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Abstract

A nonlinear transformation is introduced, which can be used to compress a series of 
random variables. For a certain class of random variables, the compression results in 
the removal of unknown distributional parameters from the resultant series. Hence, the 
application of this transformation is investigated from a radar target detection perspec-
tive. It will be shown that it is possible to achieve the constant false alarm rate property 
through a simple manipulation of this transformation. Due to the effect the transfor-
mation has on the cell under test, it is necessary to couple the approach with binary 
integration to achieve reasonable results. This is demonstrated in an X-band maritime 
surveillance radar detection context.

Keywords: transformations, random variable properties, radar detection, mathematical 
statistics, radar

1. Introduction

The fundamental problem to be examined in this chapter is the detection of targets embedded 

within the sea surface, from an airborne maritime surveillance radar. Artifacts of interest could 

be lifeboats or aircraft wreckage resulting from aviation or maritime disasters. From a mili-

tary perspective, one may be interested in the detection and tracking of submarine periscopes. 

Another scenario may be the detection of illegal fishing vessels or small boats used for smug-

gling of people or contraband. An airborne maritime surveillance radar has a difficult task in the 
detection of such objects from high altitude, while surveying a very large surveillance volume.

Such radars operate at X-band and are high resolution, and as such are affected by backscat-
tering from the sea surface, which is referred to as clutter. This backscattering tends to mask 
small targets and makes the surveillance task extremely difficult. One of the major issues 
with the design of radar detection schemes is the minimization of the detection of false tar-
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gets, while maximizing the detection of real targets. As a statistical hypothesis test, one can 

apply the Neyman-Pearson Lemma to produce a decision rule that achieves these objectives. 

However, in many cases, such a decision rule requires clutter model parameter approxima-

tions as well as estimates of the target strength based upon sampled returns. An issue, well 

known within the radar community, is that small variations in the clutter power level can 
result in huge increases in the number of false alarms. Since clutter power is a function of the 
underlying clutter model’s parameters, approximations of the latter will have an inevitable 
effect on the former. Hence a large body of research has been devoted to designing radar 
detection strategies that maintain a fixed level of false alarms. A detector that achieves this 
objective is said to have the constant false alarm rate (CFAR) property [1].

In order to maintain a fixed rate of false alarms, sliding window decision rules were examined 
in early studies of radar detection strategies [2–6]. These investigations have been extended 

to account for different clutter models and to address issues with earlier detector design 
in a number of subsequent analyses [7–15]. Such decision rules can be formulated as fol-

lows. Suppose that the statistic Z is the return to be tested for the presence of a target. Let 

Z
1
, Z

2
, …, Z

N
 be N statistics from which a measurement of the level of clutter is taken, via 

some function f = f (Z
1
, Z

2
, …, Z

N
). Then a target is declared present in the case where Z is 

larger than a constant times f. The constant is selected so that in ideal scenarios, the false 

alarm rate remains fixed. It is generally assumed that the clutter statistics are independent 
and identically distributed in ideal settings, and also independent of the statistic Z. This can 

be formulated as a statistical hypothesis test by letting H
0
 be the hypothesis that the cell under 

test (CUT) statistic Z does not contain a target, and H
1
 the alternative that it contains a target 

embedded within clutter. Then the test is written

  Z   ≷  
 H  

0
  
      

 H  
1
  

   τf  ( Z  
1
  ,  Z  

2
  , … ,  Z  

N
  )   (1)

where τ > 0 is the threshold constant and the notation used in Eq. (1) means that H
0
 is rejected 

when Z > τf (Z
1
, Z

2
, …, Z

N
). The probability of false alarm is given by

  Pfa = IP (Z > τf  ( Z  
1
  ,  Z  

2
  , … ,  Z  

N
  )  |    H  

0
  ) .  (2)

If τ can be determined, for a specified Pfa in Eq. (2), such that it is independent of clutter 
parameters, then the decision rule in Eq. (1) will be able to maintain the CFAR property in 

ideal scenarios. In practical radar systems, a detection scheme such as in Eq. (1) can be run 

across the data returns sequentially to allow binary decisions on the presence of targets to be 

made, which are then passed to a tracking algorithm. A comprehensive examination of such 

detection processes is included in [1].

