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Abstract

Composite thermoelectric generators (CTEGs) are thermoelectric systems composed of
different modules arranged under various thermal and electrical configurations (series
and/or parallel). The interest for CTEGs stems from the possibility to improve device
performance by optimization of configuration and working conditions. Actual modeling
of CTEGs rests on a detailed understanding of the nonequilibrium thermodynamic
processes at the heart of coupled transport and thermoelectric conversion. In this chap-
ter, we provide an overview of the linear out-of-equilibrium thermodynamics of the
electron gas, which serves as the working fluid in CTEGs. The force-flux formalism
yields phenomenological linear, coupled equations at the macroscopic level, which
describe the behavior of CTEGs under different configurations. The relevant equivalent
quantities—figure of merit, efficiency, and output power—are formulated and calcu-
lated for two different configurations. Our results show, that system performance in
each of these configurations is influenced by combination of different materials and
their ordering, that is, position in the arrangement structure. The primary objective of
our study is to contribute new design guidelines for development of composite thermo-
electric devices that combine different materials, taking advantage of the performance of
each in proper temperature range and type of configuration.

Keywords: thermoelectric energy conversion, thermoelectric devices, thermodynamic
constraints on energy production, thermoelectric figure of merit, thermoelectric optimi-
zation, efficiency

1. Introduction

Thermoelectric devices are heat engines, which may operate as generators under thermal bias

or as heat pumps. For waste energy harvesting and conversion, thermoelectricity offers quite
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appropriate solutions, when temperature difference between heat source and heat sink is not

too large. The physics underlying this type of energy conversion is based on the fundamental

coupling between electric charge and energy that each mobile electron carries. The coupling

strength is given by the so-called Seebeck coefficient or thermoelectric power [1]. The perfor-

mance of thermoelectric system is usually assessed against the so-called figure of merit [2]: a

dimensionless quantity denoted ZT, which combines the system's thermal and electrical trans-

port properties, as well as their coupling at temperature T.

To qualify as a good thermoelectric, a material (semiconductor or strongly correlated) must

boast the following characteristics: small thermal conductivity and large electrical conductivity

on the one hand, so that, it behaves as a phonon glass—electron crystal system [2], and large

thermoelectric power on the other hand. All these properties, which can be optimized, are

temperature-dependent, so they may take interesting values only in a particular temperature

range. Improvement of thermoelectric devices in terms of performance and range of applica-

tions is highly desired, as their conversion efficiency is not size-dependent, and the typical

device does not contain moving parts. Much progress in the field of thermoelectricity has been

achieved since the early days, which saw the pioneering works of Seebeck [3] and Peltier [4],

but decisive improvement of the energy conversion efficiency, typically 10% of the efficiency of

ideal Carnot thermodynamic cycle, is still in order.

In a general manner, transport phenomena are irreversible processes: the generation of fluxes

within the system, upon which external constraints are applied, are accompanied by energy

dissipation and entropy production [5]. Therefore, thermoelectric effects may be viewed as the

result of the mutual interaction of two irreversible processes, electrical transport, and heat

transport, as they take place [6]. Not too far from equilibrium, these transport phenomena

obey linear phenomenological laws; so, general macroscopic description of thermoelectric

systems is, in essence, phenomenological. Linear nonequilibrium thermodynamics provides

the most convenient framework to characterize the device properties and the working condi-

tions to achieve various operation modes.

A thermoelectric generator (TEG) is under the influence of two potentials: electrochemical (μe)

and thermal (T); for each of which there is a flux and a force (as shown in examples of Table 1).

If force is capable of getting the system to state close to equilibrium after perturbation, then the

linear regime may characterize the situation, and approximation in this case is the linear

response theory (LRT). In this chapter, we will review and discuss these issues considering

thermoelectric system composed of different modules: we are particularly interested in the

performance analysis of composite thermoelectric generator (CTEG). For this purpose, we will

use a framework based on LRT, which allows to derive a set of linear coupled equations, which

contain the system's thermoelectric properties: Seebeck coefficient (α), thermal conductivity

(κ), and electrical resistivity (ρ), which are combined to form the effective transport parameters

of CTEG in different thermal and electrical arrangements.

The present chapter is organized as follows: as thermoelectric conversion results primarily

from nonequilibrium thermodynamic processes, a brief overview of some of the basic concepts

and tools developed by Onsager [7, 8] and Callen [6] is very instructive, and we will see, that
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the force-flux formalism is perfectly suited for a description of thermoelectric processes [9].

Then, we will turn our attention to the physical model of composite thermoelectric generators,

deriving and analyzing the figure of merit, the conversion efficiency and maximum output

power. The chapter ends with a discussion and concluding remarks.

2. Basic notions of linear nonequilibrium thermodynamics

2.1. Instantaneous entropy

The thermodynamic formulation presented here is that of Callen [10]. To each set of extensive

variables associated to a thermodynamic system, there is a counterpart, that is, a set of

intensive variables. The thermodynamic potentials are constructed from these variables. At

the macroscopic scale, the equilibrium states of a system may be characterized by a number of

extensive variables Xi macroscopic by nature. As one may assume that a macroscopic system is

made of several subsystems, which may exchange matter and/or energy among themselves,

the values taken by the variables Xi correspond to these exchanges, which occur as constraints

are imposed and lifted. When constraints are lifted, relaxation processes take place until the

system reaches a thermodynamic equilibrium state, for which a positive and continuous

function S differentiable with respect to the variables Xi can be defined as follows:

S : Xi↦SðXiÞ: (1)

The function S, called entropy, is extensive; its maximum characterizes equilibrium as it

coincides with the values that the variables Xi finally assume after the relaxation of con-

straints. Note, that extensive variables Xi differ from microscopic variables because of

typical time scales, over which they evolve: the relaxation time of microscopic variables is

extremely fast, while the variables Xi are slow in comparison. To put it simply, relaxation

time toward local equilibrium τrelax is much smaller than the time necessary for the evolu-

tion toward the macroscopic equilibrium τeq. Hence, one may define an instantaneous

entropy, SðXiÞ, at each step of the relaxation of the variables Xi. The differential of the

function S is as follows:

dS ¼ ∑
i

∂S

∂Xi
dXi ¼ ∑

i
FidXi; (2)

where each quantity Fi is the intensive variable conjugate of the extensive variable Xi.

