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Abstract

Self-assembled monolayers (SAMs) presenting carbohydrates (glycans) have been
widely prepared on gold surfaces to mimic the carbohydrate surfaces that are involved
in molecular recognition phenomena in living cells. The binding affinity of carbohydrate
immbolized on SAM surfaces to various carbohydrate-binding proteins (such as lectins)
can be studied by optical, electrochemical, piezoelectrical and thermal sensing tech-
niques. The lectins present on the surface of pathogens (e.g., bacteria or viruses) can be
used as targets for capturing onto carbohydrates immobilized on SAM surfaces. The
immobilized carbohydrates can also be used for detecting different types of disease
biomarkers present in bodily fluids. Synergistic properties of carbohydrate SAMs and
gold nanoparticles can be used for vaccine preparation and drug delivery. By studying
different types of glycans, their properties, and the behavior toward recognition of
specific pathogens and biomarkers, we can develop not only new therapeutics but also
enhance the diagnostic strategies of various diseases. In this chapter, we discuss carbo-
hydrate-terminated SAMs and their common preparation strategies. Next, we focus on
roles of different components of SAMs, characterization techniques, and applications.

Keywords: self-assembled monolayers (SAMs), carbohydrates, gold surface, click reac-
tion, biosensing, carbohydrate-lectin interaction, E-coli detection

1. Introduction

Carbohydrates are biological molecules, present widely in nature in diverse forms and have

varieties of functions [1]. Their role in living organisms is indispensable, whether it is as a

structural support (e.g., cellulose and chitin), in energy storage (e.g., glycogen and starch), in

the immune system, or for fertilization and development [2, 3]. The glycans are the carbohydrate

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



parts of glycoconjugates, such as glycoproteins, glycolipids, or proteoglycans, and their impor-

tance in human health and disease is an ever expanding field [3]. A major part of the field

concerns the study of the organization of carbohydrates at interfaces and their interaction with

carbohydrate-binding proteins. Self-assembled monolayers (SAMs) of carbohydrate-terminated

alkanethiols and of other carbohydrate derivatives conjugated to species pre-immobilized on

gold such as branched polymers and dendrimers have served as model systems in many

studies of these interactions and in the development of biosensors based on carbohydrate

recognition [4, 5]. These SAMs have been formed both by direct immobilization of carbohy-

drate-terminated alkanethiols and by conjugation of glycans to pre-formed SAMs with reac-

tive terminal groups [6]. The complexity of the carbohydrates immobilized range from

monosaccharides to complex oligosaccharides of varied biological functions. Central to these

studies is the goal of understanding the structure and organization of the SAMs, and this has

been approached using a range of methods, including surface analysis, surface spectroscopy,

scanning probe microscopy, and electrochemical methods. The binding of proteins to these

SAMs has been followed using methods, including surface plasmon resonance (SPR), imped-

ance spectroscopy, and quartz crystal microbalance (QCM). In this chapter, we will seek to

review the literature concerning SAMs containing terminal carbohydrates, their fabrication by

direct or indirect coupling methods, and their structural characterization. The applications of

these SAMs in protein-binding studies and biosensor development will also be discussed.

2. Self-assembled monolayers

Organic molecules having functional head-groups (e.g., thiols, disulfides, and amines) and tail

groups at the end of hydrophobic chains (e.g., alkanes and polyethylene glycols) can easily

self-assemble on noble metal surfaces lowering the free energy at the interface to form densely

packed monolayer films, called self-assembled monolayers (SAMs) [7]. Different types of

functional groups can be attached to the terminal end of the hydrophobic part depending on

the nature of the study, through which further chemistry can be performed linking fields of the

material chemistry and organic/biochemistry. SAMs of organosulfur compounds are the most-

studied SAMs to date because of strong thiol-gold bond formation [8, 9]. A schematic diagram

of an ideal alkanethiol SAM immobilized on gold surfaces having terminal functional groups

is shown in Figure 1, and the chemisorption reaction between thiol and gold is shown in

Eq. (1) [10].

