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Abstract

Like mean, median, and standard deviation, mode as the value that appears most often
in a set of data is an important feature of a distribution. The numerical value of the mode
is the same as that of the mean and median in a symmetric distribution but may be very
differentinahighly skewed distribution. Mode regression, which models the relationship
between the mode of a dependent variable and some covariates, was first introduced by
Leein terms of truncated dependent variables. Some modifications of the truncated mode
regression have been proposed recently. However, little progress is made on the
computation or algorithm of fitting a mode regression due to an NP-hard optimization
problem. In this paper we first introduce the popular simulated annealing (SA) to solve
the truncated mode regression optimization. Experiments with simulations compare
favorably toSA.Then, amoderegression with the proposed algorithmisapplied toexplore
the typical income structure of China. We also compare the income returns to gender,
education, experience, jobsector, and districtbetween the majority of workers with typical
income and the workers with mean, middle income via comparison between mode
regression, mean regression, and median regression.

Keywords: income inequality, Lee’s estimate, median regression, mode, mode regres-
sion fitting, simulated annealing algorithm, truncated variable

1. Introduction

Mode, the most likely value of a distribution, has wide applications in biology, astronomy,
economics, and finance. For example, in the archeology, many practical questions often focus
on “Which era the biological species most likely to survive in according to the biological
fossils?” In such cases, mode regression provides a convenient summary of how the repressors
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affect the conditional mode. Income inequality is of growing concern to people in rich as well
as poor countries. Thisinequality may resultin probleminsocial stability inaregion or a country.
Butusing averageincome as a statistical measurerislargely affected by a smallnumber of richest
who earned a high proportion of all income. Mode is the right statistic to measure the typical
income over the whole population, or mode-based measurement represents the income of
majority workers. The causes of income inequality have been attracting a lot of attention in
literature and public. Education and experience are often cited as important factors for income.
Gender pay gap has been an issue for many regions, particularly in some developing countries.
The difference in wage between public sector staff and private workers changes from country
tocountryandregiontoregion. Themoderegressionormode-basedregressionanalysisprovides
a direct and powerful tool to explore the typical income and the return to education, experience,
gender, sector, and so on. Mode-based clustering techniques have also been developed [1].

The mode regression models the relationship between the conditional mode of the depend-
ent variable y* and covariates x as

v =xp+e (1)

where vector x = (1, xy, ..., x,), = (1, By, ..., B,)" is the unknown parameter vector, and ¢ is the
model error. Let mode(y*|x) be the mode of y* conditional on x and then mode(y*x) =x'f <
mode(e |x) = 0. Usually, one assumes that the density of ¢ is wider than [-w, w] for a w > 0
suitably chosen.

Lee [2] first considers truncated model regression where y* is truncated from below at c by y
or y* is observed only when y* > c. That is, y = max(y*, c). Examples of truncated regression
include (1) candidates of students who want to nominate a university prize are required to
have a minimum examination mark of 70 out of 100 to qualify for the entry. Thus, the sample
is truncated at an examination mark of 70. (2) A researcher has data for a sample of British
citizens whose income is above the poverty line. Hence, the lower part of the distribution of
income is truncated. Truncated regression cannot be fitted by ordinary least squares (OLS)
regression, as OLS regression will not adjust the estimates of the coefficients to take into
account the effect of truncation, so that the estimated coefficients may be severely biased. This
can be conceptualized as a model specification error [3].

Under model (1), given observations on {(x;, yy), (x5, ¥2), ---, (X,, ¥,)}, we aim at estimating .
This is the main task of fitting the model. Lee’s [2] mode regression estimates f by

,B =argmax , [nlilﬂyl. —max(x'f,c+ w)| < w]j (2)

where [[ -] is the indicator function, which takes the value 1 if the condition inside [ | is satisfied
and 0 otherwise.
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But little progress on mode regression has been made due to computation difficulty although
some modifications of the proposed mode regression have been developed (e.g., see [4-7]).
The difficulty in computing these estimators arises because the objective function consists of
indicator function I[-] and involves in an absolute function and maximum operator. So that
the objective function in Eq. (2) is neither convex nor differentiable but may result in a large
number of local maxima. See further details in Section 2. Therefore, the estimation in Eq. (2) is
an NP-hard problem, so that standard optimization algorithms will perform poorly if they
tend to get trapped in local maxima, or they may not be applicable if analytical gradients are
required, because standard optimization tools, which require the objective function to be
differentiable and/or convex, may fail to discover the true mode regression function.