Variables Transport coefficient Expression and name

Particle flux and density Diffusion coefficient JN ¼ −D∇n Fick's law

Energy flux and temperature Thermal conductivity JE ¼ −κ∇T Fourier's law

Electrical current density and electric field Electrical conductivity J ¼ σE≡−σ∇ϕ Ohm's law

Table 1. Linear thermodynamic phenomenological laws—illustrative examples of forces and fluxes.
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2.2. Thermodynamic forces and fluxes

Examples of well-known linear phenomenological laws are given in Table 1. These laws

establish a proportionality relationship between forces, which derive from potentials, and

fluxes. Proportionality factors are transport coefficients, as fluxes are the manifestation of

transport phenomena. Indeed, the system's response to externally applied constraints is trans-

port, and when these are lifted, the system relaxes toward an equilibrium state.

Following the introductory discussion of this section, we now see in more detail how these

forces and fluxes appear. The notions, which follow, are easily introduced considering the case

of a discrete system like, for instance, two separate homogeneous systems initially prepared at

two different temperatures and then put in thermal contact through a thin diathermal wall.

The thermalization process triggers a flow of energy from one system to the other. So, assume

now an isolated system composed of two weakly coupled subsystems, to which an extensive

variable taking the values Xi and Xi′ , is associated. One has Xi þ Xi′ ¼ X
ð0Þ
i ¼ constant and

SðXiÞ þ SðXi′Þ ¼ SðX
ð0Þ
i Þ. Then, the equilibrium condition reads:

∂Sð0Þ

∂Xi
j
X

ð0Þ

i

¼
∂ðSþ S′Þ

∂Xi
dXijXð0Þ

i

¼
∂S

∂Xi
−
∂S′

∂Xi′
¼ Fi−F

′

i ¼ 0, (3)

as it maximizes the total entropy. Therefore, if the difference F i=Fi – F′i is equal to zero, the

system is in equilibrium; otherwise, irreversible process takes place and drives the system to

equilibrium. The quantity F i is the affinity or generalized force allowing the evolution of the

system toward equilibrium. Further, we also introduce the variation rate of the extensive

variable Xi, as it characterizes the response of the system to the applied force:

Ii ¼
dXi

dt
: (4)

The relationship between affinities and fluxes characterizes the changes due to irreversible

processes: non-zero affinity yields non-zero conjugated flux, and a given flux cancels, if its

conjugate affinity cancels.

In local equilibrium, fluxes depend on their conjugate affinity, but also on the other affinities;

so, we see, that there are direct effects and indirect effects. Therefore, the mathematical expres-

sion for the flux Ii, at a given point in space and time ðr;tÞ, shows a dependence on the force F i,

but also on the other forces F j≠i:

Iiðr;tÞ≡IiðF 1;F 2;…Þ: (5)

Close to equilibrium Iiðr;tÞ can be written as Taylor expansion:

Ikðr;tÞ ¼ ∑
j

∂Ik
∂F j

Fj þ
1

2!
∑
i;j

∂2Ik
∂F iF j

F iF j þ… ¼ ∑
k
LjkF k þ

1

2
∑
i;j
LijkF iF j þ… : (6)

The quantities Ljk are the first-order kinetic coefficients; they are given by the equilibrium

values of intensive variables Fi. The matrix ½L� of kinetic coefficients characterizes the linear
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response of the system. Onsager put forth the idea that there are symmetry and antisymmetry

relations between kinetic coefficients [6, 7]: the so-called reciprocal relations must exist in all

thermodynamic systems, for which transport and relaxation phenomena are well described by

linear laws. The main results can be summarized as follows [5]: (1) Onsager's relation: Lik ¼ Lki;

(2) Onsager-Casimir relation: Lik ¼ εiεkLki; (3) generalized relations: LikðH; ΩÞ ¼ εiεkLkið−H;−ΩÞ,

where H and Ω denote, respectively, the magnetic field and angular velocity associated with

Coriolis field; the parameters εi denote the parity with respect to time reversal: if the quantity

studied is invariant under time reversal transformation, it has parity þ1; otherwise, this quantity

changes sign, and it has parity −1.

3. Thermoelectric forces and fluxes

3.1. Coupled fluxes of heat and electrical charges

The thermoelectric effect results from the mutual interference of two irreversible processes

occurring simultaneously in the system, namely heat transport and charge carriers transport.

