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Abstract

This chapter reviews two oleaginous fruits that are widely consumed by people in the 
Amazon region: Bacaba (Oenocarpus bacaba) and Açaí (Euterpe oleracea). Besides their 
food and the folk medicinal uses, studies suggest that substances present in both berries 
have antioxidative effects, antimicrobial, and therapeutic properties such as hypocholes-
terolemic and neuroprotection effects. These therapeutic effects are related to phenolic 
compounds, anthocyanins, and fatty acids, which can prevent serious problems such 
as coronary heart disease, hypertension, and depression. The use of supercritical fluid 
technology is described as a technique to obtain the best extracts of bacaba and açaí, as 
well as their valuable constituents. Indubitably, this technology is a great tool for human 
health and all with the advantage of presenting nontoxic solvents such as carbon dioxide 
or water. Açaí and bacaba fruits represent not only food but also a source of compounds 
that can work in both prevention and treatment of diseases.

Keywords: Amazon, açaí, bacaba, bioactive compounds, antioxidants, functional food

1. Introduction

The Brazilian Amazon represents one of the richest biomes found in the world. It presents 

many sources of plants, including native ones not yet explored, but that have potential for 

use. The economic importance that the aromatic plants represent to the Amazon region is 
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associated with the application of their vegetable oils and aromas in technological and indus-

trial processes. Because of this, there is a greater investment in such plants extraction sector, 

causing an expansion of the domestic and international markets.

Because of this biodiversity, there is a wide variety of oleaginous species, as is the case of andi-

roba (Carapa guianensis), tucumã (Astrocaryum vulgare), buriti (Mauritia flexuosa), palm (Elaeis 

guineensis, Jacq), açaí (Euterpe oleracea), and bacaba (Oenocarpus bacaba). These species experi-

mentally have a high yield in vegetable oils, with the potential for production of biologically 

active natural products, the so-called bioactive compounds, which have a high value added. 

Among these, the fat-soluble vitamins carotenoids (provitamin A), tocopherols (provitamin 

E and antioxidant), dyes, and flavonoids (anthocyanins, which are dyes with antioxidant 
effects) can be highlighted.

The characteristics of the Amazon region are conducive to the proliferation of palm trees, 

among which there are the oleaginous ones that are commercially cultivated with already 

fully established management technology, as is the case of açaí and bacaba, which can be 

considered new “superfruits.” The consumption of these fruits pulps has been increasing, 

mainly due to the benefits that are being showed by scientific papers. Açaí, for example, has a 
high economic potential, mainly due to its use in the preparation of açaí beverages, which are 

exported all over the world as an energetic drink [1].

Besides the folk use as a drink, studies suggest that substances present in both berries have 

therapeutic properties such as hypocholesterolemic and neuroprotection effects. These 
 therapeutic effects are related to fatty acids, which can prevent serious problems such 
as  coronary heart disease, hypertension, and depression [2, 3]. The presence of pheno-

lic  compounds in their composition also gives them properties such as antimicrobial and 

 antioxidant effects [4, 5].

Another group of compounds with significant presence in açaí and bacaba is anthocyanins. 
Anthocyanins are plant-derived compounds belonging to the flavonoids subgroup of phe-

nolic compounds. Besides antioxidative properties, anthocyanins are the focus of studies for 

application on humans against diseases such as cancer and Alzheimer’s [6–8].

Among the various methods of obtaining natural extracts, the process of supercritical fluid 
extraction has become appropriate and of great interest to the food industry, pharmaceutical, 

and cosmetic technology. It provides the obtainment of products free of residual solvents and 

with superior quality, while preserving the organoleptic properties of the material. The most 

used solvent in the supercritical technology is carbon dioxide (CO
2
), which is inert, nontoxic, 

has a high solubility, and allows performing low-temperature processes, which are perfect 

for the extraction of thermosensible compounds, as is the case of, for example, anthocyanins.

2. Açaí and bacaba as functional food

The food industry has high expectations in food products that meet the consumers’ demand 

for a healthy lifestyle. In this context, functional food plays a specific role, which is not only to 
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satisfy hunger but also to provide humans the necessary nutrients. It also prevents nutrition-

related diseases and increases their physical and mental well-being [9].