R−SHþAu0
n
! R−Sð�Þ

−AuðþÞ �Au0
n
þ 1=2H2 (1)

One of the common methods of preparing SAMs of organosulfur derivatives is by immersing a

metal substrate into dilute (1–10 mM) ethanolic solution of the desired organosulfur com-

pound for 12–24 h under ambient conditions [11]. When sulfur atoms come in contact with a

clean metal surface, they start forming monolayers instantly; however, the molecules reorga-

nize themselves if left in the solution over a longer period, minimizing the density of defects

[12]. Alkyl chains of SAMs arrange themselves in trans-conformation with nearly 20–30° tilt

from normal to the metal surface [9]. However, studies have shown that overall arrangement
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and binding of SAMs on gold surfaces depend on numbers of factors, including length of alkyl

chains, the nature and distance between terminal functional groups, concentration and purity

of adsorbate, immersion time, and substrate morphology [11].

3. Preparation of SAMs having terminal carbohydrates

Preparation of microarrays of carbohydrates to mimic the cell surface for the in vitro study of

their interactions with pathogens or other biological molecules is very important. Microarrays

present a surface onto which pathogens can undergo multivalent attachment amplifying the

relative affinities as on cell surfaces and above that of a single ligand. The pathogens or

biological molecules captured on the array can also be easily harvested and further tested.

There are different methods to prepare arrays of carbohydrates on solid surfaces; one of the

popular methods is through SAMs formation. Here, we will be specifically focusing on the

SAM of carbohydrates prepared on a gold substrate through organosulfur molecules. The two

common approaches (Figure 2) for forming SAMs of carbohydrates on gold surfaces are, (1)

direct method: The carbohydrate molecules of interest are modified with the organosulfur

molecule first, followed by direct SAMs formation on the gold surface; and (2) indirect

method: The SAM of organosulfur molecule having a suitable terminal functional group is

prepared on the gold surface first, followed by a reaction to conjugate it to the carbohydrate of

interest.

3.1. Indirect methods

The indirect method of forming carbohydrate SAMs does not require preparation of

organosulfur molecules already linked to the carbohydrate of interest. The strategy also avoids

Figure 1. Schematic depiction of an ideal SAM formed on a gold substrate.
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the possibility that the prepared molecules may decompose or oxidize by the time they are

used and might not form stable SAMs. An advantage of the indirect SAM formation method is

that each step can be tracked in situ [13], which can be imagined as building a tower by

stacking bricks on top of one another with cement between the bricks, whereas the direct

method is like transferring a whole tower in one piece. Use of indirect methods for the

preparation of carbohydrate SAMs date back to the 1990s. In 1995, Lofas used a step-by-step

method to form SAMs containing dextran, a hydrophilic linear polymer based on 1,6-linked

glucose units, on a gold surface [14]. As a first step, a SAM of 16-mercaptohexadecan-1-ol was

formed on a gold surface, followed by the reaction of the exposed hydroxyl groups with

epichlorohydrin to prepare terminal epoxy groups. The epoxy group was found to capture

the dextran randomly under basic conditions. The immobilized dextran was subsequently

reacted with bromoacetic acid to introduce terminal functional carboxylic groups, which were

in turn activated using a mixture of N-ethyl-N'-dimethylaminopropyl-carbodiimide and N-

hydroxysuccinimide to capture monoclonal antibodies (MAbs). Three different types of MAbs

were then tested against their antigen, HIV protein p24. The as-prepared sensor was sensitive

enough to distinguish differences in the affinity of the three MAbs toward p24 [14]. During the

two decades since, different types of strategies have been discovered for preparing SAMs of

carbohydrates using indirect methods, applicable for immobilizing both simple and complex

carbohydrate molecules.

Click chemistry-based reactions are popular indirect methods for formation of carbohydrate

SAMs. Click reactions skip the tremendous synthetic efforts required for the preparation of

thiolated carbohydrates to be used for direct SAM formation. In addition, this reaction can

Figure 2. Schematic of two different strategies for forming the SAM of carbohydrates on gold surfaces.
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tolerate a wide variety of functional groups and can be performed over a broad range of

temperature and pH with minimal by-product formation [15, 16].

