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Abstract

Despite successive advances in clinical diagnosis and therapeutic intervention, cancer-
associated morbidity and mortality keeps up with escalating cost to human society.
Clinicians are confronted with an unprecedented challenge in curing cancers with de
novo  or  acquired resistance.  Failure to achieve effective and long-lasting treatment
effects arises from the complexity of malignancies, particularly when plasticity of cancer
cells is coupled with survival adaptability conferred by the pathologically co-opted
stroma in the tumor microenvironment (TME). Targeting immune checkpoints, such as
programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1) and cytotoxic
T lymphocyte antigen 4 (CTLA4), provide significant benefit in multiple tumor types
and produce substantial anticancer responses. Tissue resident stromal cells, although
damaged together  with  cancer  cells  upon cytotoxic  treatments,  represent  an  ever-
replenishing source that contributes to tumor restoration from residual cancer cells in
the post-therapy stage. The TME displays a continually changing landscape, generating
significant impacts on treatment outcome in clinics. Moving forward, implementing
patient-specific analysis in clinical oncology with TME-oriented agents will significantly
improve the specificity  and efficacy of  targeted therapies,  thereby accelerating the
translation of novel conceptions and groundbreaking discoveries in the TME biology
through  multiple  bench-to-bed  pipelines  in  current  settings  of  precision  cancer
medicine.
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1. Introduction

Tumor development implicates the coevolution of transformed cells and the surrounding
TME. In solid organs, the TME comprises extracellular matrix, neovasculature and multiple
stromal cell types, conferring neoplastic cells multiple capabilities including sustained growth,
elevated migration, accelerated invasion, promoted drug resistance and more importantly,
enhanced metastasis [1].  In contrast  to cancer cells,  stromal components in the TME are
generally stable in genetics and represent a potentially ideal target for therapeutic intervention.

There is accelerated progress in both the design and application of anticancer therapies.
However, to date, most clinical regimens including chemotherapy, radiation and targeted
therapy fail to cure patients, even with the integration of cutting-edge techniques and facilities.
The case is, cancers that show overt initial responses to treatments frequently relapse as
resistant malignancies, and pathological relapse remains as a major challenge in clinical
oncology. Tumor outgrowth and disease exacerbation relies on not only genetic modifications
in somatic cells but also fitness advantages of such mutations provide within the TME. It is
increasingly evident that heterologous cell lineages within the TME actively alter therapeutic
response and shape cancer resistance [2]. The distinct TME attributes within a given tumor
select for mutations that allow survival, expansion and repopulation of cancer cells, while
significantly creating tumor heterogeneity. Such a plasticity promotes the development of drug
resistance through several mechanisms, including mutations of the target genes, reactivation
of the targeted pathways, and cancer cross talk with the surrounding TME, with the latter
largely overlooked in the past decades [3]. Besides, mounting data support that stromal cells,
either naïve or therapeutically damaged, can produce and secrete a large group of soluble
factors into the TME milieu, which act as critical signals delivered in a paracrine fashion and
dramatically confer therapeutic resistance on cancer cells. Therefore, the TME is biologically
active in the course of disease progression and exerts pathological impacts in a spatiotempor-
ally volatile manner, underscoring the necessity of considering the TME as a dynamic entity
in designing novel agents and developing therapeutic strategies. In this chapter, we propose
to offer a body of essential information that delivers an updated account of the newly emerging
TME biology, provide a significant guide to the most recent literature, and envision prospects
for future research in basic, translational and clinical medicine.

2. Main body

2.1. Pathological characteristics of the TME

In the microenvironment of healthy tissues, the stroma functions as a physical barrier against
tumorigenesis. Nevertheless, cells transformed by intrinsic or extrinsic events can make major
changes that stimulate the adjacent microenvironment to support disease progression. Such
changes include remodeling of extracellular matrix (ECM), recruitment of fibroblasts,
chemoattraction of immune cells, migration of neuroendocrine cells and networking of
endothelial cells (vascularization). How do the genetic and/or epigenetic variations present
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within cancer cells generate a phenotypically complicated TME, which further exert profound
influences on tumor development? The differences in selective pressures of in vivo conditions,
such as local acidity, intermittent hypoxia and growth factor production within a tumor can
actively shape the pathway of disease progression. Besides all the autonomous factors
generated by the tumor itself, distinct environmental landscapes within the tumor foci select
for mutations that engender increased malignancy, foster tumor heterogeneity and enhance
therapeutic resistance, all factors closely correlated with decreased treatment efficacy and
increased clinical failure.

As cancer cells expand at a given site and generate early insults that form the initial tumor
niches, host-resident benign cell types coevolve with the neoplastic cells in the same tissue,
both populations are continuously engaged in aging-related pathologies (Figure 1).

Figure 1. Schematic outline of cell type components within a typical TME. Although intercellular interactions confer
various malignant potentials on cancer cells in the tumor foci, soluble factors released from cell subpopulations can
actively suppress the local immune/inflammatory activities, thereby creating an inhibitory and hostile environmental
niche for infiltrating cells recruited into the tumor from other sites. EGF, epidermal growth factor; HGF, hepatocyte
growth factor; IGF-1, insulin-like growth factor-1; FGF, fibroblast growth factor; PDGF, platelet-derived growth factor;
TGF-β, tumor growth factor-β; VEGF, vascular endothelial growth factor; IL, interleukin; MCP-1, monocytic chemotac-
tic protein 1; SDF-1, stroma-derived factor 1; CCL3, chemokine C-C motif ligand 1; CXCL12, chemokine C-X-C motif
12.