The Onsager force-flux derivation is obtained from the laws of conservation of energy and

matter:

IE ¼ IQ þ μeIN, (7)

where IE is energy flux, IQ is heat flux, and IN is particle flux. Each flux is the conjugate

variable of its potential gradient. Considering the electron gas, correct potentials for particles

and energy are μe=T and 1=T, and related forces are as follows: FE ¼ ∇ð1=TÞ and

FN ¼ ∇ð−μe=TÞ, where μe is the electrochemical potential [1]. Then, the linear coupling

between forces and fluxes may simply be described by a linear set of coupled equations

involving the so-called kinetic coefficient matrix ½L�:

�

IN
IE

�

¼

�

LNN LNE

LEN LEE

�

∇ð−μe=TÞ
∇ð1=TÞ

� �

, (8)

where LNE ¼ LEN . Now, to treat properly heat flow and electrical current, it is more convenient

to consider IQ instead of IE. Using IE ¼ IQ þ μeIN, we obtain:

IN
IQ

� �

¼
L11 L12
L21 L22

� �

−∇ðμe=TÞ
∇ð1=TÞ

� �

(9)

with L12 ¼ L21. Since ∇ð−μe=TÞ ¼ −μe∇ð1=TÞ−1=T∇ðμeÞ, then heat flow and electrical current

read:

IN
IQ

� �

¼
LNN LNE−μeLNN

LNE−μeLNN −2LNEμe þ LEE þ μ2
eLNN

� �

∇ð−μe=TÞ
∇ð1=TÞ

� �

(10)

with the following relationship between kinetic coefficients:
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L11 ¼ LNN, (11)

L12 ¼ LNE−μeLNN , (12)

L22 ¼ LEE−2μeLEN þ μ
2
eLNN: (13)

Note, that since electric field derives from electrochemical potential, we also obtain:

E ¼ −
1

e
∇μe: (14)

3.2. Thermoelectric transport coefficients

The thermoelectric transport coefficients can be derived from the expressions of electron and

heat flux densities depending on applied thermodynamic constraints: isothermal, adiabatic,

electrically open or closed circuit conditions. Under isothermal conditions, electrical current

may be written in the form:

IN ¼
−L11
T

∇ðμeÞ: (15)

This is expression of Ohm's law, since with I ¼ eIN we obtain the following relationship

between electrical current density and electric field:

eIN ¼ I ¼ e
−L11
T

∇ðμeÞ ¼ σT −
∇ðμeÞ

e

� �

¼ σTE; (16)

which contains the definition for isothermal electrical conductivity expressed as follows:

σT ¼
e2

T
L11: (17)

Now, if we consider the heat flux density in the absence of any particle transport or, in other

words, under zero electrical current, we get:

IN ¼ 0 ¼ −L11
1

T
∇ðμeÞ

� �

þ L12∇ð
1

T
Þ, (18)

so that, the heat flux density under zero electrical current, IQI¼0
, reads:

IQI¼0
¼

1

T2

L21L12−L11L22
L11

� �

∇ðTÞ: (19)

This is Fourier's law, with thermal conductivity under zero electrical current given by:

κI ¼
1

T2

L11L22−L21L12
L11

� �

: (20)

We can also define the thermal conductivity κE under zero electrochemical gradient, that is,

under closed circuit conditions:
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IQE¼0
¼

L22

T2
∇ðTÞ ¼ κE∇ðTÞ: (21)

It follows, that thermal conductivities κE and κI are simply related through:

κE ¼ Tα2
σT þ κI : (22)

As thermal and electric processes are coupled, the actual strength of the coupling is given by

Seebeck coefficient:

α≡
−
1
e∇ðμeÞ

∇ðTÞ
¼

1

eT

L12
L11

, (23)

defined as the ratio of two forces that derive from electrochemical potential for one and from

temperature for the other.

The analysis and calculations developed above allow to establish complete correspondence

between kinetic coefficients and transport parameters:

L11 ¼
σT

e2
T, (24)

L12 ¼
σTSIT

2

e2
, (25)

L22 ¼
T3

e2
σTS

2
I þ T2

κI , (26)

so that, expressions for electronic current and heat flow may take their final forms:

IN ¼
σT

e2
T −

∇ðμeÞ

T

� �

þ
σTSIT

2

e2
∇ð

1

T
Þ

� �

, (27)

IQ ¼
σTSI
e2

T2
−

∇ðμeÞ

T

� �

þ
T3

e2
σTS

2
I þ T2

κI

� �

∇ð
1

T
Þ

� �

: (28)

Since I ¼ eIN, it follows that:

I ¼ σTE−
σTSI
e

∇ðTÞ, (29)

from which we obtain:

E ¼ ρTIþ α∇ðTÞ, (30)

where ρT is the isothermal conductivity. This is a general expression of Ohm's law.
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4. Formulation of physical model for thermoelectric generators

For TEG performance analysis, we have applied the model given by [11, 12], associating

thermal circuit for heat transport and electrical circuit for charge carriers transport, see

Figure 1.

Electrical current and heat flow, Ii and IQi
, are functions of generalized forces [11], related to

differences in voltage, ΔV i, and temperature, ΔTi, of thermoelectric generator:

Ii
IQi

� �

¼
1=Ri αið1=RiÞ

αið1=RiÞT α
2
i ð1=RiÞT þ Ki

� �

ΔV i

ΔTi

� �

, (31)

where T is average temperature.

In this model, TEG is characterized by its internal electrical resistance, R, thermal conductance

under open electrical circuit condition, K, and Seebeck coefficient, α. Physical conditions

assumed for this model are as follows: (i) thermoelectric properties are independent on tem-

perature, (ii) the only electrical resistance taken into account is that of the legs, (iii) there is no

thermal contact resistance between the ends of the legs and heat source, and (iv) in this model,

doping of the legs (p- or n-type) is not taken into account, so that, TEG can be seen as only one

leg.