In Brazil, there are two kinds of functional food: açaí and bacaba (see Figure 1), which are 

oleaginous fruits, present black-violet color, and are from typical palm trees in the Amazon 

region. They belong to the Arecaceae family and when processed with water, form an emul-

sion. Both are commercially exploited for the production of foods and beverages. The juices 

of bacaba and açaí are considered tasty and much appreciated by the Amazonian population. 

In the period between harvests of açaí, from December to April, bacaba has the highest sales 

potential, in a relay system [10, 11].

The functional quality of bacaba oil was analyzed by Pinto [12] through the determination of 

atherogenicity index (AI) and thrombogenicity index (TI) proposed by Ulbricht and Southgate 

[13] and hypocholesterolemic/hypercholesterolemic ratio (h/H) suggested by Santos-Silva et 

al. [14]. The results of AI, TI, and h/H were satisfactory. Although the values of AI and TI 
were low, h/H was high in levels that show bacaba oil could be regarded as cardioprotective, 

suggesting the direct consumption of it in the form of table oil, similar to olive oil, or in encap-

sulated form as a phytopharmaco. In the same study, bacaba oil was used for coating iron 

oxide for the synthesis of Fe
3
O4 magnetic nanoparticles (MNP). The results showed that the 

oil well replaced the oleic acid, with the formation of MNP with morphological and desirable 

Figure 1. Bacaba (a) and açaí (b) berries.
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magnetic characteristics. MNP have therapeutic features, being used as drug carriers in the 

treatment of cancer by magnetic induction, reducing collateral effects to patients.

Açaí, being a source of fibers and rich in antioxidants, has considerable potential for nutri-
tional applications and in the health field as a functional food or dietary supplement [15]. The 
work conducted by Barbosa et al. [2] evaluated the effect of a diet with daily consumption 
of açaí pulp in the prevention of oxidative damage by measuring the activity of antioxidant 

enzymes and the use of protein biomarkers in healthy women. The results showed that the 

açaí intake increased the activity of catalase, an intracellular enzyme which is also known as 

hydroperoxidase, able to decompose the hydrogen peroxide (H
2
O

2
), which is associated with 

various pathologies connected to oxidative stress; the results also showed an increase in total 

antioxidant capacity and a reduction in the production of reactive oxygen species. These stud-

ies reveal the antioxidant effect of açaí, increasing the understanding of its beneficial health 
properties.

The antioxidants found in açaí and bacaba are necessary to prevent the formation and oppose 

the actions of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which 

are continuously formed in the human body. Mechanisms of free radicals such as these are 

related to various human diseases, including cancer, atherosclerosis, malaria, rheumatoid 

arthritis, and neurodegenerative diseases. Many components of the diet such as carotenoids 

and plant pigments are suggested as important antioxidants; however, the interest in phe-

nolic compounds of plants, particularly flavonoids, is also increasing. Thus, diets based on 
functional foods rich in antioxidants are important for the maintenance of human health 

[16–19].

3. Chemical composition of açaí and bacaba

The nutritional properties of Amazonian palm trees are related to the composition of fatty 
acids and phytochemical compounds, the so-called bioactive compounds. Açaí and bacaba 

are some of the species of fruits that have become quite attractive, not only for lipid content 
they present, but also for their composition of bioactive compounds.

The fatty acids present in fruit species such as these are considered one of the most important 
constituents in living organisms due to their structural role in cell membranes and as meta-

bolic energy sources [20]. Those considered essential to life are known as essential unsatu-

rated fatty acids and must be supplied by food. The main representatives are omega-9 (ω-9), 
omega-6 (ω-6), and omega-3 (ω-3). Of these groups, the α-linolenic acid (n-3), the linoleic and 
arachidonic acids (n-6), and the oleic acid (n-9) can be highlighted [21]. The vegetable oils, 

such as bacaba and açaí, are good sources of these components and fat-soluble vitamins such 

as vitamins A, D, E, and K [22].