Currently, rather than dealing with the NP-hard problem directly, some attempts were made
to solve the computation of mode regression via replacing rectangular kernel in Eq. (2) by a
“smooth” version [4, 5]. However, these smooth versions of mode estimators, in spite of their
improved asymptotical properties, may not estimate mode but estimate something else. This
big issue is often ignored in literature.

For example, the smoothing version of mode estimator of Kemp and Silva [5] is to maximize

n
Q,(B) = Tl_liz_ 11( h(yi - x’ﬁ) with K, = %K ( E) and the standard normal density as kernel
function K(-), and then the estimator is closer to mean than to mode due to the quadratic
property of normal density function. Also, a careful selection of bandwidth & which requires
tending to zero is not available.

Lee [4] employed a quadratic kernel (QME) to smoothing the rectangular kernel and estimated
pby

B= argmax , (n_li[wz —{y, —max(x'f,c + w)}2]][|yl. —max(x)3,c + w)| < w]j

! (©)
< argmax [n'Zmax[w2 —{y, —max(x'f,c+ w)}z,Ojj

This QME is quite similar to the symmetrically trimmed least squares (STLSs) estimation in
Powell [8], which, instead of maximization, minimizes

B =arg min, 7Y [y, - max(0.5y, + O.5c,x'ﬂ)]2 (4)
i=1

However, QME is quite sensitive to the choice of w whose optimal value is difficult to derive
in practice. And the STLS, which strongly depends on the symmetric requirement of y
conditional on, needs the symmetry up to + x'g. That is, STLS requires global symmetry if x is
unbounded.
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The other way to develop efficient algorithms for the truncated mode regression objective
function (2) could be the emulation algorithms (EA) [9, 10], which compute the truncated mode
regression estimator by checking every critical point and solving maximum score estimation
as a nonlinear programming problem. However, EA exhibits a high degree of complexity in
its implementation. EA may achieve convergence to local minima, whereas obtaining a global
minimum requires a heavy computational load, something that renders its use in solving real
problems impractical.

This paper aims to introduce meta-heuristic methods for computing the elegant rectangular
mode regression estimator so that one could not only fit the mode regression but also improve
computation efficiency. The recommended heuristic method for dealing with complicated
objective function with many local optima could be the popular simulated annealing (SA) [11],
because SA provides a means to avoid getting stuck in local optima by accepting worse
neighbors in hopes of finding a global optimum. However, SA has not been used in mode
regression fitting.

The paper is organized as follows. In Section 2, we outline the issue of many local optima of
Lee’s estimator and SA computation. Section 3 compares different algorithms or estimation
methods such as QME, STLS, EA, and SA via (Monte Carlo) simulation study. In Section 4, we
fit a multiple mode regression model for the analysis of a real income data via SA algorithm.
The final section concludes with brief remarks.

2. Lee’s estimator with many local optima and SA algorithm

As mentioned earlier, truncated mode regression fitting problem may be seen as a global
optimization problem (GOP) with many local optima. SA is applied to optimize Eq. (2), which
represents a nonlinear objective function. Then, the estimation equation can be formulated as
follows:

1(B) = nlilﬂ ¥, = max(x ¢ + w)| < w] )

Note that f(f), as a function of regression coefficient 8, is an unconstrained nonlinear and non-
smooth function; it is difficult to calculate its optimizer. Moreover, f(f) is not convex in .
Therefore, an effective tool for solving global optimization problems is required. Let us
demonstrate this issue via a simple example and graphical representation of the objective
function. Draw an independent sample size of 10 from a standard normal distribution, i.e.,
x;~N(@,1),i=1,2,...,10, and let the i.i.d error term ¢ also have a standard normal distribution.
So the dependent variable y* can be generated from the mode regression y;* = fx; + ¢;. Then we
obtain observations of y; from y;* via truncated point y, = 0. This gives a 52% heavy truncated
on average. The objective function f(f) against f’s values from this model can take a form as
plotted in Figure 1. Clearly, the objective function under w =1 has many local maxima, which
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lie in the range between 0.5 and 0.25. When w = 1.5, this objective function still has many
localities but in the range between -0.75 and 0.25. However, Figure 1 shows that these
localities under w = 0.5 fall in a much narrower range than those under w =1 and w =1.5.
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Figure 1. The objective function of a simple example with w =1, w=1.5, and w =0.5.