5. Heat balance equation

The heat balance in TEG is governed by the following equations; basically, there are two

extreme points: one in contact with the heat source (incoming point):

Figure 1. Circuit model for thermoelectric generator, red (thermal circuit), blue (electrical circuit), where ΔV, voltage; R,

electrical resistance; K, thermal conductance; Tcold, temperature of the cold side; Thot, temperature of the hot side; ΔT,

temperature difference; α, Seebeck coefficient; and T, average temperature.
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Qin ¼ αThI−
1

2
RinI

2 þ KðTh−TcÞ, (32)

the other point is point, where heat is rejected:

Qre ¼ αTcI þ
1

2
RinI

2 þ KðTh−TcÞ, (33)

where αTiI is Seebeck heat, 1
2RinI

2 is Joule heat, and KðTh−TcÞ is thermal conduction heat; in

terms of these quantities, electrical power is defined as:

Pelectrical ¼ Qin−Qre ¼ αIðTh−TcÞ−RI
2: (34)

6. Composite thermoelectric generator (CTEG)

We consider a composite thermoelectric generator, which is composed of three thermoelectric

elements (TEGs) in different configurations, each TEG is made of a different thermoelectric

material, see Figure 2. The configurations considered are as follows: (A) two-stage thermally

and electrically connected in series (TES-CTEG); (B) segmented TEG, conventional TEG, ther-

mally and electrically connected in parallel (PSC-CTEG). Also, we consider the effect of the

arrangement of the materials on the performance of the composite system. Thus, for each of

the systems (A, B), we have the following arrangements:

a. TEG 1 = material one, TEG 2 = material two, TEG 3 = material three;

b. TEG 1 = material three, TEG 2 = material one, TEG 3 = material two;

c. TEG 1 = material two, TEG 2 = material three, TEG 3 = material one.

In the following sections, we analyze and show results for CTEG by applying the conditions

listed above in order to contribute to development of new design guidelines for thermoelectric

systems with news architectures and even to provide some clues to the search for new physical

conditions in the area of science and engineering of thermoelectric materials.

6.1. Formulation of equivalent figure of merit for CTEG

To analyze CTEG performance, equivalent quantities are defined, which contain the overall

contribution of individual properties of each TEG building up composite system. These quan-

tities are as follows: equivalent Seebeck coefficient (αeq), equivalent electrical resistance (Req),

and equivalent thermal conductance (Keq), in terms of which it is possible to have equivalent

figure of merit (Zeq). We show the impact of the configuration of the system on Zeq for each of

configuration (A, B) listed in Section 6, and we suggest the optimum configuration. In order to

justify the effectiveness of the equivalent figure of merit, the corresponding efficiency has been

calculated for each configuration.
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6.1.1. Two-stage thermally and electrically connected in series

Schematic view of this system is shown in Figure 3. The first stage (bottom stage) consists of

two different thermoelectric modules (TEG), while the top stage consists of only one TEG. Each

of components is characterized by proper thermoelectric properties ðαi;Ri;KiÞ [13].

Using Eq. (31), the heat flux within any segment in TEGs is:

IQi
¼ αiTIi þ KiΔTi: (35)

By continuity of the heat flux through the interface between stages of TES-CTEG:

IQ1 ¼ IQ2 þ IQ3

K1ðThot−TiÞ þ α1TI ¼ K2ðTi−TcoldÞ þ α2TI þ K3ðTi−TcoldÞ þ α3TI, (36)

from which we obtain the average temperature at the interface between stages [12]:

Ti ¼
K1Thot þ ðK2 þ K3ÞTcold þ ðα1−α2−α3ÞTI

K1 þ K2 þ K3
: (37)

Since all components are electrically connected in series, the total voltage is given by:

ΔV ¼ −α1ðThot−TiÞ−α2ðTi−TcoldÞ−α3ðTi−TcoldÞ þ ðR1 þ R2 þ R3ÞI, (38)

substituting the value of Ti in the last equation, we have:

Figure 2. Composite thermoelectric generator (CTEG) (components are three TEGs, each made of different material).
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ΔV ¼
−ðα2 þ α3ÞK1−α1K2−α1K3

K1 þ K2 þ K3

� �

½Thot−Tcold�þ

þ
ðα1−α2−α3Þ

2T

K1 þ K2 þ K3
þ ðR1 þ R2 þ R3Þ

" #

I:
(39)

From Eq. (39), we identified the equivalent series Seebeck coefficient, αeq−TES, and equivalent

series electrical resistance, Req−TES, as follows:

αeq−TES ¼
−ðα2 þ α3ÞK1−α1K2−α1K3

K1 þ K2 þ K3
, (40)

Req−TES ¼ R1 þ R2 þ R3 þ Rrelax, (41)

where

Rrelax ¼
ðα1−α2−α3Þ

2T

K1 þ K2 þ K3
: (42)

Considering open circuit condition for the system, I ¼ 0, we find, that equivalent thermal

conductance for the whole system:

Keq−TES ¼
K1ðK2 þ K3Þ

K1 þ K2 þ K3
: (43)

We define the figure of merit in terms of equivalent quantities [12]:

Figure 3. Schematic representation of thermoelectric system composed of two stages thermally and electrically connected

in series (TES-CTEG). (a) Equivalent circuit for TES-CTEG, where ΔV is the voltage, Ri is the electrical resistance, Ki is the

thermal conductance, Tcold is the temperature of the cold side, Thot is the temperature of the hot side, ΔT is the temperature

difference, αi is the Seebeck coefficient, T is the average temperature, Rload is the load; (b) practical device related to TES-

CTEG, where ni is the ith n-type material, pi is the ith p-type material.
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Zeq ¼
α
2
eq

ReqKeq
: (44)

By replacing the results obtained in Eqs. (40)–(43), we have:

Zeq−TES ¼

−ðα2þα3ÞK1−α1K2−α1K3

K1þK2þK3

h i2

ðα1−α2−α3Þ
2T

K1þK2þK3
þ ðR1 þ R2 þ R3Þ

h i

K1ðK2þK3Þ
K1þK2þK3

h i : (45)

6.1.2. Segmented TEG-conventional TEG thermally and electrically connected in parallel

In this section, we consider CTEG system, which is composed by segmented TEG and conven-

tional TEG. These TEGs are thermally and electrically connected in parallel (PSC-CTEG), as is

shown in Figure 4.

