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Abstract

An oscillating electric dipole in free space emits its energy along straight lines. We have
considered the effect of a nearby interface with a material medium. Interference between
the directly emitted radiation and the reflected radiation leads to intricate flow line
patterns. When the interface is a plane mirror, numerous interference vortices appear,
and when the distance between the dipole and the mirror is not too small, these vortices
lie on four strings. At the center of each vortex is a singularity, and these singularities are
due to the fact that the magnetic field vanishes at these locations. When the interface is a
boundary between dielectric media, reflection leads again to interference. The pattern
for the transmitted radiation depends on whether the medium is thicker or thinner than
the material in which the dipole is embedded. For thicker dielectrics, the field lines bend
toward the normal, reminiscent of, but not the same as, the behavior of optical rays. For
thinner media, oscillation of energy across the interface appears, and above a crossing
point, there is a tiny vortex. We have also considered the case of a dipole in between two
parallel mirrors.

Keywords: vortex, singularity, Poynting vector, dipole radiation, interface, mirror

1. Introduction

The common conception about the propagation of light is that the radiation travels along

straight lines. Such a picture certainly seems to hold for a laser beam and for sunlight. The

success of ray diagrams for the construction of images by lenses and mirrors also supports this

picture. Reflection by and transmission through an interface is another example of a process

that can be described by a ray picture of light. However, light is electromagnetic radiation, and

ultimately any optical phenomenonmust be accounted for by a solution of Maxwell’s equations

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



for the electric and magnetic fields. In the geometrical optics limit of light propagation [1],

spatial variations on the scale of a wavelength or less are neglected, and optical rays are

defined as the orthogonal trajectories of the wave fronts of a propagating wave. From a

different point of view, we can define the direction of light propagation as the direction of the

energy flow in the radiation field. This direction is determined by the electromagnetic

Poynting vector [2]. It can be shown that in the geometrical optics limit for propagation in

vacuum the field lines of the Poynting vector are straight lines and are identical to the optical

rays, defined with the help of the propagation of wave fronts.

The concept of optical rays breaks down when spatial variations on the scale of a wavelength

or less are of concern, or when coherence in the radiation leads to macroscopic constructive

and destructive interference (as for a diffraction grating). We shall consider a small particle,

like an atom, molecule, or nano-particle, irradiated by a monochromatic laser beam, oscillat-

ing with angular frequency ω. We shall assume that the beam is linearly polarized. The

electric field of the laser beam induces an electric dipole moment in the particle, and this

dipole moment oscillates with angular frequency ω along the same direction as the electric

field of the immersing beam. The oscillating dipole moment emits electromagnetic radiation

(expressions for the electric and magnetic fields are given below), and the Poynting vector is

easily calculated. It appears that the field lines of the Poynting vector are straight lines,

coming out of the dipole and running radially outward to infinity. This is illustrated in

Figure 1.

The energy flow lines for a free (linear) dipole are straight at all distances. Any deviation from

this radially outgoing pattern is due to the environment of the particle. For instance, when the

particle is embedded in an absorbing medium, the imaginary part of the permittivity is

responsible for a bending of the field lines in the near field toward the dipole axis [3]. Here

we shall consider the case where the particle is located near an interface. Some of the emitted

radiation by the dipole will be incident on the interface, and here reflection and transmission

takes place. The reflected light will interfere with the incident light, and in the far field this

leads to maxima and minima in the radiated power per unit solid angle. The structure of the

Figure 1. The electric dipole moment dðtÞ oscillates along the direction indicated by the double-headed arrow. The field

lines of the Poynting vector come out of the dipole, and run radially outward. The solid curve is a polar diagram of the

power per unit solid angle. No radiation is emitted along the dipole axis, and the maximum intensity is emitted

perpendicular to the dipole axis.
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angular power distribution of the transmitted light in the far field depends on the value of the

critical angle and the distance between the particle and the surface. Usually, when a traveling

plane wave is incident upon an interface, the transmitted wave is again traveling, and is bent

toward the normal. When the angle of incidence approaches 90°, the transmitted wave is still

traveling, and the angle of transmission is called the critical angle (for transmission). In the

dipole spectrum, evanescent waves are present, and they are still transmitted as traveling

waves, provided the wavelength is not too small. Therefore, above the critical transmission

angle, all transmitted light comes from evanescent dipole waves, and this can lead to a large

lobe in the power distribution above the critical angle [4]. Rather than considering the effects in

the far field, we shall here present results for the power flow in the near field. We shall

illustrate that interference gives rise to interesting flow patterns, including singularities, vorti-

ces, and strings of vortices. We also show that transmission in the near field exhibits interesting

features.