This chapter examines an alternative approach to achieve the CFAR property, based upon a 

nonlinear transformation that is used to compress the original clutter sequence. The conse-

quence of this is that the resulting transformed series of random variables will have a fixed 
clutter power level and so permits a CFAR detector to be proposed. It is then shown how this 
transformation can be used to produce a practical radar detection scheme.

The chapter is organized as follows. Section 2 introduces the nonlinear mapping and formu-

lates a decision rule. Section 3 specializes this to the case of Pareto distributed sequences, since 
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the Pareto model is suitable for X-band maritime surveillance radar clutter returns. Section 4 
demonstrates detector performance in homogeneous clutter, while Section 5 applies the deci-
sion rules directly to synthetic target detection in real X-band radar clutter.

2. Transformations and decision rule

2.1. Mapping

In X-band maritime surveillance radar, the Pareto distribution has become of much inter-

est as a clutter intensity model due to its validation relative to real radar clutter returns 
[16–18]. This model arises as the intensity distribution of a compound Gaussian model 

with inverse Gamma texture. Consequently, the Pareto distribution fits into the currently 
accepted radar clutter model phenomenology [19]. Hence, there have been a number of 

recent advances in the design of CFAR processes under a Pareto clutter model assumption 
[20–25].

A random variable X has a Pareto distribution [26] with shape parameter α > 0 and scale 

parameter β > 0 if its cumulative distribution function (cdf) is

   F  
X
   (t)  : = IP (X ≤ t)  = 1 −   (  

β
 __ t  )    
α

  ,  (3)

for t ≥ β. The density of X follows by differentiation of Eq. (3). In order to ensure the existence 
of the first two moments, it is usually assumed that α > 2, which is an assumption that has 

been validated in fits of this model to real data [18]. This Pareto model possesses what is 

referred to as a duality property in Ref. [20]. To introduce this, recall that if Y is an Exponential 

random variable with unity mean, its cdf is given by

   F  
Y
   (t)  = 1 −  e   −t   (4)

for t ≥ 0. Then it can be shown that the Pareto model in Eq. (3) can be related to Eq. (4) via the 
random variable relationship

  X = β  e    α   −1 Y  .  (5)

Other random variables of interest in radar signal processing, such as the Weibull, can also 
be expressed in a form similar to Eq. (5). Hence, for the purposes of generality, suppose 

{X
j
, j ∈ IN := {0, 1, 2, …}} is a sequence of homogeneous random variables with common sup-

port and that θ
1
 and θ

2
 are two fixed real constants. Define a sequence of random variables 

{Z
j
, j ∈ IN} by

   Z  
j
   =  θ  

1
    X  
j
   θ  

2
    .  (6)

The sequence produced via Eq. (6) is a generalization of the Pareto model (3). Next define a 
nonlinear mapping ζ : IR+ × IR+ × IR+ × IR+ → IR+ ∪ {0} by

  ζ ( x  1  ,  x  2  ,  x  3  ,  x  4  )  =  |  
log  ( x  1  )  − log  ( x  2  ) 

  _____________  
log  ( x  3  )  − log  ( x  4  ) 

  | ,  (7)
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where each x
j
 > 0,   x  

3
   =  x  4    and IR+ is the positive real numbers. Then the following result is rela-

tively easy to prove:

Lemma 2.1 Suppose {Z
j
, j ∈ IN} is a sequence of random variables defined via Eq. (6). Then the 

sequence {W
j
, j ∈ IN} with W

j
 := ζ(Z

j
, Z

j + 1
, Z

j + 2
, Z

j + 3
) does not depend on θ

1
 and θ

2
.