According to Martin et al. [23], the availability of ω-3 and ω-6 fatty acids in the human spe-

cies depends on the food supply, and moreover, it is important to know what are the sources 

capable of supplying these needs. Table 1 shows some sources of monounsaturated and poly-

unsaturated fatty acids of fruits that come from palm trees and are considered as dietary 
sources of fatty acids.
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Batista et al. [8] obtained the fatty acids profile of lyophilized açaí pulp extracts obtained by 
extraction with supercritical CO

2
, as shown in Table 2.

Foods rich in fatty acids, such as bacaba and açaí, can play an important role in human food 
base, because the linolenic, linoleic, and oleic acids present in these raw materials are consid-

ered functional and exhibit inflammation-reducing and immunity-increasing properties in 
the human body, as demonstrated by Wallace et al. [31], Schwab and Serhan [32], Serhan et 

al. [33], and Calder [34].

In addition to fatty acids, various bioactive compounds can be found in these fruits. 
Yamaguchi et al. [1] report that about 90 substances have been found in açaí, of which 

approximately 31% consist of flavonoids, followed by 23% of phenolic compounds, 11% 
of lignoids, and 9% of anthocyanins. These are compounds that are correlated with high 

biological activity.

Fruits that 

come from 

palm trees

Part of the fruit 

analyzed

(C12:0) 

lauric (%)

(C14:0) 

myristic (%)

(C16:0) 

palmitic (%)

(C18:1) 

oleic (%)

(C18:2) 

linoleic (%)

(C18:3) 

linolenic (%)

Babaçu 

(Orbignya 

phalerata 

Martius)1

Kernel 44.0 17.0 8.0 14.0 2.0 –

Buriti 

(Mauritia 

flexuosa L.f.)2

Mesocarp – – 18.0 73.5 2.7 2.1

Dendê (palm) 

(Elaeis olifera)3

Endocarp 47.9 16.1 8.4 16.2 2.7 Traces

Pupunha 

(Bactris 

gasipaes)4

Mesocarp – – 35.20 51.7 4.9 1.2

Tucumã 

(Astrocaryum 

vulgare)5

Epicarp + 

mesocarp

– 0.10 24.6 65.1 2.6 0.2

Bacaba 

(Oenocarpus 

bacaba)6

Mesocarp 0.18 0.59 32.27 40.82 9.78 1.93

Bacaba 

(Oenocarpus 

bacaba)7

Mesocarp – – 30.6 47.3 20.6 –

Patauá 

(Jessenia 

bataua)5

Mesocarp – 0.10 13.3 76.7 3.9 0.1

Açaí (Euterpe 

oleracea)3

Mesocarp – – 25.9 54.9 11.5 1.1

Sources: 1Lima et al. [24], 2Tavares et al. [25], 3Rogez. [26], 4Yuyama et al. [27], 5Rodrigues et al. [28], 6Montúfar et al. [29], 
7Santos et al. [30].

Table 1. Content of the main fatty acids present in palm tree fruits consumed in the human diet.
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Of these components, anthocyanins have received great attention due to their potential 
benefits in preventing chronic diseases, including cancer and Alzheimer [8]. They are gly-

cosides of anthocyanins and have, at their core, the flavylium cation. They belong to the 
group of flavonoids and subgroup of phenolic compounds. These compounds are respon-

sible for defining the color of a variety of vegetables, including purple color in açaí [1]. They 
are hydrophilic, stable at acid pH, sensitive to light exposure, elevated temperatures, and 

presence of O
2
.

To obtain bioactive substances such as anthocyanins, different extraction techniques have 
been developed with the aim of reducing the extraction time and the solvent consumption, 

increasing the extraction yield and improving the quality of the extracts. Among these 