2.1.1. Cancer-associated fibroblasts

Fibroblasts represent an abundant and predominant cell type that maintains the structural
framework in the connective tissue of solid organs. Normal fibroblasts typically suppress
tumor formation; however, cancer-associated fibroblasts (CAFs), to the contrary, mainly
promote tumorigenesis and facilitate metastasis. Compared with their normal counterparts,
CAFs exhibit increased proliferation, enhanced ECM production, accumulated basement
membrane deposition, strengthened cytokine synthesis and secretion including hepatocyte
growth factor (HGF), multiple interleukins (ILs), platelet-derived growth factor (PDGF),
stromal cell-derived factor 1 (SDF1), tumor growth factor-β (TGF-β) and vascular endothelial
growth factor (VEGF) [4]. Alternatively, other mesenchyme-derived cell types, such as
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adipocytes, can also contribute to tumor growth and disease progression. For instance,
adiponectin from the differentiated adipocytes increases VEGF-A expression in human
chondrosarcoma cells through adiponectin receptor (AdipoR), hypoxia-inducible factor-1α
(HIF)-1α, phosphoinositide 3 kinase (PI3K), Akt and mammalian target of rapamycin (mTOR)
signaling cascades [5].

There are debates on the origin of CAFs during cancer progression. Some data suggest that
CAFs are derived from the endothelial-to-mesenchymal transition, whereas other studies
support that epithelial-to-mesenchymal transition (EMT) is responsible for CAF production
[6, 7].

CAFs accumulated in the TME are subject to activation by cytokines and growth factors present
in the nearby niches, such as fibroblast growth factor (FGF), monocyte chemotactic protein 1
(MCP1), PDGF, TGF-β and secreted proteases [8, 9]. Once activated, CAFs release pro-
inflammatory factors to activate the nuclear factor (NF)-KB signaling in transformed cells, a
typical cell-cell cross talk that significantly promotes tumorigenesis [10]. In addition, CAFs in
the mammary TME select for bone-specific metastatic traits in primary tumor cells, partially
based on the mutual interaction between Src+ breast cancer cells and CAFs that produce
chemokine C-X-C motif ligand 12 (CXCL12) and insulin-like growth factor 1 (IGF1) [11]. A
recent study suggested that circulating CAFs (cCAFs) with co-expressed fibroblast-associated
protein (FAP) and α-smooth muscle actin (α-SMA) are distinguishable in the peripheral blood
of patients with metastatic breast cancer. Furthermore, both cCAFs and circulating tumor cells
(CTCs) are of significantly higher number in the metastatic group than in the localized breast
cancer group, implying that cCAFs may complement CTCs as a clinically specific biomarker
in metastatic breast cancer [12]. This also consolidates that functional roles of CAFs in tumor
progression involve malignant activities not only in the primary foci but also in the systemic
delivery of cancer cells of high metastatic potential to colonize in a foreign microenvironments,
further supporting the interactions between cancer and TME in both the local and distant
niches.

2.1.2. Neovasculature

Development of the tumor-associated vascular network is dynamic and dramatically influen-
ces tumor behaviors. Starting from regional angiogenesis, vascular networks are strengthened
by co-opting mature vessels within the tissue, recruiting endothelial precursors from bone
marrow. Specifically, neovascularization involves degradation and reconstruction of existing
vascular basement membranes in a tissue-specific manner, as it evidenced by the fact that
concurrent targeting of VEGF and Angiopoietin-2 (Ang2) potentiates the effectiveness of VEGF
inhibition and prevents basement membrane destruction [13]. It is likely that newly co-opted
vessels sustain certain properties of the original tissue, which exerts critical influences on the
resulting vascular network.

However, deficient tumor vasculature such as unbalanced vessel development results in
formation of hypoxic microenvironments with limited nutrient supplementation. Spatial
interval from vascular beds to tumor foci creates a local gradient, a crucial factor for the
distribution of anticancer agents within a given tumor tissue. In clinics, angiogenesis is
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assessed by microvessel density (MVD), an important prognostic factor for clinical outcomes
of multiple tumor types. In prostate cancer, CD105-MVD reflects the angiogenic conditions in
patients treated with neoadjuvant hormonal therapy (NHT) and acts as an emerging inde-
pendent predictor of biochemical recurrence in prostate cancer patients after radical prosta-
tectomy with NHT [14]. In addition, upregulation of pro-angiogenic ligand VEGFA is
associated with a worse prognosis in metastatic colorectal, lung and renal cell cancers. For
example, high VEGF expression was subsequently correlated with a short overall survival rate
for colorectal cancer patients exhibiting lymph node metastasis [15].

2.1.3. Immune system

Upon disease progression, both the innate and adaptive immune systems are implicated in
tumor-associated activities. Despite the ability of the immune system to mount antitumor
responses, immune suppression mechanisms, however, often prevent such a process. Partic-
ularly, T-cell activation engages both positive and negative checkpoint signals to finely tune
responses to avoid overt damage and autoimmunity. Particularly, cancer immunoediting is a
process by which the immune system can paradoxically restrain or facilitate cancer progres-
sion [16]. The interaction between tumor and immune system is now regarded as a crucial
factor relevant for the clinical management of cancer patients [17].

