. Number of reads mapped to the reference genomes.
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chrome c oxidase, also some genes of protein translocation systems, tryptophan, histidine 

and chorismate biosynthesis, one gene related to oxidative stress, and a gene that encodes a 
possible component of an ABC transporter (Table 4).

In the bacteriome, the enterobacterium TME1 showed very strong overexpression of a gene that 
codes an effector protein possibly secreted by the type III secretion system (TTSS), expressed 
66.8-fold compared to its expression in the ovaries. Also, a gene that codes an allantoinase 
that participates in uric acid metabolism is highly overexpressed in the bacteriome, showing 

Reference genome Bacteriome Ovaries

Drosophila melanogaster (exons) 494 680

Acyrthosiphon pisum (mRNA refseq) 244 280

Walczuchella 2 89

Sodalis TME1 66 50

Table 3. Number of genes differentially expressed according to Z-test (p < 0.01).

Walczuchella Sodalis TME1 Insect

Bacteriome (differential 
expression) (high RPKM)

Putative hydrolase T3SS-secreted effector Chaperon Hsp70

Chaperones GroEL, GroES Allantoinase ABC transporters

Hypothetical proteins Hypothetical proteins Antiparasitic-like peptide

ATP synthase B subunit NAD biosynthesis Asparaginase

Amino acids biosynthesis 

genes

FtsE cell division gene Unknown genes

Transcriptional regulation Extracellular glutamate 
receptor channel

Flagellum synthesis Phospholipids synthesis

Transcriptional regulation

Ovary (differential 
expression) (high RPKM)

ATP synthase B and A 
subunits (pseudogenes)

Hypothetical proteins ATPase subunit

AhpC oxidative stress gene NAD biosynthesis Transmembrane transporters 

of sugars and amino acids

Glycoprotease Flagellum synthesis Peptidoglycan-binding 
protein

Amino acids biosynthesis 

genes

FtsE cell division gene Lysozyme

Cytochrome c oxydase Glycolysis Unknown genes

SecY translocase Phage lysozyme Transcriptional regulation

Hypothetical proteins Transcriptional regulation Phospholipids synthesis

Table 4. Highly expressed and differentially expressed genes in the bacteriome and the ovaries in the endosymbionts 
Walczuchella and Sodalis TME1 and the host L. axin axin.
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a 50-fold change. Other genes with overexpression in the bacteriome are four ABC transport-
ers, a peroxidase, the heme synthase, two genes related to nucleotides biosynthesis, two genes 
related to lipid A biosynthesis, and two genes of the type III secretion system (Table 4).

In the ovary, TME1-overexpressed genes were related to NAD synthesis, carbohydrate metabo-

lism, stress response, and some transporters and transcriptional regulators (Table 4).

Among the insect differentially expressed genes in the bacteriome there were 19 putative 
transporters (for amino acids, carbohydrates, vitamins, drugs, or unknown substrates), 
five genes related to defense systems including an antiparasitic peptide with identity to 
Drosomycin, three from D. melanogaster, two genes related to heat-shock response, an oxida-

tive stress response gene, seven genes related to amino acid metabolism, and some genes 
related to lipid, carbohydrate, and vitamin metabolism (Table 4).

On the other hand, we found that in the insect, in the ovaries there was overexpression of 
15 transporters, 17 immune response genes, some genes related to heat shock, desiccation, 
oxidative stress, and hypoxia response, and genes related to lipids, vitamins, carbohydrates, 
nucleotides, amino acids, and chitin synthesis and metabolism (Table 4).

4. Discussion

Due to the annual cycle of the wax cochineal, we are only able to collect insects once a year dur-

ing the rainy season. It is worth mentioning that in 2015 and 2016, we did not find cochineals in 
many of the places where we had collected previously. Considering the menace of mosquitoes 
transmitting Zika, or Chikungunya, extensive fumigations with chemical insecticides have been 
carried out in many places in Mexico, especially in Chiapas. The relation to the diminished popu-

lations of cochineals remains to be established.

A previous survey of symbiotic bacteria from scale insects in Mexico revealed the prevalence 
of Flavobacteria and Gammaproteobacteria [39]. Some of the Gammaproteobacteria had 16S 
ribosomal gene sequences closely related to those of TME1, and thus they may be considered 
as Sodalis as well. They were obtained from different scale insects such as Insignorthezia sp. 

and I. insignia, Icerya purchasi, Cripticerya sp., and Pseudococcus longispinus that together with 

Llaveia would be hosts for Sodalis.

While Flavobacteria and insects showed a co-divergent pattern of evolution, the phylo-

genetic relationships of the Gammaproteobacteria and insects were not parallel, indicat-

ing multiple enterobacterial transfers among the different hosts, and a more recent and 
less dependent symbiosis. In agreement, the genome size of the gammaproteobacterium 
TME1 is much larger than that from the primary endosymbiont from wax cochineals, 
the Flavobacteria Walczuchella, and also larger than those from other cosymbionts as the 

Betaproteobacteria that accompany the bacteroidete Sulcia found in some insects.