In the composite system, there are two currents, Is for TEG 1 and TEG 2, Ic for TEG 3. If the

electrical current is conserved, then [13]:

Ieq ¼ Is þ Ic: (46)

The heat flux through the whole system is the sum of the heat flux flowing through segmented

generator and the heat flux in conventional generator. Thus:

IQ−eq ¼ IQs
þ IQc

: (47)

Figure 4. Schematic representation of (PSC-CTEG). (a) Thermal-electrical circuit, where ΔV is the voltage, Ri is the

electrical resistance, Ki is the thermal conductance, Tcold is the temperature of the cold side, Thot is the temperature of the

hot side, ΔT is the temperature difference, αi is Seebeck coefficient, T is the average temperature, Rload is the load

resistance, TM is the intermediate temperature; (b) structure design, where ni is the ith n-type material, pi is the ith p-type

material.
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To obtain the equivalent electrical resistance, Req−PSC, using Eq. (45), the isothermal condition,

ΔT ¼ 0, is required. Under this condition, we recover the usual expression of equivalent

electrical resistance for an ohmic circuit. Thus, we get:

Req−PSC ¼
RsRc

Rs þ Rc
, (48)

where Rc is the internal electrical resistance of conventional TEG and Rs is the electrical

resistance of the segmented TEG:

Rs ¼ R1 þ R2 þ Rrelax (49)

and

Rrelax ¼
ðα1−α2Þ

2T

K1 þ K2
: (50)

Assuming the condition of closed circuit, ΔV ¼ 0, and applying Eq. (45), we have for equiva-

lent Seebeck coefficient [13]:

αeq−PSC ¼
Rcαs þ Rsαc

Rs þ Rc
, (51)

where

αs ¼
K2α1 þ K1α2

K1 þ K2
: (52)

To determine equivalent thermal conductance, Keq, we use the open circuit condition, Ieq ¼ 0,

which is satisfied when Is ¼ −Ic ¼ I, and, due to preservation of heat flow:

Keq−PSC ¼ Ks þ Kc þ
ðαs−αcÞTI

ΔT
, (53)

where

Ks ¼
K2K1

K1 þ K2
: (54)

Under open circuit condition, Ieq ¼ 0, so that, ΔV ¼ −αeqΔT. Applying this result, we have for I:

I ¼
1

Rs þ Rc
ðαs−αcÞΔT: (55)

Using this last result in Eq. (53), we have:

Keq−PSC ¼ Ks þ Kc þ ðαs−αcÞ
2 T

1

Rs þ Rc
: (56)
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Now, we can write the figure of merit for this PSC-CTEG system:

Zeq−PSC ¼
α
2
eq−PSC

Req−PSCKeq−PSC
: (57)

Using the results obtained in Eqs. (48), (51), and (56), we have:

Zeq−PSC ¼
ðRcαsþRsαc

RsþRc
Þ2

RsRc

RcþRs

h i

Ks þ Kc þ ðαs−αcÞ
2 T 1

RsþRc

h i : (58)

6.1.3. Analysis of equivalent figure of merit for composite systems

Equivalent figure of merit (Zeq) is calculated in this section for TES and PSC systems. For

performing calculations, the best known thermoelectric materials for commercial applications

have been selected: BiTe, PbTe, and SiGe (experimental data taken from Refs. [14–16] have

been used as numerical values of thermoelectric parameters). It has also been calculated

equivalent maximum efficiency ðηeq−maxÞ.

It is important to emphasize, that in this study we analyzed also the behavior of Zeq and ηeq,

when ordering of materials in the composite system changes (i.e., change its position).

Table 2 shows, that performance of composite system is affected by the type of thermal and

electrical connection, as well as ordering of materials. For example, PSC case reaches the

highest value of Zeq and ηeq with the ordering TEG 1 = PbTe, TEG 2 = SiGe, TEG 3 = BiTe.

To analyze the performance of the composite system, with each of the different orderings, we

have built plots (Figure 5a, b), that show variation of equivalent figure of merit with Seebeck

coefficients ratio αj=αi.

6.2. Maximum efficiency

The figure of merit measures the performance of materials in thermoelectric device, but, if we

measure the performance when the TEG is operating under a temperature difference, then

the value called thermal efficiency quantifies the ability of TEG to utilize the supplied heat

effectively.

TEG 1 TEG 2 TEG 3 Zeq−TES Zeq−PSC ηeq−TES ηeq−PSC

BiTe PbTe SiGe 0.000433 0.000463 0.079936 0.084392

PbTe SiGe BiTe 0.000508 0.001905 0.091045 0.224724

SiGe BiTe PbTe 0.000574 0.000622 0.100217 0.106658

Table 2. Numerical values of Zeq and ηeq in each equivalent thermoelectric system for different arrangements of the TE

materials.
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From thermodynamics, Carnot cycle thermal efficiency is known as:

ηCarnot ¼
Thot−Tcold

Thot
: (59)

In terms of ηCarnot and Zeq, the maximum efficiency of thermoelectric device is defined by the

next equation (with thermoelectric properties ðα;R;κÞ constant with respect to temperature) [2]:

ηmax−j ¼
ΔT

Thot
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zeq−jT
p

−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zeq−jT
p

þ Tcold

Thot

, (60)

where Zeq−j with j ¼ TES; PSC is given by Eqs. (45) and (58), respectively. Thus, we have for the

maximum efficiency of TES-CTEG system:

ηeq−TES ¼
ΔT

Thot
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zeq−TEST
p

−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zeq−TEST
p

þ Tcold

Thot

: (61)

For the maximum efficiency of PSC-CTEG system:

ηeq−PSC ¼
ΔT

Thot
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zeq−PSCT
p

−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zeq−PSCT
p

þ Tcold

Thot

: (62)

Our results are shown in Figure 6.