Content of fatty acids in % g/100mg

Fatty 50°C 50°C 50°C 60°C 60°C 60°C 70°C 70°C 70°C

Acid 150 bar 220 bar 350 bar 190 bar 270 bar 420 bar 220 bar 320 bar 490 bar

C8:0 0.69 1.26 0.83 0.77 1.58 0.40 0.33 2.27 0.02

C10:0 0.03 0.02 0.02 0.04 0.03 – – –

C12:0 0.07 0.17 0.17 0.13 0.19 0.25 0.07 0.33 0.14

C13:0 – – – – – – 0.02 0.21 –

C14:0 0.13 0.24 0.16 0.19 0.21 0.30 0.13 0.42 0.18

C15:0 – – – – – – – – –

C16:0 28.15 30.91 23.47 26.29 29.20 28.58 25.41 90.86 27.81

C16:1 4.95 0.03 5.49 6.14 7.08 6.83 4.16 0.08 5.81

C17:0 – 0.04 0.14 0.03 – – 0.05 0.19 0.03

C18:0 1.05 1.25 1.02 0.80 1.14 1.16 1.43 5.35 1.33

C18:1 64.86 65.81 52.73 50.78 60.42 62.41 55.71 0.23 64.65

C18:2 – – 15.54 14.80 – – 12.59 – –

C18:3 – – – – – – – – –

C20:0 0.08 – – – 0.10 – – – –

C22:0 – 0.22 0.38 – – – 0.04 – –

SFA 30.18 34.15 26.22 28.25 32.48 30.74 27.53 99.67 29.53

MUFA 69.81 65.84 58.23 56.93 67.51 69.25 59.87 0.31 70.46

PUFA – – 15.54 14.80 – 12.59 – –

S/U 0.43 0.52 0.35 0.39 0.48 0.44 0.38 321.52 0.42

C8:0 (caprylic acid); C10:0 (capric acid); C12:0 (lauric acid); C13:0 (tridecanoic acid); C14:0 (myristic acid); C15:0 
(pentadecanoic acid); C16:0 (palmitic acid); C16:1 (palmitoleic acid); C17:0 (margaric acid); C18:0 (stearic acid); C18:1 

(oleic acid); C18:2 (linoleic acid); C18:3 (linolenic acid); C20:0 (arachidic acid); C22:0 (behenic acid); SFA (saturated fatty 
acids); MUFA (monounsaturated fatty acids); PUFA (polyunsaturated fatty acids).

Table 2. Content of fatty acids in açaí pulp extracts obtained by extraction with supercritical CO
2
.
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techniques are included: ultrasound assisted extraction, microwave assisted extraction, 

supercritical fluid extraction, and accelerated solvent extraction [35].

The choice of a method for extracting anthocyanins depends largely on the purpose of 

extraction and the nature of the constituent molecules of these compounds [36]. Therefore, 

as these pigments are very soluble in water, they are easily extracted by polar solvents. 

Their extraction typically involves the use of aqueous acidified solutions of ethanol, meth-

anol, or acetone [37]. However, these solvents have also used limitations such as lower 

extraction efficiency compared to other solvents, as well as a lower durability of their 
extracts [38, 39].

References Application Anthocyanins quantification

Finco et al. [40] Characterization and analysis of total phenolic 

compounds and total flavonoids of bacaba extract 
(Oenocarpus bacaba Mart.) by HPLC-DAD-MS

The total content of monomeric anthocyanin 

was evaluated by a differential pH method 
described by Sellappan et al. [41]. The 
anthocyanin cyanidin-3-glucoside was used 

as pattern

Gouvêa et al. [42] Isolation of anthocyanins patterns (cyanidin-
3-O-glucoside and cyanidin-3-O-rutinoside) of 

lyophilized açaí (Euterpe oleracea Mart.) by HPLC

The isolation of anthocyanins was carried 

out by HPLC. The anthocyanin identification 
in the lyophilized açaí was done by mass 

spectrometry. They used the anthocyanins 

patterns: cyanidin-3-O-glucoside and 

cyanidin-3-O-rutinoside

Santos et al. [43] This study evaluated the encapsulation of 

anthocyanin extract obtained from jabuticaba 

(Myrciaria cauliflora) using supercritical CO
2
 as 

solvent and ethanol as co-solvent

In the extraction of jabuticaba anthocyanin, 

supercritical CO
2 
was used together with the 

co-solvent ethanol in certain conditions of 

pressure, temperature, and flow ratio

Paes et al. [44] Extraction of anthocyanins and phenolic 

compounds of blueberry (Vaccinium myrtillus L.) 

