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Abstract

In this study, a new inversion method is presented for performing two-dimensional (2D)
Fourier transform. The discretization of the continuous Fourier spectra is given by a
series expansion with the scaled Hermite functions as square-integrable set of basis
functions. The expansion coefficients are determined by solving an overdetermined
inverse problem. In order to define a quick algorithm in calculating the Jacobian matrix
of the problem, the special feature that the Hermite functions are eigenfunctions of the
Fourier transformation is used. In the field of inverse problem theory, there are numer-
ous procedures for noise rejection, so if the Fourier transformation is formulated as an
inverse problem, these tools can be used to reduce the noise sensitivity. It was demon-
strated in many case studies that the use of Cauchy-Steiner weights could increase the
noise rejection capability of geophysical inversion methods. Following this idea, the
two-dimensional Fourier transform is formulated as an iteratively reweighted least
squares (IRLS) problem using Cauchy-Steiner weights. The new procedure is numeri-
cally tested using synthetic data.

Keywords: noise rejection in Fourier transformation, series expansion–based inversion,
robust Fourier transformation, Hermite functions, reduction to pole

1. Introduction

In signal processing, the frequency spectrum of the time domain signals plays a very important

role. In order to change over from the time domain to the frequency domain, the Fourier

transform is applied most frequently. In the case of equidistantly sampled discrete time

domain data sets, the so-called discrete Fourier transform (DFT) algorithm is used to

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



determine the discrete frequency spectrum. In the numerically very efficient Fast Fourier

Transform algorithm (FFT), the spectrum is determined by solving a complete set of inhomo-

geneous linear algebraic set of equations.

The measured data set always contains noise, which is linearly projected into the frequency

domain during Fourier transformation, so the traditional FT algorithms are sensitive to noise,

most significantly to non-Gaussian one. On the other hand, it is well-known that in the

framework of inverse problem theory there are a collection of methods with excellent noise

rejection capability. For this reason, it was proposed to handle the 1D Fourier Transform as an

overdetermined inverse problem [1].

In inverse problem theory, it is known that the simple least squares (LSQ) method gives

optimal solution in case of Gaussian data noises while it is very sensitive for outliers. To

reduce the effect of outlying data various (robust) inversion methods have been developed.

The least absolute deviation (LAD) is one of the most frequently applied robust inversion

method, which can be numerically realized by linear programing or by using the so-called

iteratively reweighted least squares (IRLS) procedure [2]. In this case, the L1 norm of the

deviation between the observed and predicted data is minimized. The IRLS procedure which

iteratively recalculates the so-called Cauchy weights results in a very efficient robust inver-

sion method [3]. In applying Cauchy inversion, the scale parameter of the Cauchy weights

should be a priori known. This problem is solved in the framework of the most frequent value

(MFV) method (developed by Steiner [4, 5]), where the scale parameter is derived from the

data set. The weights given by the MFV method have been extensively used in various IRLS

inversion problems. A successful application in joint inversion of seismic and geoelectric

data was published by Dobróka et al. [6]. Szűcs et al. [7] reported a considerable improve-

ment due to the use of Steiner’s weights in the interpretation of borehole geophysical data.

The Cauchy weights improved by Steiner’s MFV method (the so-called Cauchy-Steiner

weights) were successfully applied in robust tomography algorithms by Dobróka and

Szegedi [8].

In previous papers by Szegedi and Dobróka [9], the 1D Fourier transformation was handled as

robust inverse problem using IRLS algorithm with Cauchy-Steiner weights. It was shown that

the noise sensitivity of the continuous Fourier transform (and its discrete variants DFT and

FFT) was appropriately reduced by using robust inversion. Following a fruitful inversion

strategy developed at the Geophysical Department of the University of Miskolc we used series

expansion as a discretization tool. Series expansion–based inversion methods were success-

fully used in the interpretation of borehole geophysical data [10, 11] and also in processing

induced polarization data [12]. In this study, we further develop the previously published

inversion-based 1D Fourier transform algorithm by extending it to 2D cases.