Plots in Figure 6 show typical dependences of CTEGs efficiency on the properties of compo-

nent materials. The presented results of maximum efficiency reached by the thermoelectric

Figure 5. (a) Zeq−TES vs. ratio α3=α2, maintaining α1 and α2 constant; (b) Zeq−PSC vs. ratio, α2=α1, maintaining α1 and α3

constant.
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device approach the limit established by Bergman's theorem for composite materials [17]: the

efficiency of composite thermoelectric system cannot be greater than the module's component

with highest efficiency.

The maximum efficiencies achieved by studied CTEGs, see plots in Figure 6, are of similar

order of magnitude as CTEG systems investigated in some works, e.g. [18], where reported

efficiencies from 17 to 20%.

6.3. CTEG: maximum output power

We analyze also the maximum output power of the studied CTEG system, again, assuming

configurations and physical conditions shown in Section 6. The obtained results have been

compared with some analytical work and numerical simulations.

For the case of thermoelectric generator connected to load resistor Rload (Figure 7), the power

delivered to Rload is given by the following equation [19]:

Pout−m ¼
½αðTH−TCÞ�

2m

ðmþ 1Þ2R
, (63)

The strategy consists of defining the optimal ratio m ¼ Rload=R and then by applying the

method of maximizing variable to obtain the value of the load resistance, which maximizes

power. It yields Rload ¼ R, and in this case, the maximum output power is:

Pmax ¼
α
2ðTH−TCÞ

2

4R
: (64)

Figure 6. (a) ηmax−TES vs. ratio α3=α2. (b) ηmax−PSC vs. ratio α2=α1.
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6.3.1. Formulation of output power for CTEG

Here, in similar way as in previous sections, formulating of output power will be considered

using thermoelectric equivalent quantities, see Sections 6.1.1, 6.1.2 [20]. Thus, using Eqs. (62,

63) in terms of αeq and Req, we can write:

Pout−eq−m ¼
½αeqðTH−TCÞ�

2

Req

m

ðmþ 1Þ2
, (65)

Pmax
eq ¼

α
2
eqðTH−TCÞ

2

4Req
: (66)

Application of the formalism described above Eqs. (64, 65) give the output power for each

configuration as follows.

Two-stage thermoelectric system connected in series:

Pout−eq−ðTES−CTEGÞ−m ¼

−ðα2þα3ÞK1−α1K2−α1K3

K1þK2þK3

h i

ðTH−TCÞ
� �2

R1 þ R2 þ R3 þ
ðα1−α2−α3Þ

2T
K1þK2þK3

h i

m

ðmþ 1Þ2
(67)

and the maximum power is given by:

Pmax
eq−ðTES−CTEGÞ ¼

−ðα2þα3ÞK1−α1K2−α1K3

K1þK2þK3

h i

ðTH−TCÞ
� �2

4 R1 þ R2 þ R3 þ
ðα1−α2−α3Þ

2T
K1þK2þK3

h i : (68)

Figure 7. Thermal-electrical circuit for TEG delivering power to the load, where ΔV is the voltage, Ri is the electrical

resistance, Ki is the thermal conductance, Tcold is the temperature of the cold side, Thot is the temperature of the hot side,

ΔT is the temperature difference, αi is Seebeck coefficient, Rload is the load resistance.
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Segmented-conventional thermoelectric system in parallel (PSC-CTEG):

Pout−eq−ðPSCÞ−m ¼
Rc

K2α1þK1α2

K1þK2

h i

þ R1 þ R2 þ
ðα1−α2Þ

2T
K1þK2

h ih i

αc

� �2

ðTH−TCÞ
2

R1 þ R2 þ
ðα1−α2Þ

2T
K1þK2

h i

RcðRs þ RcÞ
h i

m

ðmþ 1Þ2
, (69)

and using Eqs. (51, 48) and Eq. (66), the maximum power of this system obtained is:

Pmax
eq−ðPSCÞ ¼

1

4

Rc
K2α1þK1α2

K1þK2

h i

þ R1 þ R2 þ
ðα1−α2Þ

2T
K1þK2

h ih i

αc

� �2

ðTH−TCÞ
2

R1 þ R2 þ
ðα1−α2Þ

2T
K1þK2

h i

RcðRs þ RcÞ
h i : (70)

6.3.2. Analysis of output power

We show the behavior of the electrical output power delivered in each CTEG configuration

using the data of Section 6.1.3. Figure 8, panels (a) and (b), shows the output power as a

function of the ratio between the electrical resistance of the load and the electrical resistance

of the thermoelectric system m ¼ Rload

R .

Plots in Figure 8 show, that similarly to the equivalent figure of merit and equivalent efficiency

(Sections 6.1.3 and 6.2), the output power of a composite system is also influenced by the type

of thermal-electrical connection and ordering of materials, and again, PSC-CTEG case shows

the highest performance quantified by generated output power. This result is consistent with

the results obtained by Vargas-Almeida et al. [20], and the behavior of the output power for

Figure 8. (a) Plot for output power delivered by TES-CTEG system as function of ratio Rload=R; combination, producing

the highest output power, is (TEM 1=SiGe, TEM 2=BiTe, TEM 3=PbTe); (b) plot for output power delivered by the PSC-

CTEG system as function of ratio Rload=R; combination, producing the highest output power, is (TEM 1=PbTe, TEM 2=

SiGe, TEM 3=BiTe).
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each array of equivalent TES-CTEG is consistent with the results obtained by Apertet et al. [11].

Table 3 shows the comparison of maximum output power values for different types of con-

nections and possible arrangements.

To confirm the validity of our results, we have built plots for CTEG output power using ΔT

values of some work: [21] (experimental) and [22, 23] (analytical). Plots in Figure 9 were

produced using the temperature difference of Ref. [21].

