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1. Introduction    

Humanoid robots are complex service platforms with anthropomorphic features, 
specifically designed for close interaction with humans. Conventional programming 
strategies are hardly applicable to humanoids due to the high number of degrees of freedom 
that must be coordinated concurrently. Therefore, exploiting humanoids’ potential in service 
tasks remains an elusive goal. One of the most promising techniques for dealing with 
humanoid robots is programming by demonstration, which allows even unexperienced 
users to easily interact with the robot based on the teaching by showing or imitation 
paradigm. In particular, the ability to imitate human gestures and follow task-relevant paths 
are essential skills for legged humanoid robots, as they provide the fundamental techniques 
for physical human-robot interaction. This chapter investigates the potential of imitation in 
programming humanoid motor skills. As target platform, we have adapted a Robosapien V2 
(RSV2), a low-cost small humanoid available in the toy market. The chapter focuses on the 
teaching of basic, humanoid-relevant skills such as body postures and walking paths. We 
have explored and combined multiple sensing sources to capture human motion for 
imitation purposes, namely a dataglove, an electromagnetic motion tracker, and a 
monocular vision system for landmark recognition. The imitation approach illustrated in 
this chapter is rather general, even though its implementation is constrained by limitations 
of RSV2 and by sensor inaccuracies. In particular, the chapter reports successful experiments 
on gesture imitation, including arms motion as well as upper body and head movements. 
The gesture repertoire learned by the robot can serve both as a body language for 
understanding human requests in human-robot interaction and as a set of primitives which 
can be combined for programming more complex tasks. We believe that a deep assessment 
of a low-cost humanoid robot is extremely important for the robotic research community 
since the technological requirements and the costs to develop more advanced humanoid 
robots still prevent them to become broadly available. Currently, most high-end humanoids 
are developed as prototypes platforms under the supervision of important private 
companies. Therefore, low-cost humanoid platforms such as RSV2 provide an exciting and 
affordable opportunity for research in humanoid integration in service tasks. 

2. Background and related work 

The development of humanoid systems is a tremendous challenge for robotics research. 

Many academic laboratories as well as industrial companies are devoting substantial efforts 
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and resources in building advanced humanoid robots. Several authors (Schaal, 1999; 

Mataric, 2000; Breazeal & Scassellati, 2001) have pointed out that the principal challenges in 

building effective humanoid robots involve different aspects such as motor actuation, 

perception, cognition and their integration. Typically, complex mechanical systems must be 

regulated and a high number of degrees of freedom must be controlled. Study of 

appropriate materials, motors, power supplies and sensors is also required. Moreover, 

humanoid systems require advanced algorithms and software solutions to achieve learning 

skills for autonomous operations. The development of natural user interfaces for human 

robot interaction is also required since one of the main goals is to overcome the traditional 

approaches of robot design by creating robots able to interact with humans in everyday life. 

However, the technological requirements and the costs to develop effective humanoid 

robots still prevent such advanced systems to become available to the public. Few low-cost 

humanoids have been designed for research purposes. One of them is Robota (Billard, 2003), 

a small humanoid doll used as educational toy for robotic classes and playing vision-based 

imitation games. Recently, several low-cost humanoid platforms have appeared in the 

consumer market. Besides being considered as high quality toys for personal entertainment, 

these devices can also be exploited for research projects. One of such robots is Robosapien 

V2 (RSV2) developed by WowWee and released at the end of 2005. RSV2 has been chosen 

for the experimental evaluation reported in this chapter as it is one of the most promising 

low-cost robots available in the market. Our research on imitation is motivated by the fact 

that robot programming by demonstration is an effective way to speed up the process of 

robot learning and automatic transfer of knowledge from a human to a robot. As it is well 

known that robot programming using traditional techniques is often difficult for untrained 

users, especially in the context of service robotics, programming by demonstration provides 

an intuitive solution by letting the user act as a teacher and the robot act as a learner 

(Ikeuchi & Suehiro, 1994; Zöllner et al., 2002). The need for a high-level approach in robot 

programming is even more apparent with humanoid robots, where conventional 

programming of a high number of degrees of freedom would be clearly unacceptable.  