The genome from the gammaproteobacterium TME1 (3.4 Mb) is within the range of those 
from other Sodalis (1.4–4.7 Mb, Figure 3). There are very few genomes available from Sodalis, 
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namely those from Sodalis found in blood-sucking insects as in lice [42] and tsetse flies [66], 
in plant-feeding insects as the rice weevils [44], in spittlebugs [45], and from a free-living 
bacterium [67]. The average nucleotide identity (ANI [68] being used for global genomic 
comparisons and considered now as a gold standard in prokaryote taxonomy [69]) was esti-
mated for the Sodalis with available genomes. ANI values and the phylogenomic analysis 
performed showed Sodalis as a defined and coherent genus with three groups A–C. These 
groups could represent at least three different species according to the global standards 

[69]. Two of these groups were identified as different lineages by Lo et al. [49]. The phyloge-

netic groups that we described here have a 100 SH-like value support, group A contains S. 

glossinidius from tsetse flies and Sodalis from the meadow spittlebug P. spumarius, group B 
is constituted by Sodalis from the fur seal P. fluctus, and group C contains the closely related 
TME1, the free-living S. praecaptivus and S. pierantonius SOPE. The nucleotide sequence con-

servation among the group A symbiotic and free-living Sodalis may reflect that the former 
were recent acquisitions in insects without enough time for sequence divergence in their 
hosts. The presence of very similar Sodalis in distinct insect isolates reinforces the reports 

that indicate that they may frequently be transferred among hosts [39, 47].

TME1 has biosynthetic pathways for all essential amino acids and may supply the needs of the 
wax cochineal and of Walczuchella that does not have complete pathways for the biosynthesis 
of all essential amino acids. Since Sodalis TME1 has all enzymes for TCA it may complement 
this pathway in Walczuchella. It is worth noting that the flavobacterium Candidatus Uzinura 
diaspidicola, an endosymbiont from the armored scale insect Aphytis melinus that feed on 

parenchyma which may provide more nutrients than sap, supplies its host with all nutrients 
without the need of a cosymbiont [70]. Other armored scale insects have been reported to 
have a Sodalis-like endosymbiont [39].

In S. glossinidius that is a secondary symbiont of tsetse flies, a type III secretion system was 
found implicated in cell invasion and maybe required for colonizing the insect bacteriocytes 
[71]. Genes encoding for a similar system were found in TME1. Notably, genes that code for 
the type III secretion system (TTSS) as well as a gene coding for an effector protein that may 
be secreted by this system were among the most highly induced in the bacteriome of TME1. In 
Salmonella enterica, polyamines are required for full expression of TTSS and for some effector 
coding genes. Mutants in polyamine biosynthesis are affected in intracellular colonization and 
survival and may be complemented by adding polyamines to the medium [72]. Furthermore, 
the modulation of a TTSS by a spermidine transporter has been reported in Pseudomonas 

aeruginosa. Exogenous addition of spermidine to the wild P. aeruginosa strain increased the 

expression of genes that produce effector proteins [73]. TME1 has all genes for spermidine 
and putrescine biosynthesis as well as for the excretion of spermidine. Polyamines may regu-

late host defense responses as do some effectors secreted by TTSS. This remains to be tested.

Uric acid and uricase activity were detected in L. axin axin females. Uric acid is the final prod-

uct of purine metabolism. Only few insects are capable of degrading uric acid into other prod-

ucts. In plant-feeding insects, bacterial and fungal symbionts are capable of recycling uric 
acid into other nitrogen sources [74–76]. Sodalis TME1 has uricase and allantoinase-codifying 
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genes, and the latter was highly expressed in bacteriomes suggesting that Sodalis TME1 could 
participate in providing nitrogen to the host by uric acid recycling.

By reverse transcriptase-polymerase chain reaction (RT-PCR) using primers targeted to 
Sodalis, we found sequences from Sodalis in the bacteriome (our own unpublished results), 
thus we may suppose that Sodalis are localized in bacteriomes as Walczuchella. In Llaveia, 

in addition to Walczuchella and Sodalis we found sequences of alphaproteobacteria that 
are related to Rickettsiales and several fungi that are reported elsewhere (Vera Ponce de 
León, submitted). Coincidently, the seal lice with a Sodalis endosymbiont also harbor a 

Rickettsia that is very abundant. The role of the very little abundant Rickettsia-like bacte-

rium in Llaveia is unknown. Wolbachia is found in members of the Coelostomidiidae family 
[37] that is closely related to Monophlebidae insect family that contains the Mexican wax 

cochineals.

Here, we used the term symbiome [27] to refer to the group of primary and secondary (cosym-

bionts) endosymbionts (and/or their genomes), residing in a host. We consider that the term 
symbiome is more adequate than the terms endosymbiotic community or consortium that are 
sometimes used instead.

The cosymbionts of different Flavobacteria in scale insects are diverse lineages of related 
Gammaproteobacteria [39]. Similarly, the cosymbionts of Sulcia (a flavobacterium as 
Walczuchella) are varied and may be different even in related hosts [7, 36]. Sulcia cosymbi-

onts may belong to alpha, beta, or gammaproteobacteria, with alpha and betaproteobacte-

ria looking like the oldest symbionts. It was reported that Candidatus Zinderia insecticola, 

the Betaproteobacteria of spittelbugs was probably substituted by a Sodalis-like symbiont 

in members of the Philaenini tribe of the spittelbugs [33, 45]. The displacement of beta-

proteobacterial cosymbionts by the gammaproteobacterium Sodalis seems recent and was 

described as an event “in statu nascendi” (in the stage of being born) in Cicadella viridis 

[77]. There are other examples where one endosymbiont may substitute another one or is 
on the way toward displacement of a highly reduced-genome endosymbiont [33, 77–79]. 
Distinct (apparently replaceable) cosymbionts may fulfill the different needs of insects that 
may change overtime and conditions specially if the insect changes habit [22], otherwise 
there may be cosymbiont redundancy, with different bacteria performing the same or very 
similar role (e.g., the synthesis of essential amino acids). The Sodalis cosymbiont in the wax 

cochineals seems to be recently acquired as in C. viridis. The insect symbiome seems plastic 

or dynamic with cosymbionts playing a key role in this plasticity. Here, we enlarged the 

list of putative functions of Sodalis that may include uric acid recycling, polyamine biosyn-

thesis, or detoxification.
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