The results for comparisons with [22, 23] are shown in [24].

TEG 1 TEG 2 TEG 3 Pmax−eq−TES Pmax−eq−PSC

BiTe PbTe SiGe 1.27618 4.34854

PbTe SiGe BiTe 1.65563 12.2877

SiGe BiTe PbTe 2.22968 4.28067

Table 3. Numerical values of maximum output power, in terms of equivalent amounts of each compound of CTEG,

evaluated for each order of building TEGs.

Figure 9. Output power POut−eq−PSC delivered by composed PSC system vs ratio Rload=R. At temperature difference ΔT =

20K, curves behave similarly to the plots shown in Ref. [21]. This figure is consistent with the result obtained by Abdelkefi

[21]. Our results have also been compared to other published works [22, 23].
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7. Opportunity analysis to improve CTEG design by varying configuration

In this section, we generalize results shown in previous sections by formulating corollary

and including some results with realistic approaches, for example, consideration of contact

thermal conductance. To achieve this goal, we combine physical conditions imposed in

Section 6 with the next options: (1) the whole system is formed of the same thermoelectric

material (α1; K1; R1 ¼ α2; K2; R2 ¼ α3; K3; R3); (2) the whole system is constituted by only

two different thermoelectric materials (αi; Ki; Ri ¼ αj; Kj; Rj ≠ αl; Kl; Rl), where i; j; l can be

1, 2 or 3, [25].

7.1. Case A: homogeneous thermoelectric properties, configuration effect

We consider configurations of CTEG with the same thermoelectric material,

ðα1; K1; R1Þ ¼ ðα2; K2; R2Þ ¼ ðα3; K3; R3Þ. In this case, equivalent figure of merit Zh
eq is as

follows,

for homogeneous TES-CTEG:

Zh
eq−TES ¼

−4αi

3

� �2

ð−αiÞ
2T

3Ki
þ 3Ri

� �

2Ki

3

� �

, (71)

for homogeneous PSC-CTEG:

Zh
eq−PSC ¼

ðαiÞ
2

2Ri

3

� �

3Ki

2

� � , (72)

where i ¼ ðBiTe; PbTe , SiGeÞ.

Table 4 shows numerical values of equivalent figure of merit Zh
eq obtained by us for CTEGwith

considered configurations.

It is important to note, that fulfillment condition TEG 1=TEG 2=TEG 3 evidences the fact, that

although composite system is made of single material, the figure of merit reaches different

values depending on type of connection.

Material Zh
eq−TES Zh

eq−PSC

BiTe 0.00212133 0.00305269

PbTe 0.00055109 0.000657238

SiGe 0.000287562 0.00033337

Table 4. Numerical values of Zh
eq, for each of three configurations with different materials.
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7.2. Case B: two different materials in CTEG

CTEG is made of two same materials and the other one different. Thus, two TEGs include

same semiconductor material and the other one different semiconductor material. In this case,

equivalent figure of merit Zh
eq is as follows, for heterogeneous TES-CTEG:

ZInh
eq−TES ¼

−ðαjþαlÞKi−αiðKjþKlÞ

KiþKjþKl

� �2

ðαi−αj−αlÞ
2T

KiþKjþKl
þ Ri þ Rj þ Rl

� �

KiðKjþKlÞ

KiþKjþKl

� � , (73)

for heterogeneous PSC-CTEG:

ZInh
eq−PSC ¼

Rl

KjαiþKiαj
KiþKj

� �

þ RiþRjþ
ðαi−αj Þ

2T

KiþKj

� �

αl

RiþRjþRlþ
ðαi−αjÞ

2T

KiþKj

0

@

1

A

2

Rl RiþRjþ
ðαi−αj Þ

2T

KiþKj

� �

RlþRiþRjþ
ðαi−αjÞ

2T

KiþKj

0

@

1

A

KjKi

KiþKj
þ Kl þ

ðKjαiþKiαjÞ

KiþKj
−αl

� �2
T

RiþRjþRlþ
ðαi−αjÞ

2T

KiþKj

0

@

1

A

: (74)

Eqs. (72) and (73) are applied with condition TEGi ¼ TEGj, that is, two TEGs are made of the

same thermoelectric material, and third TEGl is made of different thermoelectric material.

Thus, we have three possibilities (TEG 1=TEG 2≠TEG3, TEG 1=TEG 3≠TEG 2, TEG 2=TEG 3≠

TEG 1) for each configuration [25]. Note that, each arrangement has six different combinations,

if the cyclical order of the material is taken into account.

The behavior of the equivalent figure of merit as a function of the ratio of the thermal

conductivities of the two component materials is shown in Figure 10. This step is important,

because it shows numerical values, that CTEG maker must meet for both component materials

to reach the highest value of Zeq.

Table 5 shows maximum values of equivalent figure of merit of CTEG with material arrange-

ments in every configuration, when TEGi ¼ TEGj≠TEGl.

Table 6 shows each configuration with the most efficient material arrangements for every TEG.

Results show again, that the most efficient system of three configurations is PSC with

corresponding material arrangement, namely TEG 1=TEG 2=PbTe≠TEG 3=BiTe; see Figure 11.

Again, it is important to note, that this result proves, that although the performance of

composite systems is affected by combination of different materials, it is affected by the

position of such materials in the system structure as well.