2.1.3.1. Checkpoint-associated immunosuppression

Blockade of immune checkpoints including cytotoxic T lymphocyte antigen 4 (CTLA4),
programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has achieved
significant benefits in multiple cancer types by minimizing inhibitory signals while amplifying
effective antitumor responses. Anti-CTLA4, PD-1 or PD-L1 administration as mono-immuno-
therapy have demonstrated clinical activity in more than 15 cancer types, including bladder
carcinoma, Hodgkin lymphoma, melanoma, non-small cell lung carcinoma (NSCLC) and renal
cell carcinoma (RCC) [18]. Although immune-based regimens for cancer treatment are
expected to increase substantially within the next years, combinatorial inhibition of PD-1 and
CTLA4 holds the potential to further enhance antitumor efficacy. Clinical efficacy of the
combination of ipilimumab and nivolumab in the setting of malignant melanoma at advanced
stage is recently witnessed, and successfully passed approval by the FDA for the treatment of
patients with unresectable or metastatic melanoma harboring wild-type BRAFV600 [19].

Thus, clinical data support that antitumor immunity is operative even in the most advanced
cancer stages, and multiple immunosuppressive pathways are active in the TME which need
to be co-targeted to release the full effector function of tumor-associated immune cells [20]. In
fact, diverse additional immunomodulatory pathways and suppressive factors produced or
secreted by stromal cells in the TME can be exploited as useful targets for immune checkpoint
targeting [21]. However, some critical questions still remain open. For example, which
combinations should move toward practical development? What type of patients will benefit
most from such therapies? Systematic consideration of these issues by determining the leading
drug targets expressed by cancer cells will allow substantial enhancement of the immune
responses to eradicate the disease.
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Immunological pathway Examples in clinical trials Most advanced stage of
clinical development

CTLA4 Ipilimumab FDA approved

Tremelimumab Phase III

PD1-PDL1 Pembrolizumab (PD1) FDA approved

Nivolumab (PD1) FDA approved

Atezolizumab (formerly
MPDL3280A) (PDL1)

Phase III

MEDI4736 (PDL1) Phase III

Avelumab (PDL1) Phase I

PDR001 (PD1) Phase I

TNF and TNFR superfamilies

4-1BB–4-1BB ligand Urelumab, PF-05082566 Phase II

OX40–OX40 ligand MEDI6469 Phase II

GITR TRX518 Phase I

CD27 Varlilumab Phase II

TNFRSF25–TL1A – Preclinical

CD40–CD40 ligand CP-870893 Phase I

HVEM–LIGHT–LTA – Preclinical

HVEM–BTLA–CD160 – Preclinical

IGSF

LAG3 BMS-986016 Phase I

TIM3 Preclinical

Siglecs Preclinical

B7 and CD28-related proteins

ICOS–ICOS ligand – Preclinical

B7-H3 MGA271 Phase I

B7-H4 – Preclinical

VISTA – Preclinical

HHLA2–TMIGD2 – Preclinical

Butyrophilins, including BTNL2 – Preclinical

CD244–CD48 – Preclinical

TIGIT and PVR family members – Preclinical

Natural killer cell targets

KIRs Lirilumab Phase II

ILTs and LIRs – Preclinical
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NKG2D and NKG2A IPH2201 Phase I

MICA and MICB – Preclinical

CD244 – Preclinical

Suppressive myeloid cells

CSF1R Emactuzumab Phase I

Soluble mediators

IDO INCB024360 Phase II

TGF-β Galunisertib Phase I

Adenosine–CD39–CD73 – Preclinical

CXCR4–CXCL12 Ulocuplumab (BMS-936564),
BKT140 (BL-8040), Plerixafor

Phase I/II*

Other

Phosphatidylserine Bavituximab Phase II/III

SIRPA–CD47 CC-90002 Phase I

VEGF Bevacizumab FDA approved

Neuropilin MNRP1685A Phase I

BTLA, B and T lymphocyte attenuator; BTNL2, butyrophilin-like protein 2; CSF1R, macrophage colony-stimulating
factor receptor 1; CTLA4, cytotoxic T lymphocyte antigen 4; CXCL12, chemokine (C-X-C motif) ligand 12; CXCR4, C-X-
C chemokine receptor type 4; GITR, glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein;
HHLA2, HERV-H LTR-associating protein 2; HVEM, herpes virus entry mediator; ICOS, inducible T cell co-stimulator;
IDO, indoleamine 2,3-dioxygenase; IGSF, immunoglobulin superfamily; ILT, immunoglobulin-like transcript; KIR,
killer inhibitory immunoglobulin-like receptor; LAG3, lymphocyte activation gene 3 protein; LIR, leukocyte
immunoglobulin-like; LTA, lymphotoxin-α; MIC, MHC class I polypeptide-related sequence; PD1, programmed cell
death protein 1; PDL1, programmed cell death 1 ligand 1; PVR, poliovirus receptor; SIRPA, signal-regulatory protein-
alpha; TGF-β, transforming growth factor-β; TIGIT, T cell immunoreceptor with immunoglobulin and ITIM domains;
TIM3, T cell immunoglobulin mucin 3; TL1A, TNF-like ligand 1A; TMIGD2, transmembrane and immunoglobulin
domain-containing protein 2; TNFRSF25, TNFR superfamily member 25; TNFR, TNF receptor; VEGF, vascular
endothelial growth factor; VISTA, V-domain immunoglobulin suppressor of T cell activation.
*Plerixafor (Mozobil; Genzyme/Sanofi) is approved by the US Food and Drug Administration not as an antitumor
therapy but as a bone marrow mobilizing agent for bone marrow transplantation including autologous cases.
However, it is currently in clinical trials of chronic lymphocytic leukemia, multiple myeloma and non-Hodgkin''s
lymphoma patients.
Contents of Table 1 adapted from Mahoney et al. [25] with permission from Nature Reviews Drug Discovery,
copyright 2015.