2. Dipole radiation in free space

The oscillating dipole moment can be written as

dðtÞ ¼ doû cos ðω tÞ, (1)

where do is the amplitude of the oscillation, and û is a unit vector representing the direction of

oscillation. Let r be the position vector of a field point, with respect to the location of the dipole,

and let r be the length of r. Then, r̂ ¼ r=r is the unit vector into the direction of the field point.

The dimensionless distance between the dipole and the field point is defined as q ¼ kor, with

ko ¼ ω=c the wave number of the light. On this scale, a distance of 2π corresponds to one wave

length. The emitted electric field has the form

Eðr, tÞ ¼ Re½EðrÞe−iω t�, (2)

with EðrÞ the complex amplitude, and a similar expression holds for the magnetic field Bðr, tÞ.

We define the constant

ζ ¼
k3odo
4πεo

: (3)

The dimensionless complex amplitudes eðrÞ and bðrÞ of the fields are introduced as

EðrÞ ¼ ζ eðrÞ, (4)

BðrÞ ¼
ζ

c
bðrÞ: (5)

We then obtain for an electric dipole [5]
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eðrÞ ¼ û−ðr̂ � ûÞr̂ þ ½û−3ðr̂ � ûÞr̂�
i

q
1þ

i

q

� �� �

eiq

q
, (6)

bðrÞ ¼ ðr̂ · ûÞ 1þ
i

q

� �

eiq

q
: (7)

The time-averaged Poynting vector for radiation in free space is given by

SðrÞ ¼
1

2μo

Re½EðrÞ·BðrÞ��: (8)

For an electric dipole, we split off a factor:

SðrÞ ¼
ζ2

2μoc
σðrÞ, (9)

so that

σðrÞ ¼ Re½eðrÞ·bðrÞ��, (10)

With the above expressions for eðrÞ and bðrÞ, we find

σðrÞ ¼
1

q2
r̂ sin 2α, (11)

and here α is the angle between the dipole axis (e.g., the direction of vector û) and the

observation direction r̂. Since the vector σðrÞ is proportional to r̂, the field lines of the vector

field are straight, and run radially outward from the site of the dipole. This is shown in

Figure 1. No power is emitted along the dipole axis (α ¼ 0), and the power per unit solid angle

is maximum in the direction perpendicular to the dipole axis (α ¼ π=2).

3. Dipole radiation near a mirror

The simplest interface is a flat, infinite, and perfect mirror. We take the surface of the mirror as

the xy-plane, and the dipole is located on the positive z-axis, at a distance H above the mirror.

The dipole direction vector û makes an angle γ with the positive z-axis, and we take û in the

yz-plane. Therefore,

û ¼ ey sin γþ ez cosγ: (12)

The electric field above the mirror is equal to the field of the dipole plus the electric field of an

image dipole located at a distance H below the mirror on the z-axis, as illustrated in Figure 2,

and the same holds for the magnetic field. The dipole moment direction of the image dipole is
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ûim ¼ − ey sinγþ ez cosγ: (13)

The complex amplitudes of the electric and magnetic fields of the dipole are given by Eqs. (6)

and (7), but with r replaced by the position vector of the field point relative to the dipole

location. We indicate this vector by r1. Let r be the position vector of the field point where we

wish to evaluate the fields. We see from Figure 2 that

r1 ¼ r−Hez: (14)

The coordinates of the field point only come in through r̂ and q in Eqs. (6) and (7), so we

replace r̂ by r̂1, and q by q1 ¼ kor1. Similarly, the fields of the image dipole are found by

replacing r by

r2 ¼ rþHez, (15)

q by q2 ¼ kor2, and û by û im. With the fields eðrÞ and bðrÞ constructed, the Poynting vector

follows from Eq. (10). It is easy to verify that for z = 0, e.g., just above the mirror surface, the

Poynting vector is along the surface.