The proof of Lemma 2.1 is now outlined. Supposing that Z
j
, Z

j + 1
, Z

j + 2
 and Z

j + 3
 are represented 

in the form defined via Eq. (6) it follows that

   

 W  
j
   =  |  

log  ( θ  
1
    X  

j
   θ  

2
   )  − log  ( θ  

1
    X  

j+1
   θ  

2
    ) 
  ___________________  

log  ( θ  
1
    X  

j+2
   θ  

2
    )  − log  ( θ  

1
    X  

j+3
   θ  

2
    ) 

  | 

    =  |  
 θ  

2
   log  ( X  

j
  )  −  θ  

2
   log  ( X  

j+1
  ) 
  ___________________  

 θ  
2
   log  ( X  

j+2
  )  −  θ  

2
   log  ( X  

j+3
  ) 
  |    

=  |  
log  ( X  

j
  )  − log  ( X  

j+1
  ) 
  ________________  

log  ( X  
j+2

  )  − log  ( X  
j+3

  ) 
  | ,

    (8)

where properties of the logarithmic function have been utilized. Since Eq. (8) does not depend 

on θ
1
 and θ

2
, the proof is completed.

Lemma 2.1 suggests that if the original sequence of random variables is processed in 

4-tuples, the compressed sequences’ statistical structure is only dependent on the random 
variables X

j
. Observe that the Lemma does not require an independence assumption. Thus 

if sequence {X
j
} has no unknown statistical parameters, the process generated by Eq. (7) also 

has no unknown parameters. This suggests that processing of a data sequence in terms of 

4-tuples may be an effective may in which to achieve the CFAR property. The next subsec-

tion clarifies this.

2.2. Decision rule

In order to propose a decision rule exploiting the transformation introduced in Lemma 2.1, it 

is necessary to focus first on a series of four returns. Hence, suppose we have a CUT statistic Z, 

and three clutter measurements are available, denoted Z
1
, Z

2
 and Z

3
. Let H

0
 be the hypothesis 

that the CUT contains no target, and H
1
 the hypothesis that it does contain a target embedded 

within clutter. Then, based upon Eq. (7), a linear threshold test takes the form

  ζ (Z,  Z  
1
  ,  Z  

2
  ,  Z  

3
  )    ≷  

 H  
0
  
      

 H  
1
  

   τ,  (9)

where τ > 0 is the threshold. Based upon Lemma 2.1 if the clutter is modelled by Eq. (6), then 
it is clear that under H

0
, the Pfa of the test in Eq. (9) will not depend on θ

1
 or θ

2
, implying it is 

CFAR with respect to these parameters. Furthermore, an auxiliary motivation for defining a 
linear threshold detector such as Eq. (9) is that in the cases where it is assumed that one has a 

priori knowledge of clutter parameters, linear threshold detectors are ideal, or asymptotically 
optimal, and hence provide the maximum probability of detection within the class of sliding 

window decision rules [27].
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The test in Eq. (9) can also be re-expressed in terms of the preprocessed clutter statistics. In 
particular, it can be shown to be equivalent to rejecting H

0
 if

   

Z >  Z  
1
    e   τ |log ( Z  

2
  ) −log ( Z  

3
  ) |  

   or  
Z >  Z  

1
    e   τ |log ( Z  

2
  ) −log ( Z  

3
  ) |  
   (10)

with the appropriate choice for τ, which can be determined from the corresponding Pfa 

expression for Eqs. (9) or (10).

Observe that this test is not of the usual form found in the radar signal processing literature, 
since it compares a CUT with a measurement of clutter based upon three statistics, and not 
upon a sample of predetermined size. This will be discussed subsequently in terms of practi-

cal implementation of the test in Eq. (10). The next section discusses the application of Eq. (10) 

to the Pareto clutter case, enabling the determination of τ.

3. Specialization to the Pareto Clutter model

3.1. Distributions under H
0

Since the motivation of the work developed here is the design of radar detection schemes for 

maritime surveillance radar, the results of the previous section are specialized to the Pareto 

case. In order to apply Lemma 2.1, it is necessary to determine the distribution of the resultant 

sequence produced by ζ under H
0
. The following is the key result:

Corollary 3.1 In the case where the sequence of random variables in Lemma 2.1 is Pareto distributed 
and independent, the cdf of the sequence processed by ζ is given by

   F  P   (t)  =   t ___ 
t + 1

   ,  (11)

for t ≥ 0.