using supercritical CO
2
 and water and ethanol as 

co-solvents

HPLC and mass spectrometry. Pelargonidin 

was used as pattern for the identification of 
anthocyanins

Neves et al. [45] The objective of this study was to follow the 

physicochemical and functional alterations of açaí 

and bacaba pulps processed by hand

For the determination of total anthocyanins, 

the method of Francis [46] was used

Novello et al. [47] This study aimed to evaluate the influence of 
organic solvents on the extraction of anthocyanins 

from açaí. The anthocyanins, the fatty acids profile, 
and the antioxidant activity of the extract were 

analyzed by HPLC

The anthocyanins were determined by 

spectrophotometry using differential pH 
method described by Giusti and Wrolstad 

[48]. The identification and quantification of 
anthocyanins of lyophilized açaí extract were 

performed by HPLC-DAD. The identified 
anthocyanins were cyanidin-3-O-glucoside 

and cyanidin-3-O-rutinoside

Batista et al. [8] This study determined the phenolic compounds 

and anthocyanins of lyophilized açaí pulp after 

extraction with supercritical CO
2

The anthocyanins were determined by 

UV-visible spectrophotometry using the 

Folin-Ciocalteu reagent, according to the 

method described by Singleton and Rossi 

[49]

Table 3. Overview of anthocyanin extraction applications.
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The main anthocyanins found in açaí are cyanidin-3-O-glucoside and cyanidin-3-O-rutino-

side. In bacaba, it is cyanidin-3-glucoside. This information is presented in Table 3, as well 

as an overview of some anthocyanin extraction applications of açaí, bacaba, and other raw 

materials. Their chemical structures are presented in Figure 2.

In addition to anthocyanins, other bioactive compounds have been identified in açaí and 
bacaba. Pacheco-Palencia et al. [50] analyzed two species of açaí and identified several flavones, 
including homoorientin, orientin, deoxyhexose taxifolin, and isovitexin; flavanol derivatives, 
including (+)—catechin, (−)—epicatechin, procyanidin dimers and trimers, and phenolic acids 
such as protocatechuic, p-hydroxybenzoic, vanillic, syringic, and ferulic. Phenolic compounds 

are also reported to be potentially protective against cardiovascular disease and cancer [51]. 
Also, large amounts of phenolic compounds such as phenolic acids, flavanols, and flavonols 
can be found, which act as cofactors to improve the biological action of anthocyanins [52].

Santos et al. [53] evaluated the content of bioactive compounds and total antioxidant capacity 
of native fruits of the Amazon palm trees, including the species O. bacaba. Their results showed 

a high content of total polyphenols, presence of carotenoids, higher levels of anthocyanins, and 

antioxidant capacity in the bacaba extracts. In the study of Finco et al. [40], the phenolic classes: 
C-glycoside, flavonoid, C-hexoside, C-glycosylflavone, isorhamnetin hexoside, quercetin hex-

oside, quercetin diglycoside, quercetin glycoside, and isorhamnetin glycoside, were identified.

Figure 2. Chemical structures of the main anthocyanins found in açaí and bacaba (a): 2-(3,4-dihydroxyphenyl)-5,7-
dihydroxy-3-chromeniumyl6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside; (b): 2-(3,4-dihydroxyphenyl)-
5,7-dihydroxy-3-chromeniumyl β-D-glucopyranoside [nomenclatures according to IUPAC].
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4. Methods for obtaining vegetable oils

The economic importance that aromatic plants have in the Amazon region is associated with 

the application of their vegetable oils and use of their aromas in technological and industrial 

processes. Because of this, there is a greater investment in such plants extraction sector, caus-

ing an expansion of the domestic and international markets.

The soil and climate of the Amazon region are conducive to the proliferation of palm trees, 

among which there are the oleaginous ones cultivated with commercial purpose. This is 

the case of açaí and bacaba, whose extraction already constitutes a significant economic 
activity in the state of Pará-Brazil. There are other native palm trees in the region that pro-

vide oleaginous fruits rich in provitamins A and E, yet poorly explored, such as pupunha 

(Guilielmaspeciosa) and tucumã (Astrocaryumvulgare). These and other vegetable raw materi-

als present in their composition have a high content of lipids, with significant potential for 
extraction.