In this work we present a system for robot programming by demonstration where a 
Robosapien V2 is programmed to imitate human gestures and walking paths. In particular, 
we have explored the idea of augmenting an entertainment humanoid with multiple sensors 
to accomplish rather complex imitative tasks. The system combines a dataglove, a motion 
tracker and a monocular vision system. The first contribution of the chapter is the 
experimental evaluation of various imitation games where the robot follows the gestures of 
a human teacher. A second contribution is the proposal of an algorithm for walking 
imitation. The chapter shows how humanoid walking paths can be synthesized by fitting a 
parametric curve with data observed in human-demonstrated trajectories, thereby 
providing an effective technique for path imitation. Walking paths can be further adapted 
by the robot based on online visual guidance. 
Hereafter, prior work on humanoid imitation and motion learning and is discussed. Many 
authors have investigated the problems of human body tracking and mapping of body 
postures to humanoid robot. The paper by (Bandera et al., 2004) proposes a method for real-
time estimation of upper body postures based on computer vision and an inverse kinematic 
model of the robot. In (Riley et al., 2003) a similar approach was used incorporating 3D 
vision and a kinematic model of the human teacher. A single camera system for data 
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acquisition with a particle filtering technique for parameter estimation was adopted in 
(Menezes et al., 2005). Other works were mainly focused on the problem of adaptation of 
human motion to humanoid motion with kinematics constraints such as joint and velocity 
limits (Pollard et al., 2002) or ground contact conditions for humanoid locomotion (Matsui et 
al., 2005). In (Matsui et al., 2005) a method was proposed for the generation of natural 
motions in an android by measuring the robot posture at its visible surfaces and comparing 
it to the posture of a human teacher. The work in (Inamura et al., 2001) focused on mimesis 
learning using primitive symbol observation with Hidden Markov Models to abstract the 
dynamics of human motion and to generate natural motion patterns. 
In (Inamura et al., 2005) an imitation strategy was adopted based on attention points and 
intent imitation. A neural learning system was proposed in (Kuniyoshi et al., 2003) for 
learning motion patterns from the observation of self robot movement. A mirror neuron 
model was implemented in (Ito & Tani, 2004) for imitative interactions. In (Shon et al., 2006) 
a nonlinear regression algorithm was used for mapping motion capture data from a human 
actor to a humanoid robot. Calinon et al. (Calinon et al., 2006) presented a method for 
extracting the goals of a demonstrated task and determining the best imitation strategy that 
satisfies the goals. As proposed in (Nakazawa et al., 2002; Nakaoka et al., 2005), studies were 
also conducted for learning and reproducing human dances through human observation. 
Our work is among the first attempts to investigate the capabilities of RSV2 for humanoid 
research. The proposed imitation mechanism is strongly constrained by the limitations of 
the toy robot.  The work in (Behnke et al., 2006) is the only one that has considered the use of 
Robosapien for research purposes. The authors have developed an augmented version of 
Robosapien V1. A Pocket PC and a color camera were added to the robot to make it 
autonomous and its capabilities were tested for basic soccer skills. 
The problem of tracking and following demonstrated navigational routes has been 
investigated mainly in the context of wheeled mobile robots. Dixon and Khosla (Dixon & 
Khosla, 2004) presented a system for learning motor skill tasks by observing user 
demonstrations with a laser range finder. The system is able to extract subgoals and 
associate them with objects in the environment generalizing across multiple demonstrations. 
The work in (Hwang et al., 2003) proposed a touch interface method to control a mobile 
robot in a supervised manner. The algorithm extracts a set of significant points from the 
user-specified trajectory, produces a smooth trajectory using Bezier curves and allows on-
line modification of the planned trajectory in a dynamic environment. In (Hon Nin Chow et 
al., 2002) a reactive sensor-motor mapping system is described where a mobile robot learns 
navigational routes and obstacle avoidance. In (Wanitchaikit et al., 2006) a self-organizing 
approach for robot behaviour imitation is presented. A demonstrator mobile robot collects 
visual information about the environment; then the movement features are presented to the 
imitation engine. Tang et al. (Tang et al., 2001) proposed a vision based autonomous 
navigation system for mobile robots in an indoor environment by teaching and playing-back 
scheme. The system memorizes a sequence of omnidirectional images using them to 
compute the trajectory to track the taught route. Arakawa et al. (Arakawa et al., 1995) 
developed a trajectory generation method for wheeled vehicles. The algorithm uses Bezier 
curves for smoothly reducing the deviation from the guideline. Morioka et al. (Morioka et 
al., 2004) focused on the problem of human-following for a mobile robot in an intelligent 
environment with distributed sensors. The control law is based on a virtual spring model. 
Several interesting research projects have considered the use of humanoid robots for 