4. Computation of field lines

With the above method, the Poynting vector σðrÞ can be computed for a given field point r. We

shall use dimensionless Cartesian coordinates x ¼ kox, y ¼ koy and z ¼ koz, and the dimension-

less distance h ¼ koH. The Poynting vector is a function of x, y and z. Therefore, it is better to

write σðqÞ instead of σðrÞ, with q ¼ kor. We shall do so from now on. The only free parameters

are h and γ. A field line of the vector field σðqÞ is a curve such that for each point q on the

curve the vector σðqÞ is on the tangent line. Let qðtÞ be a parameter representation of a field

line, with t an arbitrary dummy variable. Then qðtÞ must be a solution of

Figure 2. The electric dipole is located at a distance H above a flat mirror (xy-plane), and the image dipole is located at a

distance H below the surface. Vectors r1 and r2 are the position vectors of the field point with respect to the location of the

dipole and the image dipole, respectively. The field point is represented by the position vector r with respect to the origin

of coordinates. This vector is not shown here.
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d

dt
qðtÞ ¼ σðqðtÞÞ: (16)

In Cartesian coordinates this becomes:

d

dt
xðtÞ ¼ σxðxðtÞ, yðtÞ, zðtÞÞ, (17)

and similarly for yðtÞ and zðtÞ, so this is a set of three differential equations. The independent

variable t does not appear explicitly, and such equations are called autonomous. The solution

is determined by an initial point ðxo, yo, zoÞ:. The field line through this point is found by

solving Eq. (16). We set t = 0 at the initial point. The direction of the field line is the direction

along the curve that follows from increasing t. So, the field line runs from the initial point into

the direction that corresponds to the solution with t > 0. The solution with t < 0 is the part of

the field line that runs toward the initial point.

Obviously, the differential Eq. (16) will in general need to be solved numerically. An interesting

exception is the case for an arbitrary (elliptical) dipole in free space for which an analytical

solution can be obtained, as reported in Ref. [6]. We use Mathematica to solve the set and

produce the field line pictures. For two-dimensional problems, the routine StreamPlot only

requires the expression for σ as a function of x, y and z. The initial points ðxo, yo, zoÞ are called

StreamPoints and can be specified. Alternatively, one can let Mathematica select these initial

points. This is much faster, and works well to get an initial picture. However, in this approach

Mathematica cuts off field lines when they get too close together, and that does not necessarily

look too good.

Finally, field lines are determined by the direction of vector σ at a point q, and not by its

direction. Therefore, the vector fields σðqÞ and f ðqÞσðqÞ, with f ðqÞ an arbitrary positive

function of q, have the same field lines. This can also be seen by making the change of variables

t ¼ f ðqÞt0. We then get

d

dt
qðtÞ ¼ f ðqðtÞÞσðqðtÞÞ, (18)

and this equation has the same solutions for the field lines as Eq. (16). It just gives a different

parametrization of the curves. A popular choice is f ðqÞ ¼ 1=jσðqÞj, which makes the right-

hand side of Eq. (18) a unit vector. For the mirror problem, the fields diverge in the neighbor-

hood of the dipole, and a good choice seems to be f ðqÞ ¼ q51.

5. Field lines in the symmetry plane

The dipole direction vector û and the direction of its image ûim are both in the yz-plane. If we

take a field point in the yz-plane, then also r̂ is in the yz-plane, and therefore, eðrÞ from Eq. (6) is

in the yz-plane, and the same holds for the complex amplitude of the image electric field. From
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Eq. (7), we see that the complex amplitudes of the magnetic dipole field and the magnetic

image field are along the x-axis if the field point is in the yz-plane. Therefore, the Poynting

vector from Eq. (10) is in the yz-plane if the field point is in the yz-plane. Consequently, any

field line through a point in the yz-plane stays in the yz-plane. This plane is the symmetry

plane for the dipole near the mirror. For field lines off the symmetry plane the field lines will be

3D curves, and the flow pattern is reflection symmetric in the yz-plane. Field lines in 3D are

difficult to visualize, so we shall only consider field lines in the symmetry plane.