This can be recognized as a Pareto distribution, with support the nonnegative real line and 

shape and scale parameter unity. More specifically, P = X + 1, where X has density (3) with 

α = β = 1. This illustrates the cost of the nonlinear transformation approach: although the 

resultant series of clutter has no unknown clutter parameters, it is from a distribution with 
no finite moments. The independence assumption is adopted for analytical tractability and is 
consistent with the assumption that independent and identically distributed clutter returns 
are available, as in the formulation of the test in Eq. (1).

To prove Corollary 3.1, suppose that η
1
 and η

2
 are two independent random variables with cdf 

(4). Then by analyzing the difference η
1
 − η

2
, it can be shown that it has cdf

   F  
 η  

1
  − η  

2
  
   (t)  =  { 

1 −   1 __ 2    e   −t ,
  

 for t ≥ 0
   

  1 __ 2    e   t 
  

 for t < 0 ,
    (12)
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which is that of a Laplace distribution. Then it follows that

   F  
 | η  

1
  − η  

2
  | 
   (t)  = IP (− t ≤  η  

1
   −  η  

2
   ≤ t)  = 1 −  e   −t  ,  (13)

where Eq. (12) has been applied, and t > 0. Thus the modulus of the difference is also exponen-

tially distributed with unit mean.

Supposing that κ
1
 and κ

2
 are two independent random variables with cdf Eq. (13), then by 

statistical conditioning

   F  
 ( κ  

1
   /   κ  

2
  ) 
   (t)  = IP ( κ  

1
   ≤ t  κ  

2
  )  =  ∫ 

0
  
∞
     IP ( κ  

1
   ≤ tω)   e   −ω  dω,  (14)

and an application of Eqs. (4)–(14) shows that the ratio has cdf Eq. (11) with an evaluation of 
the integral. This establishes the result in Corollary 3.1, as required.

3.2. Thresholds and the CUT

Based upon Corollary 3.1 the univariate threshold for the Pareto case is given by

  τ =  Pfa   −1  − 1.  (15)

The threshold (Eq. (15)) illustrates the issues with the nonlinear mapping, as this threshold will 

be quite large for appropriate Pfa. Note that for a Pfa of 10− 6, τ = 106 − 1. This threshold will 
increase as the Pfa decreases. In the Pareto setting, it is shown in Ref. [20] that an ideal detector 

has its threshold set via β(Pfa)− 1/α. In the case where α = 4.7241 and β = 0.0446 (which correspond 
to spiky clutter returns) and with the Pfa set to 10− 6, this threshold is 0.8312 by contrast. Thus 

the nonlinear mapping, in the process of compressing the original data series, can be used to 

achieve the CFAR property with Eq. (10), but detection performance may be unacceptable.

To explore this further, it is informative to examine the detection scheme in Eq. (10) when 

there is a target model present. Suppose Ξ is the CUT statistic, in the case where a target 

is present in the clutter, in the pretransformed data. Let   Ξ ^    be the CUT in the transformed 

domain, meaning the detector Eq. (10) when there is a target present so that T is the intensity 

measurement of a return signal and clutter in the complex domain. Then by applying the left-
hand expression for Pareto random variables in Eq. (5), we can write

   Ξ ^   = α |  
log  (Ξ /  β)  −  E  

1
  
 __________ 

 E  
2
   −  E  

3
  
  | ,  (16)

where each E
j
 is an independent exponentially distributed random variable with unit mean. 