2. Theoretical background for 1D algorithm

The Fourier transform and its inverse allow establishing a connection between the time and

frequency domain. For the one-dimensional case the Fourier transform is defined as

Fourier Transforms - High-tech Application and Current Trends4



UðωÞ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

uðtÞ e−jωtdt, (1)

where t denotes the time, ω is the angular frequency and j is the imaginary unit, UðωÞ is the
Fourier transform of a real-valued time function uðtÞ. Thus, the Fourier transform provides the

frequency domain representation of a phenomenon investigated by the measurement of some

quantity in the time domain. By means of the inverse Fourier transform

uðtÞ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

UðωÞ ejωtdω, (2)

we can return from the frequency domain to the time domain.

A next step in formulating the Fourier transform as an inverse problem is the discretization of

the frequency spectrum UðωÞ. In order to satisfy this requirement, let us assume that UðωÞ is
approximated with sufficient accuracy by using a finite series expansion

UðωÞ ¼ ∑
M

i¼1
BiΨiðωÞ, (3)

where the parameter Bi is a complex valued expansion coefficient and Ψi is a member of an

accordingly chosen set of real valued basis functions.

Using the terminology of (discrete) inverse problem theory, the theoretical values of time

domain data (forward problem) can be given by the inverse Fourier transform

utheorðtkÞ ¼ utheork ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

UðωÞejω tkdω, (4)

where tk is the kth sampling time. Inserting the expression given in Eq. (3) one finds that

utheork ≅
1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

�

∑
M

i¼1
BiΨiðωÞ

�

ejωtkdω ¼ ∑
M

i¼1
Bi

1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

ΨiðωÞejωtkdω: (5)

Let us introduce the notation

Gk, i ¼
1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

ΨiðωÞejωtkdω, (6)

where Gk, i is an element of the so called Jacobian matrix of the size N-by-M (N is the number of

time domain data andM is the number of unknown expansion coefficients). It is important for

later considerations to note, that the Jacobian can be written as the inverse Fourier transform

(in t ¼ tk) of the Ψi basis function. The theoretical values take the linear form

Inversion-Based Fourier Transform as a New Tool for Noise Rejection
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utheork ¼ ∑
M

i¼1
BiGk, i: (7)

The parameterization is always an important step in constructing an inversion algorithm. In

Fourier transformation the frequency spectrum is defined over the interval (−∞,∞), so the set of

basis functions should be defined in the same domain. In addition, the use of orthonormal

functions for the series expansion is also proposed to the parameterization of the model.

Because of these reasons we have chosen the set of scaled Hermite functions for discretization

(their square-integrability ensures the existence of their Fourier transform).

If one tries to extend the concept of inversion-based Fourier transform for two-dimensional (2D)

(or even multidimensional) case, a quick and simpler way of calculation can be advantageous.

For this reason, consider the basic formulae of Hermite polynomials and Hermite functions.

The basic Hermite polynomials can be defined by the Rodriguez formula

hð0Þn ðωÞ ¼ ð−1Þneω2 d

dω

� �n

e−ω
2

, n ¼ 0, 1, 2, :::, (8)

and also can be generated by the recursive formula

h
ð0Þ
nþ1ðωÞ ¼ 2ω hð0Þn ðωÞ−2 n h

ð0Þ
n−1ðωÞ, (9)

where h
ð0Þ
0 ðωÞ ¼ 1, h

ð0Þ
1 ðωÞ ¼ 2ω. The Hermite polynomials fulfill the orthogonality condition

ð

∞

−∞

e−ω
2 � hð0Þn ðωÞ � hð0Þm ðωÞ dω ¼ 2nn!

ffiffiffiffi

π
p

δnm, δnm ¼ 0, n≠m
1, n ¼ m

,

�

(10)

where δnm denotes the Kronecker symbol. Based on this formula, the basic Hermite functions

can be defined as

Hð0Þ
n ðωÞ ¼ e−

ω
2

2 � hð0Þn ðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffi

π
p

n! 2n
p , n ¼ 0, 1, 2,…: (11)

Afterward the function Hð0Þ
n ðωÞ is not only a complete orthogonal but an orthonormal system