7.3. Performance analysis with realistic approximations

The results of the previous sections have argued, that application of output power and effi-

ciency as quantities to measure performance of the system is reasonable; however, in this new

section, we extend the analysis of these quantities using realistic considerations. Numerical

treatment is performed with ZInh
eq−PSC.
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Figure 10. (a) Equivalent figure of merit for heterogeneous TES-CTEG, under condition TEG 2=TEG 3≠TEG 1, the highest

numerical value is corresponding to TEG 2=TEG 3=BiTe≠TEG 1=PbTe; (b) Equivalent figure of merit for heterogeneous

PSC-CTEG under condition TEG 1=TEG 2≠TEG 3, the highest numerical value is corresponding to TEG 1=TEG 2=PbTe≠

TEG 3=BiTe.
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7.3.1. Maximum output power

In the following analysis, we consider thermoelectric modules as isolated units only. Although

this is usually considered as an ideal situation, such an approach is useful to study the

performance of materials in the composite system. However, for real applications, modules

must be coupled to heat exchangers, which produces thermal conductance of contact (Kc) at

the coupling points. This affects system performance and reflects in the output power. Here,

the maximum output power is calculated using the maximum value of the equivalent figure of

merit (ZInh
eq−PSC) [23]:

Pmax−PSC ¼
ðKcΔTÞ

2

4ðKI¼0 þ KcÞT

ZInh
eq−PSCT

1þ ZInh
eq−PSCT þ Kc=KI¼0

: (75)

Figure 12a shows maximum output power values for PSC system as function of ratio KI¼0=Kc,

that is, in terms of internal thermal conductance KI¼0 and contact thermal conductance Kc,

under condition TEG 1=TEG 2≠TEG 3.

TEG 1 TEG 2=TEG 3 ZInh
eq−TES−max

BiTe PbTe 0.00168734

BiTe SiGe 0.0012388

PbTe BiTe 0.00273649

PbTe SiGe 0.00118802

SiGe BiTe 0.00150947

SiGe PbTe 0.000994534

TEG 3 TEG 1=TEG 2 ZInh
eq−PSC−max

BiTe PbTe 0.0055567

BiTe SiGe 0.00325841

PbTe BiTe 0.00445846

PbTe SiGe 0.0011157

SiGe BiTe 0.00392902

SiGe PbTe 0.00172358

Table 5. Maximum values of equivalent figure of merit of CTEG with material arrangements in every configuration,

when TEMi ¼ TEMj≠TEMl.

System Arrangement

TES TEG 2=TEG 3=BiTe≠TEG 1=PbTe

PSC TEG 1=TEG 2=PbTe≠TEG 3=BiTe

Table 6. Most efficient material arrangements TEGi ¼ TEGj≠TEGl for TES and PSC-CTEG systems.
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7.3.2. Efficiency

To calculate the efficiency of PSC systems with TEG 1=TEG 2=PbTe≠TEG 3=BiTe arrange-

ment, we applied the equation:

ηInheq−PSC ¼
ΔT

TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZInh
eq−PSCT

q

−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZInh
eq−PSCT

q

þ TC

TH

: (76)

Finally, for an ideal TEG, that is, without taking into account heat exchangers, we can analyze

TEG efficiency considering intrinsic thermal conductances ratio (K3=K1;2) and electrical resis-

tances ratio (R3=R1;2).

Figure 12b shows contour plot for different values of ηInheq−PSC as function of ratios, K3=K1;2 and

R3=R1;2. We can see, that the range of optimal values for the best efficiency of PSC—CTEG lies

in intervals 0.1–1.0 and 0.1–0.5 for K3=K1;2 and R3=R1;2, respectively. It is remarkable, that

thermal conductances ratio shows a wider range of good values in comparison with electrical

resistances ratio, which shows narrower range.

Figure 11. Optimal configuration corresponds to PSC-CTEG with arrangement TEG 1=TEG 2=PbTe≠TEG 3=BiTe.
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Figure 12. (a) Maximum power of PSC system under condition TEG 1=TEG 2≠TEG 3, the highest numerical value

corresponding to arrangement TEG 1=TEG 2=PbTe≠TEG 3=BiTe. (b) Contour plot: efficiency of PSC system under

condition TEG 1=TEG 2≠TEG 3, assuming the maximum value of efficiency ZInh
eq−PSC for arrangement TEG 1=TEG 2=

PbTe≠TEG 3=BiTe.
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7.3.3. Corollary: maximum efficiency Zeq for composite thermoelectric generator

Based on the progress presented in this paper, we have been formulated the following corol-

lary: two features of design must be met to ensure the maximum value of Zeq of CTEG:

• If the material is the same in all components, CTEG reaches the maximum value of Zeq with

a specific type of thermal—electrical connection.

• When components of TEGs composing CTEG are made of different materials,

TEGi≠TEGj≠TEGl where i; j; l can be 1, 2, or 3; then, for a given thermal-electrical connection,

there exists an optimal arrangement of thermoelectric materials for which Zeq is maximum.

8. Conclusions

The main objective of this chapter was to present new ideas for designing more complex

thermoelectric systems taking into account the effects of electrical and thermal connection,

combination of different materials and ordering of materials in CTEG. For this purpose, we

considered the framework of linear response theory for nonequilibrium thermodynamic pro-

cesses, and we used the constant parameter model. Through the definition of equivalent param-

eters αeq, Req, and Keq, we have shown the significant impact of these parameters on the system's

properties, which characterize the performance of CTEG, namely Zeq, ηeq, and Peq. The numerical

results show, that the optimal configuration for CTEG considered here is the thermal and

electrical connection in parallel with arrangement (PbTe, SiGe and BiTe). For completeness, we

have shown the effect of contact thermal conductance on the parameter ZInh
eq−PSC for the most

efficient case—PSC-CTEG system, in terms of both ratio K3=K1;2 (intrinsic thermal conductances)

and R3=R1;2 (intrinsic electrical resistance). Although in this study, the composite system is

restricted to only three components, the results can be generalized to systems consisting of N

modules, either analytically by extension of the mathematical model or through numerical

simulations; guidelines for this purpose are provided by the corollary 7.3.3.
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