One of the early uses of click reaction for the carbohydrate SAM formation on a gold surface

was performed by Houseman and Mrksich in 2002. They used Diels-Alder reaction to connect

benzoquinone-terminated SAM surfaces to different common monosaccharides derivatized

with cyclopentadiene and prepared carbochips [17]. The carbochips were then utilized for

profiling lectin-binding specificity to their corresponding monosaccharides using SPR and

confocal fluorescence microscopy as shown in Figure 3. The same group soon reported another

click reaction strategy based on maleimide-thiol chemistry for preparing SAMs of carbohy-

drates [18]. They synthesized four different monosaccharides (mannose, galactose, glucose,

and N-acetylglucosamine) having thiol groups at the anomeric centers, which reacted selec-

tively with the terminal maleimide groups of pre-immobilized SAMs on gold surfaces to

present carbohydrate-terminated SAMs. They then prepared a carbohydrate array to study

the specificity of these carbohydrates to their corresponding lectins using confocal fluorescence

microscopy, as before. This strategy of maleimide-thiol reaction can be used for preparing

carbohydrate array SAMs having terminal mannoses and interrogate GFP-transfected E coli

bacteria creating a highly biorepulsive linker [19].

The most commonly used click reaction for preparing carbohydrates SAMs, however, is the Cu

(I)-catalyzed Huisgen 1, 3-dipolar cycloaddition or the copper(I)-catalyzed azide-alkyne cyclo-

addition (CuAAC) reaction [15]. The first step in this method is to form an organosulfur SAM

having either alkyne or azide terminal groups [20, 21]. If the alkyne group is presented at the

SAM's surface, it reacts with azide groups available on anomeric positions of carbohydrate

molecules of interest and vice versa [22]. This click reaction results in formation of a 1,2,3-

triazole ring with the SAM presenting the terminal carbohydrate [23]. Zhang and coworkers

used this chemistry to immobilize azido sugars—mannose, lactose, and α-Gal trisaccharides—

and studied their interactions with their corresponding specific lectins [24]. Using QCM, the

apparent affinity constant (Ka) for the interaction of mannose–Con A, lactose–Erythrina

cristagalli lectin, and α-Gal trisaccharides–polyclonal anti-Gal antibody were found to be (8.7

± 2.8) × 105, (4.6 ± 2.4) × 106 and (6.7 ± 3.3) × 106 M-1, respectively. The data were further

supported with SPR, AFM, and electrochemical experiments. The prepared sensor was found

to be very selective having negligible nonspecific adsorption. Later, the Tamiya laboratory

used this strategy to electrochemically detect Alzheimer's related peptide amyloid-β by

immobilizing sialic acid derivatives on gold nanoparticles deposited on a carbon electrode

[21]. On capturing the peptides Aβ(1-40) and Aβ(1-42), a characteristic oxidation peak was

observed at 0.6 V (vs. Ag/AgCl) through differential pulse voltammetry, which was further

confirmed by AFM images showing increase in roughness on the surface after capturing of

peptides by the sialic acid. In another study, using circular dichroism spectroscopy and fluo-

rescence microscopy, SAM of sialic acid and 6-sulfo-GlcNAc was found to have tendency to

change the conformations of Aβ(1–42) into β-sheet while also aggregating Aβ into fibrils

having a larger diameter compare to that created by SAM of β-Glc [25]. In the same work,

binding affinities of different common monosaccharide SAMs to their corresponding lectins

were also studied and were found to be the range of 10-7–10-8 M.
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To create a well-defined multivalency, SAMs of glycodendrimers of various generations

were prepared using CuAAC reactions on a gold surface (Figure 4) and characterized using

Figure 3. Profiling lectin binding specificities with a carbohydrate array (A). Carbohydrate arrays are prepared by

spotting solutions of carbohydrate diene conjugates onto discrete regions of a monolayer presenting benzoquinone

groups. After the reaction is complete, benzoquinone groups in the remaining regions of the monolayer can be inactivated

by treatment with tri(ethylene glycol)-cyclopentadiene conjugate (EG3-Cp). (B) Identical carbohydrate chips were sepa-

rately incubated with each of five rhodaminelabeled lectins (2 µM in DPBS) for 30 min, gently rinsed, and evaluated by

confocal fluorescence microscopy. Fluorescent images of the resulting arrays are shown for each lectin. These images

reveal that the proteins associate specifically with their known carbohydrate ligands on the array. Reprinted with

permission from Ref. [17], Copyright 2002, Elsevier.
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Figure 4. Schematic illustration for the process of glycodendrimer immobilization. Reprinted with permission from Ref.