ð

∞

−∞

Hð0Þ
n ðωÞ �Hð0Þ

m ðωÞ dω ¼ δnm, δnm ¼ 0, n≠m
1, n ¼ m

:

�

(12)

There is an important special feature of Hermite functions, namely that they are the

eigenfunctions of the Fourier transform [13]

FfHð0Þ
n ðtÞg ¼ ð−jÞnHð0Þ

n ðωÞ, (13)

and for the inverse Fourier transform, respectively

Fourier Transforms - High-tech Application and Current Trends6



F
�1fHð0Þ

n ðωÞg ¼ ðjÞnHð0Þ
n ðtÞ: (14)

As it was given in reference [14], the Hermite functions have to be modified by scaling because

in geophysical applications the frequency covers wide ranges. The Rodriguez formula for

modified Hermite polynomials takes the form

hnðω,αÞ ¼ ð−1Þneα ω
2 d

dω

� �n

e−α ω
2

, (15)

and can be also generated by the recursive formula

hnþ1ðω,αÞ ¼ 2ωα hnðω,αÞ−2 nα hn−1ðω,αÞ, (16)

where α is the scale factor and h0ðω,αÞ ¼ 1, h1ðω,αÞ ¼ 2αω [15]. The normalizing equation is

ð

∞

−∞

e− αω
2 � hð0Þn ðω,αÞ � hð0Þm ðω,αÞ dω ¼

ffiffiffiffi

π

α

r

ð2αÞnn!δnm, δnm ¼ 0, n≠m
1, n ¼ m

:

�

(17)

Thus, the scaled Hermite functions can be defined as

Hnðω,αÞ ¼
e−

α ω2

2 � hnðω,αÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

π

α

p

n! ð2αÞn
q : (18)

In this case the normalizing equation is

ð

∞

−∞

Hnðω,αÞ �Hmðω,αÞdω ¼ δnm, δnm ¼ 0, n≠m
1, n ¼ m

:

�

(19)

Introducing the notation ω
0 ¼ ffiffiffi

α
p

ω the hnðω,αÞ modified Hermite polynomials can be traced

back to the hð0Þn base polynomials. Substituting ω
0 into Eq. (15) we obtain

hnðω,αÞ ¼ ð
ffiffiffi

α
p

Þnð−1Þneω02 d

dω0

� �n

e−ω
02 ¼ ð

ffiffiffi

α
p

Þnhð0Þn ðω0Þ ¼ ð
ffiffiffi

α
p

Þnhð0Þn ð
ffiffiffi

α
p

ωÞ: (20)

Similarly, the modified Hermite function can also be traced back to the basic case (Hð0Þ
n ).

According to Eq. (18), we get the following formula

Hnðω,αÞ ¼
e−

ω02
2 ð ffiffiffi

α
p Þn hnðω0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffi

π
p

1
ffiffi

α
p n! 2nαn

q ¼
ffiffiffi

α
4
p e−

ω02
2 hnðω0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffi

π
p

n! 2n
p ¼

ffiffiffi

α
4
p

Hð0Þ
n ðω0Þ ¼

ffiffiffi

α
4
p

Hð0Þ
n ð

ffiffiffi

α
p

ωÞ: (21)

Expanding the spectrum by means of the modified Hermite functions, in accordance with

Eq. (6) the Jacobian matrix can be written as the inverse Fourier transform of the Hnðω,αÞ basis
functions

Inversion-Based Fourier Transform as a New Tool for Noise Rejection
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Gkn ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hnðω,αÞ � ej ω t dω: (22)

Using Eq. (21) one finds

Gkn ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

ffiffiffi

α
4
p

Hð0Þ
n ðω0Þ � ej ω t dω, (23)

or taking the notations ω t ¼ ω
0 t0, ω0 ¼ ffiffiffi

α

p
ω and t0 ¼ t

ffiffi

α

p into account we have

Gkn ¼ 1
ffiffiffi

α
4
p 1

ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hð0Þ
n ðω0Þ � ej ω0 t0 dω0 ¼ 1

ffiffiffi

α
4
p F

�1fHð0Þ
n ðω0Þg: (24)

Using the properties of the base Hermite functions from Eq. (14) Eq. (24) can be rewritten in the

following form

Gkn ¼ 1
ffiffiffi

α
4
p ðjÞnHð0Þ

n ðt0Þ ¼ 1
ffiffiffi

α
4
p ðjÞnHð0Þ

n

t
ffiffiffi

α

p
� �

: (25)

This is a very important result in further developing the inversion-based Fourier transform

method because the Jacobian matrix can be produced quickly, as the procedure do not require

integration. This is especially important in case of 2D (or higher dimensional) Fourier trans-

form.