navigation and autonomous mapping of indoor environments. The work in (Michel et al., 
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2005) presented an approach to autonomous humanoid walking for the Honda ASIMO in 

the presence of dynamically moving obstacles. The system combines vision processing for 

real-time environment mapping and footsteps planning for obstacle avoidance. A similar 

approach was presented in (Kagami et al., 2003). In (Michel et al., 2006) an online 

environment reconstruction system is presented. The system utilizes both external sensors 

for global localization, and on-body sensors for detailed local mapping for the HRP-2 

humanoid robot.  

The chapter is organized as follows. Section 3 describes the experimental set-up including a 

description of the augmented RSV2 and the input devices. Sections 4 and 5 describe the 

adopted gesture and path imitation techniques. Section 6 discusses the trend toward low-

cost humanoid and imitation systems. The chapter closes in section 7 discussing the 

obtained results.  

3. Experimental set-up 

3.1 Robosapien V2 

The humanoid robot used in this work is a Robosapien V2 developed by WowWee and 
shown in figure 1 (left image). It is a low cost toy robot expressly designed for the consumer 
market. RSV2 is 60cm tall and is driven by 12 DC motors. It has realistic joint movements 
and onboard sensors. Some RSV2 technical specifications are reported in Table 1. 
 

 

Table 1. RSV2 specifications. 

RSV2 is fully controllable by a remote infrared controller and has capabilities which make it 
suitable for entertainment but also for research purposes. The main functionalities of the 
robot include true bipedal walking with multiple gaits, turning, bending, sitting and getting 
up. RSV2 can also pick up, drop and throw small objects with articulated fingers. The robot 
is equipped with an infrared vision system, a color camera, stereo sonic sensors and touch-
sensitive sensors in its hands and feet. These sensors can be used to trigger simple reactive 
behaviors to environmental stimuli through preprogrammed motion sequences, which can 
be stored in the onboard memory. For example RSV2 can recognize and react to primary 
colors and skin tones. Moreover, it is able to react to sounds, to track close moving objects 
with its head and to avoid obstacles while walking. The locomotion of RSV2 is achieved by 
alternatively tilting the upper body and moving the leg motors in opposite directions. The 
lateral swinging movement of the upper body generates a periodic displacement of the 
center of mass between the two feet. To achieve fully autonomous capabilities RSV2 must be 
augmented with external computing power. There are two possible ways for augmenting 
RSV2. The first method is hacking the on board electronics to get access to the motor and 
sensor signals. The second method is to bypass the remote controller with an infrared 
transmitter connected to a processing unit. This strategy is less intrusive but it only allows 
transmission of commands to the robot, therefore it also requires external sensors like a 

Length 43cm 

Width 32cm 

Height 60cm 

Weight 7Kg 

Body batteries 6 D 

Brain batteries 4 AAA 

www.intechopen.com



Imitation-Based Task Programming on a Low-Cost Humanoid Robot 

 

239 

camera, as proposed in [3]. In this work we chose a similar approach. We adopted a USB-
UIRT (Universal Infrared Receiver Transmitter) device, which is connected to a host PC. The 
device is able to transmit and receive infrared signals. Reception has been used to learn the 
IR codes of the RSV2 remote controller. As a result, the IR codes of the motor commands for 
the RSV2 have been decoded and stored in a database. 
 