The SA algorithm proposed by Kirkpatrick, Gelatt, and Vecchi [11], as a local search meta-
heuristic, is characterized by an acceptance criterion for neighboring solutions that adapts itself
at run time. In this chapter, we process the data by the R software. One of the packages to
implement SA in R is stats with sann as an option of optim function [12]. An alternative SA is
the GenSA function in specific R-package GenSA. The SA flow diagram is presented in Figure 2.
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Figure 2. The flow diagram of SA.

3. Numerical comparison
Following Lee ([2, 4]) consider the mode regression model
Y, =0+x, +¢,i=12,---,n (6)

where sample size n = 30, x; follows a standard normal random variable, and the model error
¢;1s generated from a standard normal distribution.
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The four methods—QME (quadratic kernel smoothing method in Ref. [2]), STLS (trimmed
least square method in Ref. [8]), emulation algorithm (EA in Ref. [9, 10]), and SA [11]—are
implemented for numerical comparison of optimization of f(§) in terms of §, where  simply
stands for the slope coefficient whose true value is 1.

The data generated from the model are under four different distributions (normal, Cauchy,
logistic, and gamma) for model error ¢ and two different numbers of truncated schemes: 25
and 50%. For each of these five different distributions of ¢ and each truncated scheme, we
implement all four methods to estimate the slope coefficient 200 times, respectively, via
simulation.

Then the performance criteria of each method consist of bias of the estimator of slope
coefficient, standard deviation (STD), root mean square errors (RMSE), lower quartile (LQ),
median (MED), and upper quartile (UQ) of estimation. At each simulation of 200 times, the
bias is the difference between estimate and the true value; then the bias we collect for com-
parison is a simple average of 200 times of replications. The computation of STD, RMSE, LQ,
MED, and UQ are based on 200 times of replications.

Table 1 reports the results by different designs which are the combination of truncation rate
and distribution of e.

BIAS SE RMSE LQ MED uQ

Design 1: 50% truncation, standard normal

w=05 0.535 1.451 1.563 0.910 1.341 1.811
w=1.0 0.502 1.011 1.217 0.925 1.244 1.930
w=15 0.523 1.345 3.492 0.696 1.112 1.748
w=2.0 0.591 1.876 1.729 0.997 1.270 1.840

Design 2: 25% truncation, standard normal

QME 0.085 0.331 0.345 0.839 1.042 1.269
STLS 0.023 0.210 0.208 0.873 0.989 1.136
EA 0.067 0.023 0.022 0.891 0.993 1.542
SA 0.065 0.381 0.412 0.893 1.114 1.458

Design 3: 50% truncation, standard normal

QME 0.515 1.139 1.248 0.895 1.213 1.677
STLS 0.200 0.502 0.542 0.913 1.090 1.354
EA 0.206 0.489 0.512 0.807 1.051 1.431
SA 0.215 0.431 0.387 0.801 1.098 1.398

Design 4: 50% truncation, standard Cauchy

QME 0.470 1.812 1.872 0.851 1.270 1.878

89
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BIAS SE RMSE LQ MED uQ

STLS 0.396 6.390 6.949 0.823 1.109 1.605
EA 0.401 1.978 2.231 0.901 1.123 1.589
SA 0.393 1.759 2217 0.801 1.012 1.598
Design 5: 50% truncation, standard normal

QME 0.767 2.338 2.479 0.858 1.488 2.620
STLS 0.494 3.765 3.798 0.776 1.189 1.966
EA 0.506 2.634 2.634 0.884 1.052 1.890
SA 0.509 2.031 3.012 0.765 1.175 1.935
Design 6: 50% truncation, gamma (2, 1) mode