Then with an application of results from the proof of Corollary 3.1, since |E
2
 − E

3
| has the 

same exponential distribution, one can apply statistical conditioning on E
1
 and |E

2
 − E

3
| to 

show that the distribution function of the transformed CUT is

   

 F  
 Ξ ^  
   (t)  =  ∫ 

0
  
∞
      ∫ 

0
  
∞
       e   −θ   e   −ϕ  IP ( |log  (Ξ /  β)  − θ|  ≤   

ϕt
 ___ α  ) d𝜃d𝜙

     
=  ∫ 

0
  
∞
     ∫ 
0
  ∞     e   −θ  e   −ϕ  IP (β  e   θ−  

ϕt
 ___ α    ≤ Ξ ≤ β  e   θ+  

ϕt
 ___ α   ) d𝜃d𝜙

     
=  ∫ 

0
  
1
      ∫ 

0
  
1
     IP (β  x   −1   y     

t __ α    ≤ Ξ ≤ β  x   −1   y   −  t __ α   ) dxdy
     

=  ∫ 
0
  
1
      ∫ 

0
  
1
       F  Ξ   (β  x   −1   y   −  t __ α   )  −  F  Ξ   (β  x   −1   y     

t __ α   ) dxdy,

    (17)
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where the change of variables x = e− θ and y = e− φ has been applied. Thus the transformed CUT 

can be generated from the pretransformed CUT via Eq. (17). To examine this, Figure 1 plots 

Eq. (17) in the case of a Swerling 1 target model embedded within Pareto distributed clutter 
with α = 4.7241 and β = 0.0446. A Swerling I target model is essentially a bivariate Gaussian 
model, which is combined with the Pareto model by embedding the latter into a compound 
Gaussian process with inverse Gamma texture in the complex domain, and then taking modu-

lus squared to produce the intensity measurement [20]. The distribution function of Ξ can 

also be found in Ref. [20] for the case of interest. Figure 1 shows the pretransformed CUT 

as well as Eq. (17), in the cases where the signal to clutter (SCR) ratio is 1, 10, 50, and 100 dB. 
For the case of a 1 dB target model, the CUT has its range of potential values increased under 

the transformation. This is also the same for the 10 dB case. Interestingly, for the 50 dB and 

100 dB cases, the situation is reversed. Hence, as the SCR increases, the nonlinear mapping 

suppresses the target SCR, reducing the range of admissible values for the transformed CUT. 

This suggests that although the nonlinear mapping removes unknown clutter parameters, it 
may also impede detection due to target suppression. If the threshold is set via Eq. (15), then it 

is clear from Figure 1 that it will be very difficult to detect targets with a reasonably small Pfa. 
Hence, the new detection scheme must be combined with an integration process to rectify this.

4. Performance in homogeneous clutter

4.1. Methodology and data

In order to examine the performance of the proposed detection scheme (9), clutter is simu-

lated under the assumption of a Pareto clutter model, which has been found to fit Defence 
Science and Technology Group’s (DSTG’s) real X-band maritime surveillance radar data sets. 
Ingara is an experimental X-band imaging radar which has provided real clutter for the analy-

sis of detector performance [28]. A trial in 2004 produced a series of clutter sets that have been 

Figure 1. Comparison of CUT for the pretransformed data (denoted pre) and data processed via the nonlinear mapping 

(denoted post). The CUT is plotted for a Swerling 1 target model with a given SCR as indicated.
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analyzed from a statistical perspective in Ref. [29]. During the trial, the radar operated in a 

circular spotlight mode, surveying the same patch of the Southern Ocean at different azimuth 
and grazing angles. Additionally, the radar provided full polarimetric data. For the purposes 

of the numerical work to follow, focus is restricted to one particular data set. This is run 34683, 
at an azimuth angle of 225°, which is approximately in the up wind direction. Additionally, 

the numerical analysis focuses on the horizontal transmit and receive (HH) case.

For performance analysis in homogeneous clutter, the data is simulated with distributional 
parameters matched to those obtained from the Ingara data set. The data consists of 821 

pulses with 1024 range compressed samples, from which maximum likelihood estimates of 
the distributional parameters can be obtained from the intensity measurements. Under the 

Pareto model assumption, the estimates are   α ^   = 4.7241  and   β ^   = 0.0446 .