 

Fig. 1. Original RSV2 (left image) and augmented RSV2 (right image). 

3.2 Sensor devices 

The experimental set-up of the proposed system comprises a CyberTouch glove (by 

Immersion Corporation), a FasTrack 3D motion tracking device (by Polhemus, Inc.) and a 

monocular vision system. The CyberTouch glove used in the experiments has 18 sensors for 

bend and abduction measurements. The FasTrack is a six degrees of freedom electro-

magnetic sensor that tracks the position and orientation of a small receiver relative to a fixed 

transmitter. The vision system exploits a standard webcam with a CMOS image sensor with 

640x480 resolution and USB 2.0 compatible connection. The camera has 30fps nominal 

refresh rate. In the current hardware set-up the actual measured frame rate is 12fps. For 

evaluation of gesture imitation, sensor devices have been configured to collect information 

about joint angles of the human teacher as described in section 4. In particular, the camera 

has been located in a fixed position to observe the human upper body. Figure 1 (right 

image) shows the RSV2 in its augmented configuration used for walking imitation. The 

webcam has been mounted on the head of the robot to minimize negative effects on its 

balance. This solution provides an additional advantage as the pan-tilt head motors can be 

exploited to rotate the camera. Camera rotation along two axes is crucial for enhancing the 

robot marker recognition capabilities, as it will be pointed out in section 5. The Fastrak 
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receiver has been mounted on the back of RSV2 and is used for global localization. The USB-

UIRT device has been mounted on RSV2 as well. The device is located on the torso and, 

being very close to the RSV2 infrared receiver, it helps in avoiding packet loss in 

transmission of motor commands. 

3.3 Software 

The application which runs the imitation system has a multithreaded architecture and has 

been built upon two software libraries, namely the Virtual Hand Toolkit (VHT), and the 

ARToolKit (ART). The main thread is devoted to sensor data acquisition from the devices, 

visual processing, and computation of the motor commands for the Robosapien. A second 

thread is in charge of sending the motor commands to the humanoid robot through the IR 

transmitter. The Virtual Hand Toolkit is the application development component of the 

VirtualHand Suite 2000 by Immersion Corporation. VHT includes a Device Configuration 

Utility used to initialize and calibrate the devices and a Device Manager for data acquisition. 

The toolkit offers high level functionalities and low level translators for specific I/O devices 

such as the Cybertouch and the Fastrack. ARToolKit [16] is an open-source multiplatform 

software library designed for augmented reality applications. The library exploits a pattern 

recognition algorithm and allows overlaying of computer graphics images on the video 

stream captured by a camera in real-time. In our experiments we used the toolkit to 

recognize markers on the ground acting as via points, markers attached to static obstacles 

and markers attached to the body of the human demonstrator for gesture imitation. 

The overlay option was enabled for testing the effectiveness of the recognition algorithm. In 

particular, ARToolKit uses computer vision techniques to compute the real camera position 

and orientation relative to markers, as will be described in section 4. Markers are squares of 

known size (8×8cm in the proposed experiments). One snapshot of each marker must be 

provided to the system in advance as training pattern. The recognition algorithm is a loop 

which consists of different steps. First the live video image is binarized using a lighting 

threshold. Then the algorithm searches for square regions. The squares containing real 

markers are then identified and the corresponding transformation matrix is computed. 

OpenGL is used for setting the virtual camera coordinates and drawing the virtual images. 

 

MarkersMarkersCyberGloveCyberGlove

Polhemus transmitterPolhemus transmitter

Polhemus receiverPolhemus receiver
WebcamWebcam

Cyberglove andCyberglove and

Polhemus instrumentationPolhemus instrumentation

USB-UIRTUSB-UIRT
RSV2RSV2

 

Fig. 2. System architecture for gesture imitation. 
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4. Imitation of human gestures 

In this section we present the proposed imitation strategy for mapping the movements of 

the human demonstrator to RSV2. In the current setup six degrees of freedom have been 

considered, namely one degree of freedom for the two arms plus wrist rotation of the right 

arm, one degree of freedom for torso yaw and two degrees of freedom for head pitch and 

yaw. The associated joints can be controlled independently. The imitation strategy consists 

in a proportional real-time mapping between each computed sensor data and the 

corresponding joint. The system requires the demonstrator to perform an initial calibration 

routine to identify the range of motion for each movement. Each range is discretized into as 

many intervals as the number of feasible discrete configurations of the corresponding joint. 