Table 1. Representative immunotherapeutic targets currently in clinical or preclinical pipelines.

Concurrent inhibition of PD-1 and CTLA4 significantly increases response rate in melanoma
patients and is now in Phase III trials in multiple cancer types [19, 22]. Since immunosuppres-
sion is dominant, it makes sense that a standard immunotherapy begins with immune
checkpoint blockade instead of a direct immune stimulation. Release from immunosuppres-
sion will allow for combination with multiple immunotherapies that eventually activate the
immune response. Results from the Phase I trial of synergistic CTLA4 and PD-1 blockade
suggest that such a combination is clinically effective, but highly toxic to patients [19]. In this
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case, alternative combinations with the anti–PD-1 pathway backbone will likely produce better
response in cancer clinics with fewer side effects. A group of immunological pathway candi-
dates for combinatorial inhibition of the immune checkpoint is in various stages of clinical
trials (Table 1). The corresponding agents are designed to directly stimulate cytotoxic T cells,
block immunosuppressive factors, inhibit regulatory T cells (Treg) functions, interfere with the
natural killer cell inhibitory activities or abolish the effects of soluble factors produced by
stromal cells.

2.1.3.1.1. Tumor-associated macrophages (TAMs)

In solid tumors, TAMs compose 5–40% of the tumor mass and are usually correlated with
poor prognosis. Distinct from M1-macrophages, the immune cell subpopulation of pro-
inflammatory and anti-cancer properties, M2-macrophages are immunosuppressive,
contributing to the matrix-remodeling and favor tumor progression [23]. TAMs are either
tissue-resident or derived from peripheral sites including the bone marrow (BM) and spleen.
Increasing lines of evidence suggest an active role for TAMs in supporting multiple
malignant behaviors such as invasiveness at the leading edge of tumors. Particularly, studies
have demonstrated that TAMs promote cancer cell invasion through a paracrine signaling
loop involving tumor-associated granulocyte macrophage colony stimulating factor (GM-
CSF) and macrophage-derived epidermal growth factor (EGF) in breast cancer and glioma
[24, 25]. Additionally, the close vicinity of cancer cells in epithelial-mesenchymal transition
(EMT) and TAMs at the invasive tumor front implies that these two cell type may mutually
interact with each other. Beyond the leading edge, TAMs represent a major source of
proteases including cysteine cathepsins, which promote tumor progression and therapeutic
resistance in multiple cancer types [26].

However, it remains so far unclear how macrophages switch from tumor suppressing to tumor
promoting upon disease progression. It is likely that environmental factors such as tumor
hypoxia are involved in such a transition. Specifically, TAMs accumulate at sites of hypoxia in
growing tumors, and their recruitment is mediated by macrophage chemoattractants such as
endothelin-2 and VEGF [27]. Recent data further suggest that coexistence of hypoxia and free
fatty acids (FFAs) exacerbates macrophage-mediated inflammation [28]. As noteworthy, TAM
accumulation in these regions enhances angiogenesis and subsequent acquisition of invasive
phenotype, supporting that the initial hypoxic response in growing tumors may induce a
phenotypic switch of macrophages, which is correlated with their changed polarization [29].

2.1.3.1.2. Myeloid-derived suppressor cells (MDSCs) and Treg cells

In a typical TME, immunosuppressive effects may also be exerted by myeloid-derived
suppressor cells (MDSCs), which result from aberrant myelopoiesis that occurs in developing
tumors [30]. Functionally identified as an immunosuppressive subpopulation, MDSCs are
immature myeloid cells that sustain normal tissue homeostasis upon stimulation of the host
by various systemic insults such as viral infection and traumatic stress [31]. However, MDSCs
dramatically promote tumor growth by supporting angiogenesis, cancer cell survival, tumor
metastases and pre-metastatic niche formation [32]. In particular, the process of tumorigenesis
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can mobilize MDSCs which subsequently infiltrate developing tumors and promote local
vascularization and disrupt routine immunosurveillance, including dendritic cell (DC) antigen
presentation, M1 macrophage polarization, T cell activation and natural killer (NK) cell
cytotoxicity blockade [33]. Depletion of MDSCs in animal models with neutralizing antibodies
markedly reduced metastasis, further consolidating that MDSCs promote tumor progression
[31]. Furthermore, cancer patients display elevated numbers of peripheral MDSCs, which is
positively associated with the disease aggravation extent and therapeutic failure rate [34].
Interestingly, monocytic MDSCs can be reprogrammed to exhibit an antitumorigenic pheno-
type upon bacteria-elicited activation of the immune system in animal models [35]. In such a
case, increased T helper type 1 (TH1) cytokines, decreased T cell-inhibitory factors and
differentiation of MDSCs toward M1-like macrophages were observed, suggesting that
immunotherapies are able to subvert autonomous responses of MDSCs to extrinsic stimuli to
maintain homeostasis, an exploitable aspect of such an immune cell subgroup in cancer
treatment.

Phenotypically, Treg cells represent another TME cell type with multiple immune modulatory
functions in human cancer patients. As an essential part of the normal tissue under physio-
logical conditions, Treg cells control the proliferation and activation of adaptive immune
system including T and B cells, thus having a critical role in homeostasis maintenance.
However, Treg cells can generate diverse effects on tumorigenesis. For example, increased
numbers of Treg cells are correlated with poor survival of several pathologies including lung,
colorectal and estrogen receptor (ER)-negative breast cancer; however, their role on prostate
and ER-positive breast tumor development remains uncertain [36]. Similar to MDSCs, Treg
cells prevent tumor-associated antigen presentation and suppress cytotoxic T cell function by
blocking the release of cytolytic granules [37].