Figure 3 shows the flow lines of energy for a dipole oscillating along the z-axis (γ ¼ 0). The

field line pattern is rotation symmetric around the z-axis. The field lines that run toward the

surface smoothly bend away from the surface upon approach. At the origin of coordinates we

have a singularity, since the field lines that come out of the dipole and run straight down split

there. This point is marked with a white circle. Figure 4 shows the flow pattern for a dipole

oscillating parallel to the surface (γ ¼ π=2). The pattern is reflection symmetric in the z-axis, so

only the region y < 0 is shown. Just left of the dipole are two singularities. It seems that a field

Figure 3. The dipole is located at a distance h ¼ 2π above the mirror, and the dipole oscillates along the z-axis.

Figure 4. The dipole is located at a distance h ¼ 2π above the mirror, and the dipole oscillates parallel to the xy-plane.
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line ends at the lower singularity, but this is essentially a minuscule vortex. The higher of the

two is a singularity where field lines ”collide.” There is again a singularity right below the

dipole on the mirror surface, and two other singularities appear at greater distances.

Figure 5 shows the field lines for a dipole oscillating under 45° with the z-axis (γ ¼ π=4).

Numerous singularities and vortices appear for this case. Vortex c is close to the dipole, and is

similar to the small vortex in Figure 4. Vortices a and b have a greater extent, although they are

still of subwavelength dimension. Some field lines come out of the dipole and swirl around

vortex a, and some pass by vortex b. Interestingly, there are field lines that emanate from vortex

a and end up at the center of vortex b. This seems to represent energy flowing from vortex a to

vortex b, but that is not the case. Only the dipole is a source for the vector field of the Poynting

vector. The singularity at the point labeled S seems like a bump in the road for the field lines

that pass nearby. It can be shown analytically [7] that this singularity is a point on a singular

circle in the plane of the mirror. The circle goes through the origin of coordinates and singu-

larity S, and singularity S is located at y ¼ −h tan γ. For γ ¼ π=4 this is at y ¼ −h, and for the

case of Figure 5 this is at y ¼ −h ¼ −2π. To the right of the z-axis, not shown in Figure 5, there

seems to be no interesting structure.

When the dimensionless distance h between the dipole and the surface increases, so does the

number of vortices. In Figures 3–5, this distance was taken as h ¼ 2π, corresponding to one

wavelength. In Figure 6, this distance is h ¼ 8π, and angle γ is the same as in Figure 5. We notice

Figure 5. The dipole is located at a distance h ¼ 2π above the mirror, and the dipole oscillates under 45° with the z-axis.

Figure 6. The dipole is located at a distance h ¼ 8π above the mirror, and the dipole oscillates under 45° with the z-axis.
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numerous vortices in the flow line pattern. The field lines rotate counterclockwise around the

singularities that are close to the z-axis. Figure 7 shows an enlargement of one of these vortices,

and it follows from the pattern that there must be another singularity nearby. The vortices on the

left have a clockwise rotation and Figure 8 shows an enlargement. For the vortices on the left the

field lines come out of the center of the vortex, and for the vortices on the right the field lines end

at the center of the vortex, as in Figures 7 and 8, respectively. In Figure 6, the field lines that start

or end at a vortex are drawn in bold. Many other field lines are present. They run from the

dipole to infinity, either without coming in the neighborhood of the vortices (the four field lines

on top of the picture) or they cross the array of vortices once or twice.