QME 0.615 3.147 3.209 0.879 1.402 2.710
STLS 0.556 3.403 3.450 1.048 1.474 2.168
EA 0.598 3.479 3.581 0.881 1.057 1.111
SA 0.501 2.549 3.000 0.893 1.231 1.786
Design 7: 50% truncation, gamma (3, 1) mode

QME 0.688 2.361 2.460 0.771 1.613 2.761
STLS 0.705 3.712 3.778 0.731 1.335 2.486
EA 0.676 2.476 3.247 0.790 0.895 1.431
SA 0.617 3.001 3.223 0.801 1.112 1.524

Table1.y,=0+x;+¢,i=1,2, -, n,x;~ N(0, 1), n =30, and 200 replications; only the slope is reported.

In Design 1, with 50% truncation and the standard normal distribution as the model error, we
first check the effect of choosing w on the performance of SA algorithm. We note that w=0.5-2
appears to be the range. So we try SA algorithm corresponding to w = 0.5, 1, 1.5, and 2,
respectively. The algorithm gives quite “stable” results with w = 0.5, 1, and 1.5 but provides
big variation for w = 2 under different replicates. This fact not only concludes that the selec-
tion of w may not be necessarily unique but also indicates that larger w may not have better
outcome. So in the real data analysis of Section 4, we suppose that w follows a uniform
distribution over the interval of [w,, w,], where w, = 0.5 and w, = 1.5.

Because of the results from Design 1, we use w =1 (a value between 0.5 and 1.5) in Designs 2
and 3 for SA algorithm but use w=0.1, 0.5, 0.9, and 1.3 to construct a weighted version of QME
(WQME) which is due to Lee’s [2] suggestion that an average of the estimates for several ws
may work along with WQME applied to the reasonable range of w. Actually, WQME some-
times performs better than a specific QME. STLS and EA seem to do well in both Designs 2
and 3. This, however, will change for distributions with thicker tails. Furthermore, STLS and
EA get much more estimation variation than SA.
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In Designs 4-7, we check the sensitivity to the underlying distribution, particularly to the tail
behavior of the distribution. We consider the standard Cauchy, standard logistic, and gamma
distributions with 50% truncation.

In Designs 4 and 5, except STLS, all methods perform similar. This is also true in Design 7.
STLS method, in spite of the small bias on average, gets big estimation variation for most of
cases except the case with a normal distribution. For example, among methods, STLS gives the
biggest variance and RMSE for fat-tailed distribution (Cauchy) and skewed distributions
(logistic and gamma). So STLS is not very reliable for practical application.

In Designs 4 and 5, EA and SA show slightly better than others in some of cases.

A final comment goes to algorithm speed, measured by CPU time. We found that CPU times
for all algorithms used in Table 1 are comparable, typically in the range between 5 and 10 s.

4. Returns of human capital in China

China has experienced rapid economic growth in the past 30 years, but the increase in wage
inequality is gradually a serious problem and should be given more attention. We will analyze
the important factors, which affect the incomes for most of Chinese workers. This study
consists of an analysis of annual income of 1967 Chinese citizens with ages between 18 and 55
in 2008. The data is provided by Chinese Social Survey Open Database (CSSOD) (http://
www.cssod.org/index.php in Chinese). We aim to check how education, experience, sex,
district, and job sector affect the typical income. One may use mean regression to carry out the
analysis, but average income is largely affected by small number of high-income receivers, so
that the resulting analysis does not represent the majority people or the typical case. For
example, majority workers often see their income as far lower than the reported average
income. Therefore, mode regression is an ideal model to carry out the analysis.

We use a standard log-linear Mincer formulation:
logY = B, + B,Edu + B.Exp + B,Exp’ + B,Gender + B,Dis + f3,Sector+¢ (7)

where log Y is the logarithm transform of annual income (in 1000 Yuan) and truncated by 2,
as majority annual income is more than 8000 Yuan. Edu is the number of years of schooling,
Expis potential experience (approximated by the age minus years of schooling minus 7), Gender
is equal to 1 for male and 0 otherwise, Dis is equal to 1 for workers from the eastern China and
0 otherwise, Sector is equal to 1 for private sector workers and 0 otherwise, and ¢ is the model
error. The estimate coefficient §; means that a unit increase in the predictor variable results in
an increase in (100(exp(B;)—1))%.