In accordance with Eq. (7) the theoretical data can be obtained as a linear expression of the

expansion coefficients using the easily calculated elements of the Jacobian matrix. The general

element of the deviation vector can be given in the following form

ek ¼ umeasured
k −utheork : (26)

In the framework of inverse problem theory, various methods are given for the minimization

of appropriately chosen norm of the deviation vector resulting in an estimation of the expan-

sion coefficients (Bestimated
i ). After this, the real and imaginary part of the estimated spectrum

can be calculated at any frequency as

UestimatedðωÞ ¼ ∑
M

i¼1
Bestimated
i Hiðω,αÞ: (27)

3. Theoretical background for 2D algorithm

For the two-dimensional case the Fourier transform is defined as

Fourier Transforms - High-tech Application and Current Trends8



Uðωx,ωyÞ ¼
1

2π

ð

∞

−∞

ð

∞

−∞

u ðx, yÞ e−j ðωxxþωyyÞdx dy, (28)

where x, y denotes the spatial coordinates, ωx,ωy are the (angular) spatial frequencies and j is

the imaginary unit. The frequency spectrum Uðωx,ωyÞ is the Fourier transform of a real valued

function u ðx, yÞ and it is generally a complex valued continuous function. In two dimensions

the forward problem giving the theoretical values of the space domain data can be defined by

the two-dimensional inverse Fourier transform

uðx, yÞ ¼
1

2π

ð

∞

−∞

ð

∞

−∞

Uðωx, ωyÞ e
j ðωxxþωyyÞdωxdωy, (29)

where Uðωx,ωyÞ denotes the 2D spatial frequency spectrum, which will be discretized using

the scaled Hermite functions defined above

Uðωx,ωyÞ ¼ ∑
N

n¼1
∑
M

m¼1
Bn, m Hnðωx,αÞ Hmðωy, βÞ , (30)

where

Hnðωx,αÞ ¼
e−

α ω2x
2 hnðωx,αÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

π
α

p

n ! ð2αÞn
q , hnðωx,αÞ ¼ ð−1Þneα ω2

x
d

dωx

� �n

e−α ω2
x , (31)

Hmðωy, βÞ ¼
e−

β ω2y
2 hmðωy, βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

π
β

q

m ! ð2βÞm
r , hmðωy, βÞ ¼ ð−1Þmeβ ω2

y
d

dωy

� �m

e−β ω2
y

: (32)

Using Eq. (29) the data calculated at the point ðxk, ylÞ

uðxk, ylÞ ¼
1

2π

ð

∞

−∞

ð

∞

−∞

∑
N

n¼1
∑
M

m¼1
Bn, m Hnðωx,αÞ Hmðωy, βÞ e

j ðωxxkþωyylÞdωxdωy , (33)

where k ¼ ð1, 2,…,KÞ, l ¼ ð1, 2,…, LÞdenote the sequence numbers of the measurement points

along the x and y directions, respectively. By introducing the Jacobian matrix, we can write

uðxk, ylÞ ¼ ∑
N

n¼1
∑
M

m¼1
Bn, mG

n,m
k, l , (34)

where

Inversion-Based Fourier Transform as a New Tool for Noise Rejection
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Gn,m
k, l ¼ 1

2π

ð

∞

−∞

ð

∞

−∞

Hnðωx,αÞ Hmðωy, βÞ ej ðωxxkþωyylÞdωxdωy

¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hnðωx,αÞ ej ωxxkdωx
1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hmðωy, βÞ ejωyyldωy :

(35)

Similar to Eq. (21)