6. Location of the vortices

At a singularity, the Poynting vector vanishes. This can be due to EðrÞ ¼ 0 or BðrÞ ¼ 0 or

EðrÞ ·BðrÞ� is imaginary. We have found that for singularities that appear when field lines split

or collide, EðrÞ·BðrÞ� is imaginary. Singularities at the center of a vortex are due to the

vanishing of the magnetic field. For field lines in the xy-plane, the complex amplitude of the

magnetic field is along the x-axis. For BðrÞ
x
to be zero, both the real and imaginary part have to

be zero at the same point. With the expressions for the magnetic field of source and image, we

find that Re½BðrÞ
x
� ¼ 0 leads to

Figure 7. Enlargement of a vortex of Figure 6.

Figure 8. Enlargement of a vortex of Figure 6.
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q1 cos q1− sin q1
q31

½y cosγþ ðh−zÞ sinγ� þ
q2 cos q2− sin q2

q32
½y cosγþ ðhþ zÞ sinγ� ¼ 0, (19)

and similarly Im½BðrÞx� ¼ 0 gives

q1 sin q1 þ cos q1
q31

½y cosγþ ðh−zÞ sinγ� þ
q2 sin q2 þ cos q2

q32
½y cosγþ ðhþ zÞ sin γ� ¼ 0: (20)

The solutions of Eq. (19) are curves in the yz-plane, and Eq. (20) also represents a set of curves

in the yz-plane. At intersections between these sets of curves the magnetic field is zero, and this

corresponds to the center of a vortex. Figure 9 shows the curves for the same parameters as

Figure 9. The vortices of Figure 5 appear at intersections between the solid and dashed curves.

Figure 10. The vortices of Figure 6 appear at intersections between the solid and dashed curves, and these intersections

are indicated by black dots.
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shown in Figure 5. The solid lines are the solutions of Eq. (19) and the dashed lines are the

solutions of Eq. (20). The three intersections a, b, and c are the centers of the three vortices in

Figure 5. Interestingly, at the center of the bump on the mirror, labeled S, the magnetic field

also vanishes. This point is located at

y ¼ −h tanγ, z ¼ 0, (21)

and it is easy to check that this is indeed a solution of both Eqs. (19) and (20). Here, the

magnetic field is zero, but there is no vortex. For the case of the parameters for Figure 6, the

solutions of Eqs. (19) and (20) are shown in Figure 10.

7. Vortex strings

In Figure 10, the intersections between the solid and dashed curves are not always precisely to

determine and this gets worse with increasing h. By manipulating Eqs. (19) and (20), a different

set of equations can be obtained. We find [8]

½ðq1q2 þ 1Þ cos ðq2−q1Þ þ ðq2−q1Þ sin ðq2−q1Þ�½y cosγþ ðhþ zÞ sin γ�

þ
q2
q1

� �3

ðq21 þ 1Þ½y cosγþ ðh−zÞ sinγ� ¼ 0, (22)

ðq1q2 þ 1Þ sin ðq2−q1Þ ¼ ðq2−q1Þ cos ðq2−q1Þ: (23)

The solid curve in Figure 11 is the solution of Eq. (22) and the dashed curves are the solutions

of Eq. (23). Vortices appear at the intersections. The parameters are the same as for Figure 10.

Interestingly, Eq. (23) is independent of the orientation angle γ of the dipole. When γ varies, the

solid curve rotates with it, but the dashed curves stay the same. The solid curve starts at the

location of the dipole and runs to point S on the mirror, as can easily be checked from Eq. (21).

Figure 11. The black dots are the intersections between the solid curve and the dashed curves. These points correspond to

the location of vortices, and here we have used the same parameters γ and h as for Figure 10.
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The vortices in Figure 11 appear to lie on two ‘strings’. The left string starts at the dipole and

runs to point S on the mirror. The second string is in between the left string and the z-axis. It

can be seen from Figure 6 that all the vortices on the left string have a counterclockwise

rotation, as in Figure 7. On the right string the vortices have a clockwise rotation, as in Figure 8.

Figure 12 shows a larger view of the same graph as in Figure 11. The solid line passes the

dipole and continues in the upper right part of the graph. It appears that far away there are

also intersections between the solid curve and the dashed curves, and these correspond also to

the location of vortices. The vortices appear to lie on a third string. It can be shown that these

vortices have a counterclockwise rotation.