Due to the kinematics limitations of RSV2, the resolution of the joints is quite limited and 

never goes beyond 8 intervals as remarked in section 4.4. After the calibration phase RSV2 

starts imitating the gestures of the human demonstrator. The user can decide to play with all 

the six degrees of freedom concurrently or with a restricted subset by deactivating some of 

the sensor inputs. 

Figure 2 shows the structure of the system used for gesture imitation and highlights the 

hardware components along with the sensors and their interconnections. Markers are 

attached to the body of the human demonstrator and the camera tracks the motion of the 

tags. The motion tracker is used to detect the motion of the head. 

4.1 Arms and upper-body visual tracking 

The vision system was used to track the arms motion of the human demonstrator along with 
the upper body. One marker is attached to each arm and a third marker is attached to the 
human torso. The vision algorithm is able to identify and track the geometrical 
configuration of multiple markers concurrently. Hereafter the algorithm used by ARToolkit 
for estimating the transformation matrix of markers is described. The algorithm finds for 
each marker the transformation Tcm which relates the coordinates (Xm, Ym, Zm) in the marker 
reference frame to the coordinates (Xc, Yc, Zc) in the camera reference frame. The rotation 
component is estimated by projecting the two pairs of parallel lines contouring the marker. 
These lines in the camera screen coordinates (x, y) can be expressed as 
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From camera calibration, the projection matrix which relates the camera coordinates to the 
screen coordinates can be computed as follows 
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where h is a constant. By substituting (x, y) of equation 2 into equation 1 the equations of 

two planes in space can be found as shown next: 
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The outer product of the normal vectors of these planes n1×n2 gives the direction vector v1 of 
the two parallel sides of the marker. The two direction vectors of the two pairs of parallel 
lines v1 and v2 are then compensated for errors. The outer product v1×v2 provides the 
rotation component of the transformation matrix. The translation component of Tcm is 
obtained by the correspondence between the coordinates of the four vertices of the marker 
in the marker coordinate frame and the coordinates of the vertices in the camera coordinate 
frame. The z component of the translation vector is used for tracking the movement of the 
arms of the human demonstrator. The rotation component R of the transformation matrix is 
used to compute the orientation of the marker attached to the torso. The Euler angles are 
extracted from R as shown in equation 4 (giving two possible solutions). The yaw angle of 
the marker is set equal to θ1. The yaw angle is then mapped to the joint controlling the yaw 
rotation of the upper body of RSV2. 
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Fig. 3. Human gestures (first row), results after video processing (second row) and 
corresponding RSV2 configurations (third row). 

4.2 Head motion tracking 

The motion of the head of the human demonstrator is tracked using the FasTrack. The 

tracker receiver is attached to the nape of the human. The transformation matrix from the 

receiver frame (rx) to the world reference frame (W) is given by 
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)()( tTTtT rxtxtxWrxW ←←← =
 (5) 

where TW←tx is the transformation between the transmitter frame to the world frame. The 

pitch and yaw angles of the marker are extracted from the rotation component R of TW←rx 

and set equal to θ2 and φ2 respectively. 

4.3 Head motion tracking 

The rotational motion of the right hand wrist of the human operator is linearly mapped to 

the wrist of the right hand of RSV2. The motion is measured by the wrist sensor of the 

CyberGlove. The wrist angle ┛ of the CyberGlove is computed using the relation 

O)-alue(Digital_VG┛ ∗=
 (6) 

where G and O are the gain and offset calibration values. 

 

 
 

Fig. 4. Imitation of head and right wrist movements. 