Hnðωx,αÞ ¼
ffiffiffi

α4
p

Hð0Þ
n ð

ffiffiffi

α
p

ωxÞ , Hmðωy, βÞ ¼
ffiffiffi

β4
p

Hð0Þ
m ð

ffiffiffi

β
p

ωyÞ, (36)

and the Jacobian takes the form

Gn,m
k, l ¼

ffiffiffiffiffiffi

αβ4
p

ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hð0Þ
n ð

ffiffiffi

α
p

ωxÞ ej ωxxkdωx
1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hð0Þ
m ð

ffiffiffi

β
p

ωyÞ ejωyyldωy : (37)

Using the notations

ωx xk ¼ ωx
′ xk

′, ωx
′ ¼

ffiffiffi

α
p

ωx, xk
′ ¼ xk

ffiffiffi

α
p , ωyyl ¼ ωy

′yl
′, ωy

′ ¼
ffiffiffi

β
p

ωy, yl
′ ¼ yl

ffiffiffi

β
p , (38)

we can write

Gn,m
k, l ¼ 1

ffiffiffiffiffiffi

αβ4
p ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hð0Þ
n ðωx

′Þ ej ωx
′xk

′

dωx
′

1
ffiffiffiffiffiffi

2π
p

ð

∞

−∞

Hð0Þ
m ðωy

′Þ ej ωy
′yl

′

dωy
′

¼ 1
ffiffiffiffiffiffi

αβ4
p F

�1fHð0Þ
n ðωx

′Þg F�1fHð0Þ
m ðωy

′Þg
(39)

and applying the well-known Eq. (14), the Jacobian matrix can be written in its final form

(without integration)

Gn,m
k, l ¼ ðjÞnþm

ffiffiffiffiffiffi

αβ4
p Hð0Þ

n ðxk ′Þ Hð0Þ
m ðyl ′Þ : (40)

The programming of the algorithm is quite simple after using the transformation of the indices

i ¼ nþ ðm−1ÞN, s ¼ kþ ðl−1ÞK. With these notations, the total number of the unknown expan-

sion coefficient is I ¼ N þ ðM−1ÞN ¼ NM and that of the measured data is S ¼ K þ ðL−1ÞK
¼ KL. The theoretical data can be calculated as

utheors ¼ ∑
I

i¼1
Bi Gs, i, (41)

and the general element of the deviation vector can be given in the following form

Fourier Transforms - High-tech Application and Current Trends10



es ¼ umeasured
s −∑

I

i¼1
Bi Gs, i (42)

with ði ¼ 1,…, I, s ¼ 1,…, SÞ. After this, the inverse problem can be formulated in a straight-

forward manner.

4. Inversion algorithms

If the measured data set contains Gaussian noise, the minimization of the L2 norm of the

deviation vector is applied. This is the case of the least squares method when

E2 ¼ ∑
N

k¼1
e2k (43)

is minimized resulting in the well-known set of the normal equations

GTG B
!
¼ GTu

!measured
: (44)

By solving these normal equations, we can give an estimate for the complex expansion coeffi-

cients, and both the real and imaginary parts of the LSQ estimated Fourier transform (LSQ-FT)

can be calculated at any frequency by using

UestimatedðωÞ ¼ ∑
M

i¼1
Bestimated
i ΨiðωÞ: (45)

As is well-known, the least squares method gives optimal results only when the data-noise

follows Gaussian distribution. This distribution seldom occurs in practice so other norms of

the deviation vector are introduced. In order to define a robust inversion algorithm, the

minimization of the weighted norm

Ew ¼ ∑
N

k¼1
wke

2
k : (46)

with the so-called Cauchy weights

wk ¼
σ
2

σ
2 þ e2k

: (47)

is suggested (here σ
2 is an accordingly chosen positive number). Using this norm for the

solution of inverse problems provides reliable results even if the input data sets contain out-

liers [9].