In nature, tumor-associated Treg cells have heterogeneous phenotypes, and they may accu-
mulate through various mechanisms including peripheral recruitment, TME-based prolifera-
tion or progenitor-initiated differentiation upon stimulation by tumor-secreted factors [38].
Thus, CD25 antibody-involved Treg-targeting or other treatment regimens may promote
immunotherapy responses, like agents designed for MDSCs [39].

2.1.3.1.3. Other stromal cell types implicated in tumor progression

Several stromal cell types recently emerged with the potential to generate remarkable
influences on human cancer. Particularly, adipocytes and their progenitors in obese popula-
tions promote tumorigenesis across a handful of obesity-related cancer types [40, 41]. Adipo-
cytes cause the enrichment of prostate cancer stem cells (CSCs) through a distinct cycle of
autocrine amplification, suggesting a novel mechanism underlying the mutual interaction
between adipocytes and prostate CSCs [42]. Moreover, adipose cells can be recruited to
growing tumor foci, differentiating into pericytes and incorporating into vessel walls [43]. In
both the basement membrane (BM) and local environment of solid tumors, atypical stem-
promoting functions of nerves can enhance the aggressiveness of cancer cells, including those
in gastrointestinal, pancreatic and prostate tumors [44–46]. Furthermore, inflammation
associated with the gut microbiome is considered as one of the major contributing factor of
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colorectal cancer outcomes. The US National Institutes of Health has recently launched an
initiation to thorough study the human microbiome in various anatomical sites including the
gut [47]. Targeting agents with anti-inflammatory (such as aspirin) or antimicrobial efficacy
can prevent colorectal cancer tumorigenesis, thereby elongating patient survival [48]. Given
the emergence of non-classical stromal cell types in solid tumors, creative combination
anticancer therapies are being continually developed in the industrial pipelines and will show
promising benefits in mitigating disease progression.

2.1.4. Tumor-associated exosomes

Diverse signaling activities within the TME involve autocrine and/or paracrine signaling
loops of cytokines, chemokines and growth factors. Besides such a typical aspect, exosome-
based shedding has recently emerged as an alternative modality of cell-cell communica-
tion. In particular, tumor-derived exosomes from the primary site reprogram the
surrounding TME to form a pro-tumorigenic niche, orchestrating BM-derived progenitors
to facilitate metastatic dissemination [49]. A recent study demonstrated that tumor-associ-
ated exosomes express unique integrins and determine organotropic metastasis through
creating pre-metastatic niches via integrin-mediated fusion with organ-specific resident
cells [50]. Aggressive melanoma-derived exosomes increase tumor metastasis rates and
programs BMDCs at the pre-metastatic sites to form a proangiogenic phenotype [51]. More
importantly, multiple stromal cell types can release exosomes, as exemplified by fibroblast-
secreted exosomes which promote cell migration through WNT-PCP signaling in breast
cancer [52]. In such a case, NK cell-derived exosomes from human blood harbor proteins to
induce the tumor cytotoxicity and activate immune cells ex vivo. Conversely, new data
demonstrated that endometrial cancer cells transmit small regulatory RNAs to endometrial
fibroblasts through exosomes, suggesting a reciprocal mode of intercellular communication
between cancer cells and related fibroblasts in human tumors [53]. Distinct prostate cancer
(PCa) cell populations release exosomes that contain miRNAs to modify the local or pre-
metastatic niche, and such miRNAs have different patterns between PCa bulk and CSCs
exosomes that function collaboratively in tumor progression and metastasis [54]. The most
abundant exosomes-related miRNAs thus can be regarded as potentially significant bio-
markers and therapeutic targets in clinical oncology.

2.2. The therapeutically remodeled TME alters clinical outcome

Recent studies have recognized benign or noncancerous cells of the TME are major determi-
nants of treatment efficacy in a large number of preclinical and clinical cases, an important
mechanism of acquired resistance that is beyond the intrinsic characteristics of cancer cells but
use to be masked by the de novo resistance of malignancies. Insightful appreciation of mecha-
nisms involved in regulation of drug tolerance is crucial for improved cancer treatment.
Specifically, host resident cells of the TME actively modulate tumor responses to chemotherapy
and targeted therapies through production of secreted factors [55].

Neoadjuvant or conventional chemotherapy-induced DNA damage can cause WNT16B
overexpression, a phenomenon found in the TME of prostate, breast and ovarian cancer

Patient Centered Medicine80



patients. Upon genotoxic insults, NF-κB acts as a key signaling node that actively mediates
WNT16B production. Cell-based experiments and tumor transplant models demonstrated the
protective effect of fibroblast-derived WNT16B, indicating that WNT16B secreted by stroma
attenuates cancer cell apoptosis induced by genotoxicity, and counteracts drug response
through activation of a DNA damage secretory program (DDSP) [56–59] (Figure 2). The study
presents new opportunities for future advanced treatments that rationally integrate agents to
confine the TME activities. For instance, depleting stroma-derived WNT16B, which would
specifically overcome such a “new” but not “minor” TME-associated resistance mechanism
[57, 60]. As supporting evidence, CAFs are similarly enriched in colorectal cancer (CRC) during
the post-therapy stage and display enhanced cytokine IL-17A, which helps maintain the tumor
infiltrating cells (TICs) through activation of NF-κB signaling [61].