The left string ends at point S on the mirror. The location of this point depends on the dipole

angle γ, according to Eq. (21). When γ increases, the point moves to the left, and for γ ! π=2

the point moves to infinity. Figure 13 shows the string pattern for γ ¼ π=2 and h ¼ 30π. The

field line pattern must be reflection symmetric in the z-axis, and so is the string pattern. We see

that a fourth string of vortices appears, and from symmetry it follows that these have a

clockwise rotation. When we look again at Figure 12, the solid curve must intersect the dashed

curves outside the picture in the upper right corner. Therefore, there is a fourth string very far

away, and outside the picture. Apparently, there are always four vortex strings in electric

dipole radiation near a mirror.

8. Dielectric interface

An interesting generalization of the free dipole near the mirror is the case of a dipole embed-

ded in a dielectric medium, and near an interface with another dielectric material. For this

Figure 12. The figure shows a larger view of the picture in Figure 11.

Figure 13. The figure shows vortex strings for γ ¼ π=2 and h ¼ 30π.
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problem, we reverse the z-axis, as compared to Figure 2, and we place the dipole on the

negative z-axis, at a distance H below the interface. This is illustrated in Figure 14. The

dielectric constant of the embedding medium is ε1 and the substrate has dielectric constant

ε2. The corresponding indices of refraction are n1 ¼
ffiffiffiffiffi

ε1
p

and n2 ¼
ffiffiffiffiffi

ε2
p

, respectively. The

analysis of this system is considerably more complicated than the mirror problem. For sim-

plicity of notation, we shall assume that the dipole oscillates along the z-axis, e.g., u^ ¼ ez. The

approach here is to represent the source fields (6) and (7) by an angular spectrum of plane

waves. The reflection and transmission of each partial wave is accounted for by the appropri-

ate Fresnel coefficients. A partial wave can be traveling or evanescent, and in Figure 14 this is

schematically indicated by vectors and dashed parallel lines, respectively. In each triad of

partial source, reflected and transmitted waves the parallel component of each of the three

wave vectors is the same. Upon reflection and transmission only the z-component of a wave

vector can change. Set α ¼ kjj=ko, which is the dimensionless magnitude of the parallel compo-

nent of each wave vector. The dimensionless z-components of the wave vectors can be

expressed in terms of the functions

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

n2i −α
2

q

, i ¼ 1, 2: (24)

The wave vector of an incident partial wave of the source field has a z-component of kov1.

Similarly, the reflected and transmitted waves have wave vectors with z-components −kov1 and

kov2, respectively. For α < ni, vi is real, and the corresponding wave is traveling. For α > ni, vi
is positive imaginary, and the corresponding wave is evanescent. The Fresnel reflection and

transmission coefficients for an incident p-polarized plane wave with parameter α are

RpðαÞ ¼
ε2v1−ε1v2
ε2v1 þ ε1v2

, (25)

TpðαÞ ¼
n2
n1

2ε1v1
ε2v1 þ ε1v2

: (26)

For the dipole oscillating along the z-axis, all partial waves are p polarized.

The setup is rotation symmetric around the z-axis, so we only need to consider the solution in

the yz-plane, with y > 0. Then the electric field is in the yz-plane, the magnetic field is along the

Figure 14. The figure shows the setup for a dipole embedded in a dielectric material and near an interface with another

dielectric material.
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x-axis, and the Poynting vector is in the yz-plane. We obtain for the complex amplitudes of the

dimensionless electric and magnetic reflected fields [9]

erðrÞ ¼
1

ε1

ð

∞

0

dα α
2RpðαÞ ez

iα

v1
J0ðαyÞ−eyJ1ðαyÞ

� �

eiv1ðh−zÞ, (27)

brðrÞ ¼ − ex

ð

∞

0

dα
α
2

v1
RpðαÞJ1ðαyÞe

iv1ðh−zÞ, (28)

and for the transmitted fields we find

etðrÞ ¼
1

n1n2

ð

∞

0

dα
α
2

v1
TpðαÞ½eziαJ0ðαyÞ þ eyv2J1ðαyÞ�e

iðv1hþv2zÞ, (29)

btðrÞ ¼ − ex
n2
n1

ð

∞

0

dα
α
2

v1
TpðαÞJ1ðαyÞe

iðv1hþv2zÞ
: (30)