As remarked previously, it is necessary to couple (10) with an integration scheme to enhance 

its performance. The integration scheme used for this purpose is binary integration, which is 

well-described in Ref. [30], and an application of it in a Pareto distributed clutter environment 
can be found in Ref. [31]. Such a process applies a series of M ≥ 1 tests of Eq. (10), and then 
conclude that if at least S out of M return a detection result, then a target is likely to be pres-

ent in the radar clutter [30], where S ∈ {1, 2, …, M}. Selection of an appropriate S is outlined 

in Ref. [31]. Essentially, it is pointed out in Ref. [32] that for a specified univariate cumulative 
detection probability and false alarm rate and a fixed number of maximum binary integration 
returns M, there exists an optimal S which minimizes the required signal to clutter ratio, and 
maximizes the binary integration gain. This can be done visually or numerically by plotting 
the minimum SCR as a function of S, under the assumption of a certain signal model. This 

approach, and the analysis in Ref. [31], shows that in the current context, the choice of S = 3 

with M = 8 should provide good results. Relative to the problem addressed in this chap-

ter, applying binary integration with a linear threshold detector in the transformed clutter 
domain is not computationally expensive, and thus is seen as a reasonable solution.

If Pfa
BI

 denotes the Pfa for binary integration, then it can be expressed in terms of the univari-

ate detection processes Pfa through the equation

   Pfa  
BI

   =  ∑ 
j=S

  
M

      ( 
M

  j  )   Pfa   j    (1 − Pfa)    M−j  .  (18)

The threshold τ is set via Eq. (18) coupled with the univariate Pfa from Eq. (9).

To simulate detection performance, the probability of detection (Pd) is estimated, using 106 

Monte Carlo runs based upon a Swerling 1 target model assumed for the CUT. For each SCR, the 

binary integration process is run using S = 3 out of M = 8 binary integration. The motivation for 

these choices can be found in Ref. [31]. In order to assess the robustness of the detection scheme 

to interference, up to two interfering targets are inserted into the clutter measurements to give 
an indication of the performance with interference. Thus independent Swerling 1 targets, with 

interference to clutter ratio (ICR) of 1 dB, are applied to Z
1
 (denoted Inter 1 in the plots), then to 

Z
2
 (denoted Inter 2), and then to both Z

1
 and Z

2
 (denoted Inter 3) in the univariate decision rule 

in Eq. (9). A real spurious target may only appear in a subset of the clutter measurements and so 
this analysis of interference can be viewed as an upper bound on poor performance.
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4.2. Receiver operating characteristic curves

Receiver operating characteristic (ROC) curves are used to examine the performance, which 
plots the probability of detection as a function of the false alarm probability, when the target 

in the CUT is at a fixed SCR. Figures 2–4 provide examples of the performance of the new 

detector Eq. (10) with binary integration and compares it to the performance of some of the 

recently introduced detectors designed for operation in a Pareto clutter model environment. 
For a CUT Z and clutter range profile Z

1
, Z

2
, …, Z

N
, the Geometric Mean (GM) CFAR is

  Z   ≷   
 H  

1
  

    
 H  

0
  
     β   1−Nζ   ∏ 

j=1
  

N

       Z  
j
  ζ  ,  (19)

which is shown in Ref. [20] to have its threshold set via ζ = Pfa− 1/N − 1. Similarly, an Order 
Statistic (OS)-CFAR has been analyzed in Ref [22], which is given by

  Z   ≷   
 H  

1
  

    
 H  

0
  
     β   1− ν  

j
     Z  

 (j) 
   ν  

j
     ,  (20)

which has its threshold multiplier ν
j
 set via inversion of the Pfa equation given by

  Pfa =   N ! ______ 
 (N − j)  !     

Γ ( ν  
j
   + N − j + 1) 

  __________ Γ ( ν  
j
   + N + 1) 

   ,  (21)

where the OS index 1 ≤ j ≤ N and the notation ν
j
 emphasizes the fact that ν

j
 depends on the 

selected OS index j. Observe that both these decision rules require a priori knowledge of β. 

In order to provide a valid comparison with Eq. (10), these detectors have been applied with 

N = 3 and coupled with binary integration. Due to this, there are three choices available for j, 

corresponding to a minimum (denoted MIN, when j = 1), median (MED, j = 2), and maximum 

(MAX, j = 3).