4.4 Results 

Experiments involving gesture imitation were carried out to test the effectiveness of the 

system. Figure 3 shows RSV2 imitating arms and upper-body movements by visual tracking 

of trained patterns attached to the user’s body. The same figure shows also the results of the 

video processing algorithm. Three squares with different colors (or gray shadings) are 

superimposed to the recognized markers. Figure 4 shows an experiment involving the 

imitation of head and wrist movements. 

The evolution of the command signals sent to the humanoid robot compared to the sensed 

data for each degree of freedom has been reported in figure 5. The curves representing the 

command signals are step functions obtained by sampling the input data signals. The 

cardinality of the set of steps of each curve equals the resolution of the corresponding 

degree of freedom of the robot. For example the arms and the head yaw movements have 

the highest resolution with 8 and 12 steps respectively. It can be seen from figure 5 that the 

robot degrees of freedom track with acceptable fidelity commanded values, up to the 

limited resolution available. 
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Fig. 5. Evolution of the command signal compared to the sensed data for each degree of 
freedom. 

5. Walking imitation 

Figure 6 shows the experimental setup used for walking imitation tasks. The system 

comprises a demonstration phase, where the user demonstrates a walking path, and an 

imitation phase, where the robot follows the provided trajectory. The setup also includes a 

fixed ceiling camera for initial recognition of the topology of the markers on the ground. In 

the first experiment a simple walking imitation task has been tested where the robot has to 

follow a taught route. In the demonstration phase a human performs a walking path while 

his movements are tracked by the Fastrak receiver, which is attached to one of the legs of the 
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demonstrator. After the demonstration phase RSV2 imitates the demonstrated path relying 

only on the tracker sensor without visual guidance. The transformation matrix from the 

Fastrak receiver frame (rx) to the world reference frame (W) is given by equation 5. Figure 7 

shows a sequence of images taken from both the demonstration phase and the imitation 

phase. The demonstrated path is a smooth U-turn around a static obstacle. Figure 8 reports 

the evolution of RSV2 walking trajectory compared to the demonstrated trajectory. The 

demonstrated trajectory is approximated as a NURBS (Non Uniform Rational B-Spline) 

curve (Piegl, 1991). The systems computes a piecewise linear approximation of the NURBS 

generating a set of viapoints and RSV2 follows the approximated path through a sequence 

of rotations and translations. The computed mean error of the path following task is about 

15cm. The demonstrated path, shown in figure 8, appears deformed on the right side due to 

sensor inaccuracies of the tracker, which increase as the distance between the transmitter 

and the receiver increases. The same inaccuracies are the main cause of the worsening of 

path following performance in the last stage of the task after the U-turn. 

 

USB-UIRTUSB-UIRT

MarkersMarkers

Fastrack Fastrack 

transmittertransmitter

FastrackFastrack

receiverreceiver

WebcamWebcam

Fastrack instrumentationFastrack instrumentation

Demonstration phaseDemonstration phase Imitation phaseImitation phase

MarkersMarkers

Fastrack Fastrack 

transmittertransmitter

Fastrack instrumentationFastrack instrumentation

FastrackFastrack

receiverreceiver

WebcamWebcam

RSV2RSV2

 
 

Fig. 6. System architecture for walking imitation. 

 

 
 

Fig. 7: Walking experiment 1: demonstration phase (top row) and imitation phase (bottom 
row). 
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Figure 8: Walking experiment 1: demonstrated path and imitated path. 