[4], Copyright 2009, Elsevier.
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XPS, ellipsometry, MALDI-ToF mass spectrometry, cyclic voltammetry, 1H and 13C NMR,

contact angle goniometry and FTIR [4, 26]. The equilibrium association constants (Ka) and

kinetic association rate constants (kon) and dissociation rate constants (koff) for the interac-

tions of terminal monosaccharides (α-Man, β-GlcNAc, and β-Gal) to their corresponding

lectins were determined using SPR [4]. Similarly, dendritic mannosylated surfaces were used

to enhanced recognition of E. coli bacteria with generation one dendrimer detecting 3570

Pre-formed SAM Functionalized carbohydrates Reactive functional groups

Alkyne/Azide [4, 13, 21, 24, 25, 27]

Azide/Alkyne [20]

Amine/Isothiocyanate [5, 27]

Hydrazide/unmodified carbohydrates [28]

Vinyl sulfone/amine or thiol [29]

Maleimide/thiol [18, 19,30]

Benzoquinone/cyclopentadiene [17]

N-Hydroxysuccinimide-ester/amine [31]

Table 1. Different strategies to prepare SAMs of carbohydrate using indirect method.
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cells/pmol of end groups, whereas generation three dendrimer detected 4170 cells/pmol of

end groups [26].

Recently, the CuAAC along with amine/isothiocyanate click reactions were used by Grabosch

and coworkers to prepare mannosylated SAMs on gold surfaces [27]. The surface was then used

for selective recognition of GFP-transformed E. coli bacterial with a minimum of nonspecific

interactions because of the prepared biorepulsive linker. There are many other pairs of functional

groups [17–19, 28–31], which can react together for the successful preparation of carbohydrates

SAM using indirect method. Some commonly used functional groups are listed in Table 1.

3.2. Direct method

The indirect method of forming SAM of carbohydrates has some advantages, but the direct

method has also been widely used within last two decades. In this method, the carbohydrate

(or glycan) of interest is directly functionalized with an organosulfur molecule, and the

Figure 5. Scheme for synthesis of glucopyranosylamide conjugates. (a) PPh3, 1,2-dichloroethane, 95°C, 16 h. (b) coupling

partner, 24 h. (c) KSAc, DMF, RT, 20 h. (d) NaOMe, MeOH, RT. (e) PMe3, DIEA, 1,2-dichloroethane, RT, 30 min. (f)

coupling partner, RT, 24 h. Reprinted with permission from Ref. [34], Copyright 2007, American Chemical Society.
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synthetic product is characterized and confirmed before forming SAMs. In the next step,

freshly cleaned gold surface is incubated on ethanolic solution of the functionalized molecule

for 1–24 h at ambient conditions to prepare the SAM. This method avoids multistep surface

reactions. In 1996, Fritz and coworkers reported SAMs of a hexasaccharide molecule

functionalized with alkanethiols on gold surfaces [32]. The conditions for high-density SAM

formation were explored by performing experiments with or without protecting the hydroxyl

groups with acetyl groups and determining whether unprotecting it after or before the immo-

bilization gave the optimal condition. The optimal condition was found to be adsorption of the

unprotected molecules from solution. The Russell laboratory later synthesized mannose-ter-

minated alkanethiols to prepare SAMs and selectively capture Con A, and the expected

selective capture of Con A was determined using reflection absorption infrared spectroscopy

(RAIRS) and surface plasmon resonance (SPR); L-fucose-specific lectin Tetragonolobus purpureas

was not captured [33]. The detailed synthetic strategies for the preparation of carbohydrate

functionalized organosulfur SAM is outside the scope of this chapter. A representative scheme

for preparation of the SAM of glucopyranosylamide is shown in Figure 5, which shows

strategies for introducing different disulfide linkers to the acetyl protected glucose units

having azide groups at the anomeric centers [34].

4. Types of terminal carbohydrates

It is possible to immobilize or form microarrays of a wide variety of carbohydrates on gold

surfaces using SAM techniques. Different types of monosaccharides [17, 21, 27, 35–46], disac-

charides [42, 43, 47–50], oligosaccharides [45, 46, 49–54], polysaccharides [14], and dendrimers

[4, 5, 26] can be immobilized as a terminal functional group of the SAM depending on the

nature of the study. Table 2 lists some of the carbohydrates used as terminal functional groups

of the SAM and their applications. The detailed applications of the carbohydrates will be

discussed later.

Sacc. Terminal carbohydrates Applications

Monosaccharides Glucose (α-D-Glc) -to study the interaction with

lectins [17, 55]

Mannose (α-D-Man) -to specifically detect E. coli

bacteria [27, 56]-to load anti-HIV

prodrug candidates on gold

nanoparticles using “thiol-for-

thiol” ligand place exchange

reactions [57]-to study the

interactions with lectin Con A to

understand more complex

carbohydrate-proteins [58, 59]
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(cont.)