Figure 2. Comparison of detectors with a small target SCR.
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Figure 2 compares the performance of these decision rules, where the detection process (10) 

coupled with binary integration is denoted as the nonlinear mapping (NLM). In this case, the 

CUT SCR is 5 dB, representing a small target. As can be observed, the new decision rule has 

superior performance. The same experiment is repeated in Figure 3, where the CUT SCR is 

15 dB, and then it is increased to 20 dB in Figure 4. These results show that the new detec-

tion process has superior performance, while not requiring a priori knowledge of the Pareto 

scale parameter. These results validate the application of Eq. (10) to target detection in spiky 

X-band clutter with binary integration.

It is interesting to note that as M is increased, there is very little gain in performance. To dem-

onstrate this, Figure 5 repeats the same scenario in Figure 4 except M has been increased to 

Figure 4. Decision rule performance with a CUT SCR of 20 dB.

Figure 3. Detector performance with a larger SCR in the CUT.

Advances in Statistical Methodologies and Their Application to Real Problems152



30. Comparing Figures 4 and 5, it is clear that there is very little gain. However, the computa-

tional complexity increases dramatically as M is increased. Hence, in a practical implementa-

tion of the binary integration process, it is more efficient to select M small.

4.3. Effect of interference

Next the cost of interference on the new decision rule is examined, and for brevity, only this 

decision rule is considered. Figure 6 shows the case where the CUT has SCR of 5 dB, and the 

decision rule (10) coupled with binary integration is denoted BI, while the three interference 

cases are marked appropriately. Here we observe quite good performance that decreases with 

the interference. Figure 7 shows the result of increasing the SCR in the CUT to 20 dB. The 

result is an expected detection performance improvement as shown.

Figure 5. Decision rule performance with a CUT SCR of 20 dB, where the binary integration is S = 3 out of M = 30.

Figure 6. Performance of new detector when subjected to interference.

Nonlinear Transformations and Radar Detector Design
http://dx.doi.org/10.5772/65677

153



5. Performance in real data

As a final test of the proposed detection scheme, it was run directly on the Ingara data set 
under consideration, with the insertion of synthetic Swerling 1 target and interference as for 

the homogeneous case. A sliding window was run across the data sequentially, and detec-

tion performance was estimated by running the 3 out of 8 detection scheme, resulting in a 

run length of 840,672. The Ingara data is slightly correlated from cell to cell and so the detec-

tor Eq. (9), which has threshold set via an independence assumption, becomes a suboptimal 

decision rule. Detection performance under both clutter model assumptions is plotted on the 
same ROC curve to compare performance on the real data more easily. The same scenario is 
repeated as for the analysis under homogeneous independent clutter.

Figure 8 shows detection performance with the CUT SCR of 5 dB, while Figure 9 repeats the 

same numerical experiment as for Figure 8, except the CUT has SCR of 20 dB. Comparing 

Figure 7. ROC for higher SCR with interference.

Figure 8. Performance of the detectors on the Ingara data directly.
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Figure 8 with Figure 6 we observe that the effects of correlation are having an effect on the 
performance in real data. The new decision rule is designed to operate in independent homo-

geneous clutter returns, and so there is a serious variation in performance. The same situation 
is observed at a larger CUT SCR (comparing Figures 9 and 7).

6. Conclusions

A nonlinear transformation was introduced and shown to remove clutter parameter depen-

dence for a class of statistical models. This was used to formulate a simple linear threshold 

detector in the transformed clutter domain. Due to issues with the magnitude of detection 
thresholds, it was necessary to couple the approach with binary integration.

Analysis of detection performance in simulated clutter showed good detection performance. 
Interference had a strong impact on performance as expected. When the detection process 
was applied directly to real data, similar results were observed. Nonetheless, the nonlinear 

transformation, coupled with binary integration, resulted in reasonable detection perfor-

mance while guaranteeing the CFAR property is preserved.
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Figure 9. Second example of performance of the detectors on the Ingara data directly.
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