Here, J0 and J1 are Bessel functions. These four fields are integral representations of the

solutions, and, obviously, these integrals need to be computed numerically. On the z-axis we

have y ¼ 0, and since J1ð0Þ ¼ 0 we see that the magnetic fields vanish on the z-axis. The

magnetic source field, Eq. (7), also vanishes on the z-axis. Therefore, the Poynting vector is

zero on the z-axis, and so the z-axis is a singular line of the flow lines pattern.

For the case of Figure 15, we have n1 ¼ 1 and n2 ¼ 2. The energy flows from a thinner to a

thicker medium. Upon transmission, the field lines of the Poynting vector bend toward

the normal, just like optical rays would do for this case. However, the angle of incidence and

the angle of transmission for the Poynting vector are not related by Snell’s law, as the

Figure 15. The figure shows the transmission through an interface into a thicker medium.
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corresponding angles for optical rays are. The critical angle for this interface is 30�, and we see

that away from the z-axis the field lines leave the interface under approximately 30�. This

critical angle corresponds to an angle of incidence of 90�, and we see from the figure that the

field lines do not approach the interface under 90�. The reason that the field lines leave the

interface under approximately the critical angle is that the Fresnel transmission coefficient has

a sharp maximum at this angle. The angular spectrum is a superposition of waves with all

angles of incidence, and extends into the evanescent region as well. The transmission coeffi-

cient favors partial waves that approach the interface under about 90�. These are the partial

waves that are on the borderline of the traveling and the evanescent regions of the angular

spectrum.

More interesting is the case for transmission into a thinner medium, as illustrated in Figure 16.

The indices of refraction are n1 ¼ 2 and n2 ¼ 1. On crossing the interface, the field lines bend

away from the normal, just like optical rays. We see here that the field lines are more curved

than in Figure 15. Some of the field lines that entered the n2 medium bend down, and then

cross the interface again. The field lines run through the n1 material for a short distance and

then bend up and cross the interface again into the n2 region. This oscillation of energy back

and forth through the interface persists over long distances. Figure 17 shows an enlargement

of the first dip of the field lines below the interface. We see that a vortex appears in medium n2,

Figure 16. The figure shows the transmission through an interface to a thinner medium.

Figure 17. Enlargement of a part of Figure 16. Just above the first dip of the field lines under the interface a vortex

appears. Above the vortex is a singularity, indicated by a white circle.
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just above the dip of the field lines under the interface. And just above the vortex, we neces-

sarily have a singularity because near this point the field lines run in opposite directions.

9. Dipole in between mirrors

An interesting variation of the mirror problem is the case for a dipole in between parallel

mirrors, as depicted in Figure 18. A second mirror is placed at a distance D above the first

mirror. Now, the dipole has a mirror image in both mirrors. In order to satisfy the boundary

conditions at both mirrors, a mirror image must have again an image in the other mirror, and

so on. This leads to an infinite sequence of images. Let us label the images withm. We then find

that the images are located at

zm ¼ ðmþ
1

2
ÞDþ ð−1ÞmðH−

1

2
DÞ, (31)

with m integer. For m = 0, this is the actual dipole in Figure 18. The image with m = −1 is the

image dipole from Figure 2. Images withm even have a dipole orientation vector u^ and images

with m odd have u^
im

as orientation vector.

This can be combined as

ûm ¼ ð−1Þmey sinγþ ez cosγ, (32)

for the orientation of image m. The dimensionless distance between the mirrors is denoted by

δ ¼ koD.

Figure 19 shows the energy flow pattern for a horizontal dipole midway between the mirrors.

The distance between the mirrors is δ ¼ 4π. Most of the radiation is emitted in the vertical

direction. It travels to the mirrors, and there the field lines bend and continue horizontally. No

radiation is emitted along the dipole axis, and we see that the line z ¼ 2π is a singular line.