Extraction is a unit operation widely used in the food industry and can be used for the pro-

duction of coffee, sugar, caffeine extraction, vegetable oils, flavorings, and essential oils [54]. 
Obtaining these extracts may be accomplished by different methods such as mechanical 
pressing extraction, solvent extraction, supercritical fluids extraction, or others, depending 
on their content [55–57].

4.1. Mechanical pressing extraction

The extraction by mechanical pressing is one of the oldest methods of obtaining oil and fats 

from seed and fruits. For this kind of extraction, the packaged material enters through a feed 

shaft in the press. The press consists of a basket formed of spaced rectangular steel bars, 

through blades, whose thickness varies depending on the raw material. In the center of the 

basket, there is a screw that rotates and moves the material forward, compressing it at the 

same time. The pressure is regulated via an outlet cone [58, 59].

Souza et al. [60] and Pighinelli et al. [61] report that although the mechanical pressing extrac-

tion is less efficient than other methods, it is a more workable system on a small scale, for 
not being dependent on facilities and safety that are characteristics of the solvent processing, 

besides being fast, easy to handle and presents low cost of installation and maintenance.

One of the disadvantages of the mechanical pressing method is its low oil yield recovery: even 

in the most efficient presses, there is still a range of 3–5% of remaining oil in the cake. This 
residual oil present in the cake can be recovered by a two-step process: pre-extraction (with 

the screw-press) and solvent extraction, thus maximizing efficiency. Furthermore, the solvent 
extraction is recommended only in raw materials with <25% of fat content [62–69].

4.2. Solvent extraction

This type of extraction occurs by partitioning a solute between two immiscible or partially 

miscible phases. The mass transfer occurs from the solutes in the food matrix to the solvent. 

First, the solute is dissolved in the solvent, then the penetration of the particle solution in the 
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food surface occurs, and finally the solution is dispersed in the solvent. According to Ghosh 
[64], solvent extraction can be classified into four types depending on the phase of the matrix: 
(i) solid-liquid extraction; (ii) liquid-liquid extraction; (iii) vapor extraction; and (iv) super-

critical fluids extraction.

The solvent choice is of fundamental importance in the aspects that aim at efficiency, econ-

omy, and preservation of the physicochemical and nutritional characteristics of oils. In con-

ventional extraction, some solvents used for obtaining oils from plants are hexane, n-hexane, 

pentane, ethanol, and petroleum ether [59, 63, 65–70].

In the solvent extraction, there can be a reduction in the product quality because of the several 

steps necessary to recover the solvent, elevated temperature, long periods of thermal expo-

sure, high oxygen concentration, and extraction of other compounds considered undesirable 

[63, 71].

4.3. Supercritical fluids extraction

The supercritical fluids (SCFs) extraction is a unit operation by contact that is based on the 
balance and on the physicochemical properties of the SCFs, being dependent on operating 

conditions such as temperature, pressure, solvent flow, the material morphology, prior treat-
ment of the porous solid matrix, and the physical properties of the packed bed, such as poros-

ity, distribution and particle size, initial content of solute in the solid matrix, and the fixed 
bed height [72].

The SCFs present intermediate characteristics between liquids and gases. The diffusion coef-
ficient (DC) of SCFs is high and close to the gases DC, thus increasing the diffusivity when 
they are in the liquid state, providing a rapid and efficient mass transfer. The density of SCFs 
is greater than that of a gas, having a higher solvating power due to the high compressibility. 

Furthermore, they exhibit low viscosity and the absence of surface tension, which promote 

greater penetration into the solid matrix [73, 74].

Carbon dioxide (CO
2
) is widely used as SCF due to having low critical temperature and pres-

sure (73.74 bar and 304.12 K, respectively), besides being: nontoxic, nonflammable, odorless, 
and easily separated from the extract. Due to its low critical temperature, it is possible to use 

it to extract reactive and thermosensitive compounds. CO
2
 is suitable for extracting apolar 

compounds, but when polar organic solvents such as ethyl acetate, ethanol, or methanol are 

added, the polarity is modified, being possible to extract other compounds. These aggregate 
solvents are called co-solvents [75].