5.1 Dynamic obstacle avoidance 
In a second experiment, a vision-guided imitation task was performed which requires 
dynamic obstacle avoidance. After the demonstration phase an obstacle is positioned on the 
original path. RSV2 is programmed to follow the path and to scan the environment for 
possible obstacles by turning its head whenever it reaches a via-point. A marker is attached 
to the obstacle for detection. Figure 9 shows a sequence of images taken from the imitation 
phase of the task. Figure 10 reports the demonstrated path together with the replanned path 
and the actual imitated path (the obstacle is detected when the robot reaches the second via-
point). Figure 11 shows the output of the onboard camera when the marker is recognized, 
with a colored square superimposed to the recognized marker. The algorithm used for 
replanning the trajectory performs a local deformation of the original NURBS around the 
obstacle. Initially the NURBS is resampled and a deformation is applied to each sample 
point (x(ui), y(ui)) which falls within a certain distance from the obstacle according to the 
following equation 
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where ┙ and ┚ are constants. The deformation stretches the samples with a gaussian 
modulation factor which depends on the distance d between the robot and the obstacle. The 
value of d is approximated by the measured distance dcm between the camera and the 
marker which are approximately orthogonal. The obstacle coordinates (xm, ym) are set equal 
to the coordinates of the marker in the world reference frame and are given by 
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Figure 9: Walking experiment 2: imitation phase with dynamic vision-guided obstacle 
avoidance. 
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Figure 10: Walking experiment 2: demonstrated path, replanned path and imitated path. 
 

 
Figure 11: Walking experiment 2: obstacle detection. 
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Figure 12: Walking experiment 2: approximation of obstacle coordinates. 

where (xr, yr) is the current position of the robot and θm is the angle between the x-axis and 
the obstacle, which depends on both RSV2 body and head rotation. The angle θm can not be 
reliably computed, as the actual head rotation is hard to estimate due to the non ideal 
alignment between the head and the body when the robot stops. Therefore, the obstacle 
coordinates are approximated as follows 
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where (x(un), y(un)) is the point on the original NURBS nearest to the current position of the 
robot. This means that the obstacle is assumed to lie on the tangent to the curve at the closest 
point to the robot. 
 

 

Figure 13: Walking experiment 3: imitation phase with vision guided marker following. 

 
Figure 14: Walking experiment 3 form left to right: initial marker configuration, marker 
detection from ceiling camera, modified marker configuration and marker detection from 
onboard camera. 
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5.2 Vision-guided landmark following 

In a third experiment another vision-guided imitation task has been investigated. A set of 
markers is positioned on the ground of the workspace and a fixed ceiling camera detects the 
initial configuration of the markers (the estimation error is approximately 7cm). The 
demonstration consists of a walking task where a human reaches a sequence of markers. 
The correct sequence of reached markers is computed from the measured trajectory and 
from the topology of the markers. After the demonstration phase, the markers are slightly 
moved into a new configuration and RSV2 is programmed to reach the demonstrated 
sequence of markers. In the proposed experiment the task is to reach marker 1 and then 
marker 3. Figure 13 reports images of the imitation phase. Figure 14 shows the initial marker 
configuration, the modified marker configuration, and the marker detection from onboard 
camera. Figure 15 shows the demonstrated path, the configuration of the markers and the 
imitated path. RSV2 imitates the reaching task by following the demonstrated path. Once 
the robot detects a marker on the floor it tries to approach the marker through a sequence of 
small movements by estimating the position and the distance of the target with the onboard 
camera with equation 10. The estimation error is less critical than in experiment 2 since the 
robot performs small movements while approaching the marker as shown in figure 15. 

 

Figure 15: Walking experiment 3: demonstrated path, marker positions and imitated path. 

5.3 Vision-guided grasping 

RSV2 autonomous grasping skills have been evaluated in a further experiment where the 
task is to reach a landmark on the floor indicating the position of a set of graspable objects. 
The robot starts approximately 80cm away from the landmark and in its initial configuration 
the head and the body are properly aligned. Hence RSV2 is able to detect the landmark 
using the onboard camera with a tolerable error and moves towards the objects. Once the 
robot gets closer to the landmark it tries to reach a proper alignment with the target with 
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small rotations and translations. Figure 16 shows the execution of the grasping task while 
figure 17 shows the marker detection phase at two different configurations. Due to the 
limitations of RSV2 the grasping procedure is not controllable and allows only to lower the 
upper body and one arm of the robot trying to pick up objects which are located near the 
foot of the robot. To overcome these kinematics limitations of the toy and the sensor errors, 
multiple objects have been placed near the landmark for redundancy. However, the rate of 
successful grasping operations is still low (approximately 40%). This result suggests that 
improved grasping capabilities might be required to exploit a low-cost humanoid for 
experimental research involving grasping. 
 