Besides overturning traditional law of nature that anticancer treatments mainly restrain cancer
cells, the discovery raises the novel appreciation that genotoxic regimens including chemo-
therapy and radiation indeed activate the stroma to promote disease resistance, an important
advancement corroborated by several other concurrent but mutually independent reports of
breast cancer models that strongly imply DNA damage-elicited alterations of the TME as an
pathological entity that eventually minimizes the overall therapeutic response [62, 63]. The BM
is enriched with cells of varying progeny beyond myeloid cell populations that are mobilized
and recruited to the TME in response to treatments. Importantly, BM-derived mesenchymal
stem cells (BMMSCs) can secrete polyunsaturated fatty acids, chemoprotective factors that
favor cancer cell survival [64]. Although the data showed that only the cisplatin-involving
therapy can induce such a change, the TME-derived fatty acids eventually conferred resistance
to multiple agents even at a systemic level. Alternatively, therapeutic evasion by cancer
propagating cells (CPC) represents a major obstacle in leukemia clinics. Recent data showed
that the BM niche is created by acute lymphoblastic leukemia (ALL) cells following cytarabine
and daunorubicin treatment [65]. Mesenchymal cells recruited by leukemia cell-derived CCL3
can build a therapy-induced shelter and evolve from Nestin+ cells to a smooth muscle actin
(a-SMA)+ cells under TGF-β influence, ultimately developing into fiber residues. Formation
of such an early protective niche significantly contributes to the failure of therapeutic inter-
vention by preventing complete remission.

Cocultured fibroblasts regulate the in vitro sensitivity of head and neck squamous cell
carcinoma (HNSCC) to epithelial growth factor receptor (EGFR) antibodies or matrix metal-
loproteinase (MMP) inhibitors [66]. Furthermore, tumor-stroma cross talk plays a crucial role
in the acquisition of lung cancer resistance to EGFR-tyrosine kinase inhibitors (TKIs) through
activating the c-Met/PI3K/Akt pathway in vitro and in vivo, implying such an interaction may
be therapeutically targeted for lung cancer patients with EGFR-activating mutations [67]. HGF
represents one of the major stroma-released soluble regulators of lung cancer sensitivity,
whereas gefitinib in synergy with anti-HGF antibody or the HGF antagonist NK4 showed
decent efficacy in abolishing fibroblast-induced EGFR-TKI resistance. Similarly, co-inhibition
of EGFR and c-Met signaling with a novel bi-specific EGFR/c-Met antibody effectively blocked
malignant development including resistance additively compared with the single-agent
treatments [68].
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Figure 2. WNT16B is significantly produced upon genotoxic damage to human stromal cells and promotes therapeutic
resistance to surviving cancer cells. (A) Genome-wide expression pattern of normal human primary prostate stromal
cells. Heatmap depicts the relative mRNA abundance after exposure of cells to typical DNA damaging agents (H2O2,
hydrogen peroxide; Bleo, bleomycin; Rad, ionizing radiation). (B) Top list of upregulated human genes annotated as
extracellular or secreted factors, with average expression fold change ≥3.5 by comparison of post-treatment vs. pre-
treatment samples. Note, WNT16B shows up among the overexpressed genes, with outstanding expression fold
change. (C) Working model for cancer cell non-autonomous therapeutic resistance acquired from the TME upon geno-
toxic treatments including chemotherapy and radiation. Therapeutic agents cause apoptosis in subsets of cancer cells
by eliciting a DNA damage response (DDR), while cancer cells with DDR deficiency (DDR-insensitive, or DDR-) may
escape from such insults. Simultaneously, senescence is induced in stromal cells adjacent to epithelial cells surrounding
the gland, with a secretory phenotype DDSP developed after DDR events. A persistently activated signaling network is
triggered by the DNA strand breaks. The DDSP is usually characterized by a spectrum of autocrine- and paracrine-
acting proteins. The soluble factors reinforce the senescent phenotype in damaged cells, enhance cancer cell repopula-
tion, with increased occurrence of tumor relapse and distant metastasis. A handful of co-synthesized factors including
WNT16B and SPINK1 holds the potential to serve as both a serum biomarker to determine treatment index and a ther-
apeutic target to minimize the TME-conferred therapeutic resistance. DDR, DNA damage response; ECM, extracellular
matrix; TME, tumor microenvironment. Color images of (A) adapted from Xu et al. with permission from Trends in
Cancer, copyright 2016.
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The development and maintenance of vasculature is regulated by diverse pathways, including
those engaging proangiogenic factors produced by both the tumor and stroma [69]. Upon
genotoxic treatments, stromal expression of VEGF and other angiogenic factors including
angiopoietin 1 (ANGPT1) and angiopoietin-like 4 (ANGPTL4) is enhanced, potentially
contributing to vasculature development within the therapeutically damaged TME [56, 70].
Expression of the secreted frizzled-related protein 2 (SFRP2), a typical modulator of Wnt
signaling, is increased in the stroma damaged by the chemotherapeutic cycles [56]. Beyond
holding the potential to promote angiogenesis via the calcineurin/NFAT signaling in a non-
canonical Wnt pathway [71, 72], SFRP2 can interact directly with WNT16B to enhance its
canonical activities, eventually generating a substantially strengthened malignant phenotype
including remarkable drug resistance in prostate cancer [73]. Data from targeting angiopoie-
tins (Ang1, Ang2, Ang4) which cause CAF accumulation and neoangiogenesis in the TME, and
TEK (referring to Tie1/Tie2) receptors responsible for the maturation and plasticity of blood
vessels, are recently reported [74, 75]. Inhibiting angiogenesis in patients to overcome one of
the side effects caused by cytotoxic agents is thus a novel strategy to block neoplastic growth
and deprive cancer of acquired resistance.