There is a problem with inversion procedures involving Cauchy weights, namely the scale

parameter should be a priori given. This difficulty can easily be solved by using Steiner weights

Inversion-Based Fourier Transform as a New Tool for Noise Rejection
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[4]. In the framework of Steiner’s most frequent value method, the scale parameter σ
2 is

derived from data residuals in an internal iteration loop. In the (j + 1)th step of this procedure

Steiner’s scale factor ε2jþ1 (called dihesion) can be calculated from ε
2
j as

ε
2
jþ1 ¼ 3

∑
N

k¼1

e2k
ðε2j þ e2kÞ

2

∑
N

s¼1

1

ε
2
j þ e2s

 !2
, (48)

where the ε0 starting value in the 0th step is given as

ε0≤

ffiffiffi

3
p

2
ðemax−eminÞ: (49)

The stop criterion can be defined on an experimental basis (for example, a fixed number of

iterations). After this the Cauchy weights are modified by using the (Steiner’s) scale parameter

(Cauchy-Steiner weights)

wk ¼
ε
2

ε
2 þ e2k

: (50)

In the case of Cauchy-Steiner weights the misfit function given in Eq. (46) is nonquadratic

(because ek contains the unknown expansion coefficients) and so the inverse problem is

nonlinear which can be solved again by applying the method of the iteratively reweighted

least squares [2]. In the framework of this algorithm a 0th order solution B
⇀
ð0Þ

is derived by

using the (nonweighted) LSQ method and the weights are calculated as

w
ð0Þ
k ¼ ε

2

ε
2 þ ðeð0Þk Þ2

: (51)

with e
ð0Þ
k ¼ umeasured

k −u
ð0Þ
k , where u

ð0Þ
k ¼ ∑

M

i¼1
B
ð0Þ
i Gki and the expansion coefficients are given by the

LSQ method. In the first iteration the misfit function

Eð1Þ
w ¼ ∑

N

k¼1
w

ð0Þ
k e

ð1Þ
k

2 (52)

is minimized resulting in the linear set of normal equations

G
T
W

ð0Þ
GB

!ð1Þ
¼ G

T
W

ð0Þu
!measured

(53)

of the (linear) weighted least squares method where theWð0Þ weighting matrix (independent of

B
!ð1Þ

) is of the diagonal form W
ð0Þ
kk ¼ w

ð0Þ
k . Solving Eq. (53) one finds

Fourier Transforms - High-tech Application and Current Trends12



B
!ð1Þ

¼ ðGTWð0ÞGÞ−1GTWð0Þu
!measured

(54)

u
ð1Þ
k ¼ ∑

M

i¼1
B
ð1Þ
i Gki, e

ð1Þ
k ¼ umeasured

k −u
ð1Þ
k , w

ð1Þ
k ¼

ε
2

ε
2 þ ðe

ð1Þ
k Þ2

: (55)

The minimization of the new misfit function

Eð2Þ
w ¼ ∑

N

k¼1
w

ð1Þ
k e

ð2Þ
k

2

(56)

gives B
!ð2Þ

which serves again for the calculation of w
ð2Þ
k . This procedure is repeated giving the

typical jth iteration step

GTWðj−1ÞG B
!ðjÞ

¼ GTWðj−1Þu
!measured

(57)

with the Wðj−1Þ weighting matrix

W
ðj−1Þ
kk ¼ w

ðj−1Þ
k : (58)

(Here we note that each step of these iterations contain an internal loop for the determina-

tion of the Steiner’s scale parameter.) This iteration is repeated until a proper stop criterion

is met.

5. Numerical investigations

In order to test our inversion-based Fourier transform we generated a 2D data set in a

rectangular test area of the size [−1,1] units in both x and y directions (Figure 1). In the

homogeneous background (with the theoretical model value u = 0), there is a rectangular

anomaly (with u = 1.0) in the center of size [−0.2, 0.2] units in both directions. The sampling

intervals were dx = dy = 0.04 units so the number of data is N = 51*51. The 2D Fourier spectrum

of the (noise-free) discrete data set was calculated by means of 2D DFT algorithm, Figure 2

shows its absolute value (amplitude spectrum).