We now carry out the mean and median regression analysis. That is, we fit the model (7) by
the mean regression and the median regression model, respectively. By implementing the Im
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and rq (in R-package quantreg) function in the R software, we obtain the fitted mean and median
results as shown in Table 2.

Mean regression Median regression Mode regression
Intercept 113.884*** 134.376*** 132.179%**
(9.755) (11.486) (228.825)
Education 9.381*** 8.501*** 3.519%**
(14.418) (12.614) (63.185)
Experience 2.103*** 1.879*** 3.887%%*
(3.630) (3.314) (56.280)
Experience? -0.049*** -0.045*** -0.192***
(-3.569) (-3.173) (-47.839)
Gender 27.919%** 25.912%** 20.921%***
(8.347) (7.585) (232.146)
District 44463 43.874%%* 42.571%**
(13.249) (12.714) (447.565)
Sector 7.024* -2.418 =3.291***
(1.919) (0. 520) (-23.626)

Note: Asymptotic standard errors are in parentheses for the mean and median regression.
*p<0.1,* p<0.05 and *** p <0.01 (two tailed)

Table 2. The results of three different regressions (%).

Table 2 shows that each additional year of education increases the conditional-mean income
by a factor of exp(0.09381) = 1.09835, which indicates a 9.835% increase. And the fitted median
regression model gives a coefficient of 0.08501, which indicates that one more year of education
increases the conditional-median income by exp(0.08501) = 1.08873 or a 8.873% increase. That
is, for small values of the estimated coefficient 5, this is approximately 100 ,%.

The experience entering the model in quadratic form is due to the most popular version of the
Mincer equation [13], which includes a quadratic function in years of potential experience to
capture the fact that on-the-job training investments decline over time in a standard life cycle
human capital model. The estimated coefficients of years of experience and its square both are
significant in the mean and the median regression. That is, the Chinese worker’s income shows
an inverted U-shaped relationship with years of experience and reaches the maximum at years
of 21.459 and 20.878, respectively. This means that experience within about 20 years does make
difference on the income but experience longer than 20 years would not add anything more
for the conditional-mean or the conditional-median income.
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Compared with being female, being male increases the conditional-mean income by
100[exp(0.27919)-1]% = 32.206% according to the mean regression results but by
100[exp(0.25912)-1]% = 29.579% according to the median regression results. In other words,
the conditional-mean income for male is 32.206% higher than it is for female, and male’s
conditional-median income is 29.579% higher than female’s, with other covariates held
constant.

Similarly, the conditional-mean and conditional-median income difference between workers
from the west and the east of China both is about 100[exp(0.44)-1]% = 55.271%.

For the dummy variable sector, the results of the mean regression indicate that the conditional-
mean income of workers from private sectors is greater than from public sectors by a factor of
exp(0.07024) = 1.072766, that is, a 7.277% increase in conditional-mean income. However,
according to the result of the median regression model, the coefficient of sector is not signifi-
cant, which means that there is no difference between the public and private sectors for the
conditional-median income.

As is known that the selection of w may not be unique for the mode regression, we suppose
that w ~ U[0.5, 1.5] and draw 300 different random ws from this uniform distribution. Based
on the 300 different ws, we implement the GenSA function in the R-package GenSA to fit the

multivariate mode regression and obtain 300 different vectors of the coefficients 3. Following

the law of large numbers, the mean of these estimated 3 ; must approach to the real §;.. Then

we can use the two-tailed T test for checking if hypotheses about B ; = 0 are true or not. The

mean and the two-tailed T test results of these seven coefficients ; based on the 300 different
mode regressions are shown in Table 2.

According to the results of mode regression based on the SA algorithm, the estimated returns
to an additional year of education are about 3.519%, and the education has a much smaller
effect on the conditional-mode income. Maybe this is one of the reasons why the typical income
is lower than the mean and median income.