Increasing lines of evidence support that the TME is critical for the development of chemore-
sistance through multiple mechanisms including drug distribution regulation and inflamma-
tory response control. Particularly, the infiltration of myeloid-derived cells is increased in
human breast cancer post-chemotherapy, with the cellular composition as a strong clinical
predictor of overall survival [63]. Furthermore, myeloid cell-derived MMP9 influences both
vascular leakage and response to chemotherapeutic drugs including doxorubicin. Therefore,
tumor response to classical chemotherapeutic agents can be improved by targeting the TME
with chemicals or antibodies that modify MMP activity and/or chemokine signaling. In another
perspective, cancer treatments currently applied as the mainstay of clinical oncology indeed
represent a double-edged sword, which is frequently compromised in reality by a therapeut-
ically remodeled TME. The structural change, and more importantly, the functional modifi-
cation of such a TME, casts a critical step toward development of more advanced malignancies
including but not limited to the phenotypic switch via EMT, generation of circulating tumor
cells (CTCs), local invasion in primary foci and metastasis to distant organs [76].

2.3. Development of targeting strategies in precision medicine

While the functional constituents of the TME generate profound impacts on disease progres-
sion and minimize the efficacy of anticancer therapies, experimental data indicate that such
alterations are indeed exploitable and can open new avenues to develop advanced strategies
and design innovative cancer regimens.

To date, there are a few leading research groups that have made progress in the TME biology
by generating relevant databases and presenting therapeutic opportunities to prevent TME-
induced cancer resistance. First of all, cytokines, growth factors and survival-associated
proteins released by the TME are straightforward and valid therapeutic targets. As an efficient
growth stimulator, IL-6 enhances resistance by counteracting chemotherapy and hormone
therapy of multiple myeloma; it is also a therapeutic target in Castleman’s disease and several
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epithelial malignancies including mammary, breast ovarian, prostate cancers [77]. Recent data
demonstrated that HGF is a critical TME determinant of resistance to BRAF inhibitors, setting
the baseline for combinations of HGF-targeting monoclonal antibodies and RTK inhibitors that
dampen the receptor c-Met activation [78, 79]. Identification of the distinct role of stroma-
derived WNT16B in prostate cancer strongly supports translational studies in cancer therapy,
as evidenced by the pilot preclinical trial integrating a monoclonal WNT16B antibody and
routine chemotherapy to treat prostate tumors [73]. It is tempting to compare the efficacy of
WNT16B-implicated pathway blockade and a wider suppression of the TME response to
genotoxicity by inactivating the NF-κB complex. As the NF-κB activity differs between various
stromal cell lineages upon therapeutic insults, it would be necessary to compare the effects of
NF-κB suppression in individual TME-derived cell types. Nevertheless, there are caveats when
selecting NF-κB as a general therapeutic target, although accumulating experimental data have
established the NF-κB complex as a key regulator of inflammation and a driver of cancer
progression. However, reverse but convincing data proved that activated NF-κB components
enhance the sensitivity of cancer cells to chemicals that induce apoptosis and senescence, a
special mechanism that controls tumorigenesis [80, 81]. As a supporting point, canonical NF-
κB is found to be a Fas transcription activator, though the alternative NF-κB acts as a Fas
transcription repressor [82]. In such a case, NF-κB promotes Fas-mediated cancer cell apop-
tosis, while suppression of NF-κB may abolish the Fas-initiated cell death and interfere with
tumor regression achieved by the host immune system.

Strategies to inhibit the cancer resistance acquired from the TME in the course of either
chemotherapy or targeted therapy have the value to improve overall therapeutic outcome.
Generally, the TME exerts pathological influence on cancer cell survival as an early stage, while
subsequent repopulation frequently occurs via the activation of signaling networks that elicit
a typical secretory phenotype and/or tumor-stroma cross talk. To date, an array of agents are
developed to minimize these activities, particularly small molecule inhibitors against key
signal pathway nodes including the ATM/ATR-associated DDR repair machinery, p38MAPK
cascade, mTOR subunits, JAK/STAT axis, NF-κB complex and CCAAT/enhancer binding
protein (C/EBP) components. Alternatively, cytostatic antibodies with the ability to neutralize
major soluble factors of significant roles in shaping advanced cancer phenotypes, such as those
targeting MMPs, IL-6, IL-8, WNT16B, SFRP2, SPINK1 and AREG are also strong candidates
that can be exploited to target the TME [57]. Fortunately, a handful of agents successfully
acquired FDA approval for the systemic intervention of cancer patients while many others are
in the industrial pipelines or clinical trials. As scientific acumen, an optimal therapeutic
strategy is to consider the cancer a systemic disease at diagnosis and to pursue combinational
therapy that incorporate cytotoxic agents and feasible cytostatic drugs either concurrently or
sequentially, the latter actually more preferred [83]. Continued efforts in future will consolidate
preclinical studies with novel therapeutics that deprive cancer of TME-conferred resistance,
which is administered synergistically with cancer-targeting agents in pathological conditions
that implicate a stress-responsive and functionally active TME.