Batista et al. [8] obtained açaí extracts fractions with supercritical CO
2
 and analyzed the alle-

lopathic effects of these extracts on two species of invasive plants: Mimosa pudica and Senna 

obtusifolia. They observed that depending on the operating conditions of temperature and 

pressure used, the pattern of phytotoxic responses can change: in some cases, the effect may 
be stimulatory to seed development. Studies on allelopathy have direct influence on human 
health, because the use of chemicals such as pesticides, which can cause diseases such as can-

cer, can be avoided [76–78]. However, other studies must be conducted to isolate the specific 
metabolites for each role assigned to the açaí.
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Pinto [12] also obtained bacaba extracts fractions with supercritical CO
2
 at different condi-

tions of temperature and pressure. In his work, bacaba is mentioned as a rich source of natu-

ral antioxidants and dyes. However, there is a need for further studies to elucidate bacaba’s 

behavior in different processes.

4.4. Other extraction methods

The methods of soxhlet, hydrodistillation, solid-liquid, and ultrasound-assisted extraction do 

not present a performance as good as the one presented by the extraction with supercritical 

fluids: it has a high selectivity, low or no organic solvent consumption, operates at tempera-

ture close to room, no request for subsequent purification steps, and reduces post-processing 
costs as there is no longer need to eliminate solvent extracts [75, 79, 80].

5. Anthocyanins extraction by SFE

Anthocyanins are the most abundant flavonoid constituents of fruits and vegetables. Their 
use into food and/or medical fields has proven to be a technological challenge since these 
compounds have low stability and are susceptible to degradation through factors such as 

the presence of light, pH, temperatures usually higher than 60–80°C, the presence of sulfite, 
ascorbic acid, enzymes (such as glycosidases and phenolases), among other factors [43, 81, 82].

In the literature, the recovery of phytochemicals from solid wastes has been reported using 

conventional and alternative technologies. According to Paes et al. [44], conventional meth-

ods are Soxhlet extraction, maceration extraction, extraction by infusion and vapor distilla-

tion. Alternative techniques such as supercritical fluid extraction (SFE) and pressurized liquid 
extraction (PLE) eventually assisted with ultrasound are also reported.

Supercritical fluids processes have proved to be an excellent alternative to extract natural pig-

ments due to the use of environmentally friendly solvents, such as carbon dioxide. According 

to Vatai et al. [83], extractions with supercritical CO
2
 result in non-deteriorated reactions, due 

to low process temperatures. The CO
2
 is readily available, relatively cheap, and accepted as a 

solvent in the food industry. SFE with CO
2
 is an excellent isolation method for natural materi-

als and gives an alternative to replace the nonpolar organic solvents, which can be a source of 

food contamination.

Supercritical fluid extraction (SFE) using carbon dioxide (CO
2
) has been applied for the pre-

treatment of natural materials, as shown in the works of Paula et al. [84], Ghafoor et al. [85], 
and Floris et al. [86]. Operating conditions (temperatures varying from 40 to 50°C and pres-

sures above 200 bar) and the use of co-solvents such as ethanol and water were used in their 

studies as modifiers to obtain the maximum extract yield. According to Seabra et al. [87], 
even though the choice of the appropriate polar solvent is a key factor for the success of the 

anthocyanin extraction procedure, its influence on the extract’s characteristics is not always 
clear, due to the diverse structure and composition of plant materials and also the relation 

material-solvent.
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6. Conclusion

Açaí (Euterpe oleracea) and bacaba (Oenocarpus bacaba) are highly consumed fruits in Amazon 

that come from common palm trees and have remarkable properties. There are many benefits 
that help increasing their role in the growing market for nutraceuticals. Their extracts have a 

range of bioactive and polyphenolic components with antioxidant properties that make them 

new “superfruits”; however, further studies still need to be conducted in order to elucidate 

all the roles that these fruits can play. Açaí and bacaba represent not only food, but also a real 

source of health for humans.
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