To test the outlier sensitivity of the Fourier transformation algorithms, the noisy data set I was

generated, in which random noise of Cauchy distribution (with 0 location and 0.02 scale

parameters) were added to the noise-free data set shown in Figure 1. Data set I containing

outliers is shown in Figure 3 and its DFT (amplitude) spectrum is shown in Figure 4. It can be

seen that compared to Figure 2 the DFT spectrum is highly distorted proving a sufficient noise

sensitivity to the traditional DFT.

For quantitative characterization of the results we introduce the RMS distance between two

data sets (for example noisy and noiseless) as
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Figure 1. The noise-free test surface.

Figure 2. The 2D amplitude spectrum of the noise-free data set calculated by DFT.
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Figure 3. The noisy test surface.

Figure 4. The 2D amplitude spectrum of the noisy data set calculated by DFT.
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d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
Nx

i¼1
∑
Ny

j¼1
½unoiselessðxi, yjÞ−u

noisyðxi, yjÞ�
2

v

u

u

t (59)

in the space domain (N,Nx,Nyare relevant numbers of data point in the 2D test area) and the

model distance

D ¼

1
M ∑

Mx

i¼1
∑
My

j¼1

�

Re½Unoisyðωxi,ωyiÞ�−Re½U
noiselessðωxi,ωyiÞ�

�2

þ

þ 1
M

∑
Mx

i¼1
∑
My

j¼1

�

Im½Unoisyðωxi ,ωyiÞ�−Im½Unoiselessðωxi,ωyiÞ�
�2

2

6

6

6

4

3

7

7

7

5

1
2

(60)

in the spatial frequency domain (M,Mx,Myare relevant numbers of data points). The distance

between the noisy and noiseless data sets is d = 0.0984. Using Eq. (60) we find the model

distance between the DFT spectra of the noisy (contaminated with Cauchy noise) and the

noiseless data sets: D = 0.0713.

If we apply our inversion based (IRLS-FT) method for the same noisy data set we get an

estimated spectrum shown in Figure 5. Compared to the DFT spectrum (Figure 4) this figure

represents sufficient improvement characterized by the model distance between the noiseless

and the noisy (given by IRLS-FT) spectra: D = 0.00128.

Figure 5. The 2D amplitude spectrum of the noisy data set calculated by IRLS-FT.
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It is well known that DFT and inverse DFT sequentially retrieve the noisy input data set

exactly. In our inversion-based robust Fourier transform method we solve an overdetermined

set of equations. In this case, it is important to see the space domain data set given by the

inverse Fourier transform of the IRLS-FT spectrum. This is the so-called calculated data intro-

duced previously in defining the IRLS-FT algorithm

u
theor
s

¼ ∑
I

i¼1
Bi Gs, i: (61)

The result is shown in Figure 6. Compared to the noisy data set, the new inversion-based

Fourier transform method has appreciable noise rejection capability. This is characterized by

the data distance between the noiseless data set and the space domain data calculated by the

IRLS-FT method: d = 0.0140. It can be seen, that compared to the common DFT our inversion-

based 2D Fourier transformation method has around 6–7 times lower noise sensitivity both in

space domain and frequency domain.

6. Application

The Fourier transformation is widely used in solving scientific or technical problems. Here we

present a geophysical application in the field of processing geomagnetic data set. It is well

known that the magnetic field has generally dipolar nature. It means that a magnetic body (i.e.,

wall fragments buried with soil in an archeo-geophysical measurement) usually produces

Figure 6. The 2D inverse FT of the estimated spectrum.
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doubled anomaly (positive and negative) in the magnetic map depending on the geographical

position of the measurement area. The only exceptions are the northern and the southern

magnetic poles of the Earth and the magnetic equator. In order to simplify the interpretation

of magnetic maps an elegant way was developed: the reduction to pole. This is a transforma-

tion resulting a magnetic data set that one would measure above the same magnetic body on

the north (or southern) pole.