Recently achieved in-depth profiling of cancer mutations by deep sequencing has enabled
appreciation of the importance of tumor neoantigens in the immune surveillance of cancer,
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with the dream of “personalized immunotherapy” now realized. In particular, conceptual
developments in cancer biology have caused a paradigm shift in the perspective we look at
the TME when taking account of the immune system and its interaction with cancer. A
simple but useful pragmatic framework allowing to stratify the TME into four classes ac-
cording to the presence or absence of tumor-infiltrating lymphocytes (TILs) and PD-L1 ex-
pression was raised [84]. The proportion of tumors categorized as type I (~38%) and type II
(~41%) by this framework is high in melanoma, and type I TME-harboring patients have
the best prognosis and highest likelihood to respond to anti–PD-1/PD-L1 agents [85, 86].
Some malignancies such as prostate and pancreatic cancers, however, may not contain a
high proportion of type I TME; in such a case, anti–PD-1/PD-L1 monotherapies are not ex-
pected to be highly effective [87]. Therefore, it is important to clarify which aspects of can-
cer immunity need to be targeted by novel immunotherapies, with the aim to provide
benefit for patients with non-type I TME tumors. Different types of therapeutic interven-
tions may need to be combined to generate a strong antitumor response, by effectively en-
gaging immunity to suppress specific types of TME [17].

To treat various types of cancer-immune microenvironments, anti–PD-1 and anti–PD-L1 drugs
will probably set the baseline of many future treatments for cancer, whereas the opportunities
to combine these agents with surgery, radiation, immunogenic chemotherapy and targeted
therapy and in class I tumors can be easily foreseen. The alternative strategy of chimeric antigen
receptor T (CAR-T)-cell immunotherapy is essentially a combination treatment in nature.
Providing earlier combination therapies to cancer patients, it is likely that approximately 50%
or more of cancer types particularly some solid tumors such as melanoma and renal cell
carcinoma are effectively prevented or controlled

3. Concluding remarks and future directions

Traditional anticancer treatments with cytotoxic drugs have generated limited promotion in
the cure rates of various malignancies. Chemotherapy, radiation and targeted therapy,
however, still have a large place in cancer clinics. Using novel approaches derived from the
development of systems medicine, we will have a more thorough and accurate understanding
of human cancer complexity and will be able to stratify patients appropriately. Personalized
medicine has the potential to bring the best outcome for cancer patients, while healthcare costs
should be made affordable and, most importantly, the combination therapies must be designed
in a safe, rational, and effective way.

The fast moving research areas have undoubtedly set the stage for future investigation on
interactions between cancer cells and the surrounding shelter, the TME. Development of
methods for high content profiling of this complex biological landscape, and the other
side, advancement of therapeutic strategies to overcome the pathological problem at a
systemic level, thus turns out to be a very important task for prospective research and
clinical practice.
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Abbreviations

ADCC Antibody-dependent cellular cytotoxicity

AdipoR Adiponectin receptor

ADP Antibody-dependent phagocytosis

ALDH Aldehyde dehydrogenase

ALL Acute lymphoblastic leukemia

α-SMA α-Smooth muscle actin

AML Acute myeloid leukemia

ANGPTL4 Angiopoietin-like 4

ANGPT1 Angiopoietin 1

BM Basement membrane or bone marrow

BMSC Bone marrow stroma cell

CAF Carcinoma-associated fibroblast

CAM-DR Cell adhesion-mediated drug resistance

CAR-T Chimeric antigen receptor T

cCAF Circulating CAF

CCL2 Chemokine (C-C) ligand 2

CCL18 Chemokine (C–C) ligand 18

C/EBP CCAAT/enhancer-binding protein

CLL Chronic lymphocytic leukemia

CPC Cancer-propagating cell

CSC Cancer stem cell

CSF-1 Colony-stimulating factor 1

CTC Circulating tumor cell

CTL Cytotoxic T lymphocyte

CTLA4 Cytotoxic T lymphocyte antigen 4

CXCL12 Chemokine (C-X-C) ligand 12
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CXCR4 Chemokine (C-X-C) ligand receptor 4

DC Dendritic cell

DDR DNA damage response

DDSP DNA damage secretory program

ECM Extracellular matrix

EGF Epidermal growth factor

EMT Epithelial-mesenchymal transition

ER Estrogen receptor

ErbB2 (or Her2) Human epidermal growth factor receptor 2

FAP Fibroblast-activating protein or fibroblast-associated protein

FGF Fibroblast growth factor

FSP1 Fibroblast-specific protein 1

GM-CSF Granulocyte macrophage colony-stimulating factor

HGF Hepatocyte growth factor

HIF1α Hypoxia-inducible factor 1α

HNSCC Head and neck squamous cell carcinoma

hTERT Human telomerase reverse transcriptase

IGF-1 Insulin growth factor 1

IL Interleukin

MAPK Mitogen-activated protein kinase

MCP1 Monocyte chemotactic protein 1

MDR Multiple drug resistance

MDSC Myeloid-derived suppressor cell

MMP Matrix metalloproteinase

MRD Minimal residue disease

mTOR Mammalian target of rapamycin

MVD Microvessel density

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NHT Neoadjuvant hormonal therapy

NK Natural killer

NSCLC Non-small cell lung cancer

PCa Prostate cancer

PDGF Platelet-derived growth factor

PD-1 Programmed cell death 1

PD-L1 Programmed cell death ligand 1

PI3K Phosphoinositide 3 kinase
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RCC Renal cell carcinoma

RTK Receptor tyrosine kinase

SCLC Small-cell lung cancer

SDF-1 Stromal cell-derived growth factor 1

SFRP2 Secreted frizzled-related protein 2

TAM Tumor-associated macrophage

TGF-β Transforming growth factor-β

TH1 T helper type 1

TIC Tumor-infiltrating cell

TIL Tumor-infiltrating lymphocyte

TKI Tyrosine kinase inhibitor

TME Tumor microenvironment

TNBC Triple-negative breast cancer

TNF Tumor necrosis factor

Treg Regulatory T cell

uPAR Urokinase plasminogen activator receptor

Vegf Vascular endothelial growth factor
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