The coefficients of years of experience and its square both are significant. That is, the relation-
ship between the conditional-mode income and the years of experience is shown in the inverted
U-shaped relationship too, but the income for most workers reaches the maximum at 10.122
years of experience. The return to experience, i.e., the derivative of the typical value of log
income with respect to experience, is therefore given by a combination of coefficients (3.887
— 2 x 0.192 x experience). The derivative needs to be evaluated at some specified level of
experience. Two points were chosen: 5 years of experience, representing fairly new entrants,
and 15 years of experience, representing experienced workers. And these two points give the
combination of coefficients 1.967 and -1.873. That is, the return to experience of 5 years is
1.967% and experience of 15 years is —1.873%. In contrast with the results of the mean and
median regression model, the return to experience of 15 years both is positive. The relationship
between income and experience based on these three different regression models is represent-
ed in Figure 3.
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The Relationship between Income and Experience

— Mean Income
= = Median Income
=+ Mode Income

Income
1 I‘|5 1.I2CI

‘1.|‘ID

I I [ | |
0 10 20 30 40
Experience

Figure 3. The relationship of income and experience.

As shown in Figure 3, we conclude that experience does make a great contribution to the
conditional-mode income within 10 years, but experience longer than 10 years would not add
anything more for it. That is, the conditional-mode income increases rapidly due to experience
and decreases rapidly too after reaching the peak income. However, experience returns are
positive until about 20 years to the conditional-mean and conditional-median income. Maybe
this is another important reason why the typical income is lower than the mean and median
income.

The conditional-mode income from a man is about 20.921% more than from a woman, which
means that the gender pay gap is slightly less serious for majority workers compared with the
mean and median regression. Similarly, the conditional-mode income from workers of eastern
China is about 42.571% more than from worker of western China.

The private sector does not have positive return to mode income; this is in sharp contrast with
the results of the mean regression. Concretely speaking, the conditional-mode income for the



Fitting Truncated Mode Regression Model by Simulated Annealing
http://dx.doi.org/10.5772/66070

public sector worker is 3.291% higher than for the private sector worker. This result is the
opposite of what is shown in the mean regression model.

The results from the analyses of both mean and the mode regression models are inconsistent
with the economic intuitions. In China, private sector includes private enterprises operated by
local Chinese; Sino foreign joint ventures; Hong Kong-, Macao-, and Taiwan-funded enter-
prises; and foreign-funded enterprises. Workers in the private enterprises which account for
the vast majority of the private sectors do not have the “compilation” or sign the labor contracts
with these enterprises; thus, their rights and interests cannot be guaranteed and their wage is
low. Although the workers in Sino foreign joint ventures and Hong Kong-, Macao-, and
Taiwan-funded enterprises do not have the “compilation,” they gain an attractive income
because of these enterprises’ relatively good efficiency. Workers in the foreign enterprises have
the highest wages, especially for those CEOs. So the average wage level of workers in the
private sector is relatively high. Most workers in the public sectors protected by the “compi-
lation,” often sign the labor contracts with the stated own enterprises, tend to gain a higher
wage than the workers in the private enterprise, and the wage gap is very relatively small.
Thus, the majority of workers have a lower wage in the private sector than in the public sector,
but on average, the opposite is the case.

5. Conclusion

While mode regression has been found very useful in practical regression analysis, the main
goal of this articleis to introduce SA algorithm to fit mode regression models. The most popular
mode regression model is introduced by Lee [2]. There is no doubt on the elegance of rectan-
gular mode regression estimator of Lee [2], but the main problem with this estimator lies in
computation. While the difficulty in obtaining reliable mode regression coefficients limits the
application of the mode regression, we propose the SA algorithm for the mode regression
estimation and then compare the proposed SA algorithm with other existing methods. To sum
up, SA algorithm for fitting truncated mode regression does not require any liberalization or
modification of Lee’s estimator and solves the corresponding nonlinear optimization problem
more efficiently and robustly as a rule.

As an application of the SA algorithm fitting a real data-based mode regression and the
illustration of the sensible interpretation of fitted mode regression coefficients by the algorithm,
we apply the mode regression model in income inequality analysis of China and some
meaningful conclusions are obtained which are different from the mean regression and the
quantile regression.
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