 

Figure 16: Walking experiment 4: vision guided grasping task. 
 

 

Figure 17: Walking experiment 4: marker detection. 

6. Towards a complete low-cost platform 

In the previous sections we have presented a system for humanoid task programming based 
on imitation which is focused on the use of a low-cost robot. The cost of the robot is only few 
hundreds of dollars, which is far less than the cost of more advanced humanoids. However, 
it is still necessary to discuss whether the proposed platform can be considered as a fully 
low-cost platform as a whole. The software developed is mostly open-source, except for 
low-level drivers connecting with glove and tracker devices which could be replaced by 
functionally equivalent open-source drivers. Additional costs arise from the sensor devices 
used for imitating human gestures and walking path. The USB camera and the USB-UIRT 
device are also very cheap (about 50$ each). By contrast, the Polhemus FasTrack and 
Immersion CyberTouch are high quality measurement devices which come at high price. 
Therefore, the developed platform cannot be considered as a fully low-cost system.  
We are therefore investigating alternative tracking devices that can be exploited for motion 
capture. In this section we report our initial investigation on the exploitation of a Nintendo 
Wii remote controller for gesture recognition. This device costs less than 100$ and hence 
would keep the entire system low-cost. 
A peculiar feature of the Wii console is its main wireless controller, the Wiimote, and the 
secondary controller, the Nunchuk, which can be used in conjuction to detect acceleration 
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and orientation in three dimensions (figure 18, left image). The Wii controllers use a 
combination of accelerometers for tracking human motion (the Wiimote also supports infra-
red sensors to detect pointing tasks). The controllers support Bluetooth connection which 
can be used to connect the device to a normal PC. Figure 18 (right image) shows RSV2 
imitating upper arm gestures in a similar experiment to the one presented in figure 3. The 
user is handling the Wii controllers in her hands and the system detects the posture of the 
arms (one degree of freedom for each arm) by sensing accelerations.  Although the accuracy 
of the Nintendo controller is not comparable to the high accuracy of the FasTrack, we 
believe that the use of such a simple wearable device can lead to interesting results, 
especially if employed for entertainment or education. 
 

 

Figure 18: Nintendo Wii controllers (left image) and imitation experiment (right image). 

7. Conclusion 

In this chapter, a robot programming by demonstration system oriented to imitation of 
human gestures for a humanoid robot has been presented, along with a path specification 
system based on imitation of human walking paths. The experimental system investigated 
comprises a Robosapien V2 humanoid and includes multiple sensor devices such as an 
electromagnetic tracker and a monocular vision system. The novelty of the approach is the 
investigation of a high level programming paradigm such as imitation with a low cost 
humanoid toy robot. Indeed, the ability to teach elementary motions is a prerequisite step 
toward programming more structured tasks. Vision guided trajectory imitation and 
dynamic obstacle avoidance have also been successfully experimented, along with 
autonomous grasping skills. The experiments show that the ability to teach motion paths 
enables a toy robot to achieve rather complex navigation tasks. The proposed imitation 
approach is quite general, even though its implementation is constrained by some 
limitations of RSV2 and by sensor inaccuracies. The usable workspace is currently restricted 
to a square of approximately 2m2 due to the range resolution of the tracking device. 
Moreover, the tilting motion of the upper body while the robot is walking prevents the use 
of a continuous visual feedback. Therefore the vision system can be exploited only when the 
robot is not moving. Finally, the non ideal alignment between the head and the body of the 
robot when it stops strongly affects the estimation of landmarks pose used for visual 
guidance. The kinematics limitations of RSV2 also affect the imitation accuracy. Such 
limitations include the difficulty of performing sharp turns, the absence of side steps 
commands and the simplified grasping abilities. Nonetheless, we believe that low-cost 
humanoid platforms such as RSV2 provide an exciting and affordable opportunity for 
research in humanoid programming based on imitation. 
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