Field lines approach this line from above and below, and then stop at this line. Consequently,

the Poynting vector has to be zero on this line. For Figure 20, we have γ ¼ π=4 and δ ¼ π, and

the dipole is midway between the mirrors. We notice the appearance of two vortices very close

to the dipole (subwavelength distance), and the rotation is counterclockwise for both. Some of

Figure 18. The figure shows the setup for the dipole in between mirrors.
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the field lines run downward to the right swing up turn around (outside the figure) and end

up running to the left. Similarly, some field lines start toward top-left, and then turn around,

swing by the dipole, and then run off to the right. In Figure 21, we have again a horizontal

Figure 20. The figure shows the flow lines of energy for a dipole midway between the mirrors, and oscillating under 45°

with the z-axis.

Figure 19. The figure shows the flow lines of energy for a horizontal dipole midway between the mirrors.

Figure 21. The figure shows the flow lines of energy for a dipole close to the lower mirror and oscillating horizontally.
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dipole, but it is now closer to the mirror on the bottom. Numerous vortices appear in the flow

pattern.

10. Conclusions

An oscillating electric dipole in free space emits its energy along straight lines. Most radiation

is emitted perpendicular to the dipole axis, and none comes out along the dipole axis. We have

studied the effect of a nearby interface on this flow pattern. Reflection of radiation at the

interface leads to interference between the directly emitted radiation and the reflected radia-

tion. A mirror is impenetrable for radiation, and so all radiation bounces back at the interface.

This also implies that the field lines of energy flow must be parallel to the mirror at the mirror

surface. This effect is shown in Figure 3 for a dipole oscillating perpendicular to the surface,

and one wavelength away from the surface. The radiation comes out of the dipole, more or less

as for emission in free space, but at the mirror surface the field lines bend, and the energy flows

away along the mirror surface. For a dipole oscillating parallel to the surface, a typical flow

pattern is shown in Figure 4. Again, at the mirror surface the field lines run away parallel to

the surface, but in between the surface and the dipole several singularities appear, and there is

also a vortex very close to the dipole. For the case shown in Figure 5, the dipole oscillates

under 45° with the normal to the surface, and we see that two large vortices appear and one

very small one. The rotation direction of the energy flow in the two large vortices is in opposite

directions, and some energy flows from one vortex to the other. When the distance between the

dipole and the surface is much larger than a wavelength, numerous tiny (subwavelength)

vortices appear, and we found that the vortices are located on a set of four strings. This is

shown most clearly in Figure 13.

When the surface is an interface between two dielectrics, we also need to consider the radiation

transmitted into the substrate. Here, we only consider the simplest case of a dipole oscillating

perpendicular to the interface. This can be generalized to arbitrary oscillation directions, and

also to the case where the surface is an interface with a layer of material, and this layer is

located on a substrate of yet another kind of material [10]. Figure 15 illustrates a typical case of

transmission into a thicker medium. The field lines bend toward the normal, just like optical

rays would. However, the refraction angle for the flow lines does not follow Snell’s law for

optical rays. Figure 16 shows field lines for transmission into a thinner medium. Now the field

lines bend away from the normal, but some field lines bend so much that they return to the

other side of the interface. There is oscillation of energy back and forth through the interface.

An enlargement is shown in Figure 17, and we observe that a vortex appears just above the

location where the energy goes back and forth through the interface.

We have also considered the case where the oscillating dipole is located in between two

mirrors. For a horizontal dipole, the emitted radiation bends near the surfaces of the two

mirrors, and then flows away horizontally, as shown in Figure 19. For the case in Figure 20,

the dipole oscillates under 45° with the normal. Two vortices appear. Some of the radiation that

is emitted to the bottom-right of the picture originally flows to the right along the surface of the

lower mirror, but then turns around, swings by the dipole, and then continues to the left, along
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the surface of the top mirror. When the dipole is not located midway between the mirrors, as in

Figure 21, numerous vortices appear, and the pattern repeats indefinitely to the left and right

in the range outside the picture.
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