In order to apply our robust 2D IRLS-FT method a synthetic data set was generated. The

measurement area was defined on the surface between (-100, 100) m in both of x and y

direction. An anomaly of magnetization 100 nT (with D = 2.5° declination and I = 63° inclina-

tion) was assumed between the z-coordinates (20, 10) m. A rectangular measurement system

was assumed with 5 m spacing in both directions (resulting in 1681 “measurement” data). The

surface magnetic data calculated by means of the method of Kunaratnam [16] are shown in

Figure 7. As it was mentioned, the interpretation of magnetic measurements is often supported

by reducing the data to I = 90° pole. This can be done in the spatial frequency domain by

applying the formula

Rðu, vÞ ¼ Tðu, vÞSðu, vÞ, (62)

where Tðu, vÞ is the 2D Fourier transform of the magnetic data set, Sðu, vÞ is the frequency

domain operator of the pole reduction. The reduced data set in space domain can be found by

inverse Fourier transformation of the Rðu, vÞ data set. This is shown in Figure 8 using noise-

free magnetic data and the traditional DFT in 2D Fourier transformation.

Figure 7. The noise-free synthetic data set.
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Figure 8. The data after reduction to pole (using DFT).

Figure 9. The noisy synthetic data set.
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Figure 10. The pole reduced data set (using DFT).

Figure 11. The pole reduced data set (using IRLS-FT).
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In order to simulate noisy data set the magnetic data were contaminated with random noise

following Cauchy distribution. The noisy data set and the result of pole reduction (using again

the traditional DFT) is shown in Figures 9 and 10. It can be seen, that the pole reduction is

highly distorted, which is caused by the low noise reduction capability of the 2D DFT algo-

rithm proved in the previous chapter.

In contrary, the result of reduction to pole with the use of our new inversion-based 2D

Fourier transformation algorithm is presented in Figure 11. In this case, we used Hermite

function with 900 unknown expansion coefficients (considering the number of data,

the inverse problem is sufficiently overdetermined). Figure 11 demonstrates high noise

reduction capacity (compared to Figure 10, where the traditional 2D DFT was used for

Fourier transformation). It can be seen that the pole-reduced data set is close to that

shown in Figure 8 (noise-free data), and the limits of magnetization data are [0,250] in

both cases. The result proves the successful applicability of our inversion-based 2D IRLS-

FT algorithm.

7. Discussion

We presented a new algorithm for the 2D Fourier transform. Our purpose was to increase the

noise rejection capacity of the Fourier transform. To do this, we applied the tools of inverse

problem theory. In order to discretize the continuous function of the complex spectrum,

series expansion was used. It was shown, that the Jacobian matrix of the inverse problem

can be written as the inverse FT of the basis functions used in the discretization. Because of

this reason Hermite functions were chosen as they are eigenfunctions of the Fourier trans-

formation. This selection gave the possibility of very quick computation of the Jacobian even

in 2D problems.

The unknown parameters (series expansion coefficients) are determined by solving an overde-

termined inverse problem. For having a robust 2D FT method Cauchy-Steiner weights were

applied in a robust iteratively reweighted least squares algorithm. In order to characterize the

accuracy and the noise rejection capacity of the new Fourier Transform method we made

numerical test using synthetic data sets containing random noise of Cauchy distribution and

the characteristic distance between spectra calculated by means of noisy data as well as noise-

free ones was calculated. It was shown that compared to the traditional DFT the characteristic

distances were reduced by a factor of 6–7 so the noise reduction capability of the new inver-

sion-based Fourier transform method (for abbreviation we used IRLS-FT) was clearly demon-

strated.

Fourier transformation is widely used in science and techniques, so the new robust 2D

Fourier transform method seems to be applicable on various fields of data processing

dealing with noisy data sets, especially those containing outliers. As an example, we

presented its application in reduction to pole, which is a frequently used operation in the

interpretation of geomagnetic data sets. By our experience, the new method shows sufficient

noise rejection capability compared to the traditional reduction to pole algorithm using the

well-known DFT.
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8. Conclusions

It was shown that considering the 2D Fourier transformation as an overdetermined inverse

problem could result in a procedure with increased noise rejection capability. In order to find a

robust method the iteratively reweighted least squares procedure using Cauchy-Steiner

weights is proposed. In the framework of the new inversion-based FTmethod series expansion

is used for discretization of the complex Fourier spectrum. The procedure is relatively quick,

due to the appropriate choice of the set of basis function: the Hermite functions are involved,

as they are eigenfunctions of the Fourier transformation.
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