Sacc. Terminal carbohydrates Applications

Galactose (α-D-Gal) -to study the specific interactions

with different types of lectins, for

example, lectin from E. cristagalli

[17], Jacalin [58], peanut

agglutinin- to use as a proteins

resist surface [60]-sensitive and

facile detection of deadly plant

protein, ricin [47]-to use as an anti-

fouling surface for marine fouling

organisms [35, 48]

N-acetylglucosamine (GlcNAc) -wheat germ agglutinin binding

study [36]- to study the enzymatic

modification of the immobilized

carbohydrates[37]

N-acetylneuraminic acid (sialic acid)

R = COO- or OH

-to detect Alzheimer's disease

linked protein amyloid-beta (Aβ)

at low concentration [21, 38]- to

optically detect virus based on

plasmonic properties of the sialic

acid-linked gold nanoparticles

assembled on the surface of

viruses [39]

Disaccharides Thomsen–Friedenreich antigen (TFag)β-D-Gal-(1–4)-D-GalNAc -to study binding properties and

immune response of this tumor-

associated carbohydrate antigen

[40] and in antitumor therapeutics

[41]

Maltose -to detect nanomolar

concentration of Con Awith high

signal-to-noise ratio [42, 43]-to

prepare antifouling surface

against proteins and common

marine fouling species [48]

Lactose -to study the interaction with

lectin Erythrinacristagalli-sensitive

and facile detection of deadly

plant proteinous toxin, ricin [47]-

nM-level detection of galectins, a

biomarker for cancer and other

serious diseases [44, 45]
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5. Role of linkers and mixed SAMs

The spacer connecting the sulfur atom to the terminal carbohydrates has an important role in

the arrangement and application of SAMs. The most commonly used linkers are repeating

(cont.)

Sacc. Terminal carbohydrates Applications

Oligosaccharides Globotriose (α-D-Gal-(1-4)-β-D-Gal-(1-4)-β-D-Glc) - to probe Shiga-like toxins[46]- as

potential therapeutics for Shiga

toxins when used with gold

nanoparticles [50]-to discover the

peptides that can inhibit Shiga

toxin [49]

Lewis x (lex) -to study the carbohydrate-

carbohydrate interactions on gold

nanoparticleSelf-recognition in

aqueous solution was

demonstrated by mimicking

glycosphing olipid clusters [51, 52]

Chitohexaose -for immobilization of cells and

use the surface for cell culture

applications [53, 54]

β-Cyclodextrin -to enhance the loading capacity of

anticancer drug methotrexate on

gold nanoparticles[45]

Dendrimers Generation 2 dendrimer with terminal carbohydrates (Figure 4)

Generation 3 dendrimer with terminal mannose group

-to determine association

constants and kinetic rate

constants with corresponding

specific lectins [4, 5]-to enhance

bacteria sensor [26]

Table 2. Commonly used carbohydrate molecules to prepare SAM on gold surface and their applications.
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units of a methylene group (-CH2), ethylene glycol (-OCH2CH2) and the combination of both

[29]. However, linkers can also be made from aromatic compounds [55], dendrimers [4, 5], and

peptides [56]. Connecting the different types of linkers previously present on the thiols or

carbohydrates may introduce complex structures to the linker; for example, triazoles from

alkyne/azides reaction, thiourea-bridge from isothiocyanide/amine reaction and amides from

N-hydroxyester/amine reaction. The main goals of the linkers are to provide strong support to

the terminal group with a proper orientation, keep the terminal group far from the substrate,

and resist non-specific interactions with proteins.

It has been reported that due to kinetic and thermodynamic reasons, longer chain linkers are

relatively ordered and robust [11]. The length of the linker is also important for the arrange-

ment of the SAM, which can significantly change the orientation of SAM as shown by

Yatawara and coworkers [30]. Alkanethiol linkers of terminal glucose having 11 and 16 car-

bons chain have similar orientations, but are totally different compared to a cysteine

containing linker. A study comparing the effect of thioctic acid amide and alkanethiol linkers

on the interactions of terminal mannoses with specifically binding lectin Con A, non-specific

lectins and with the highly adsorbent “sticky” proteins, fibrinogen and cytochrome c was

performed [57]. The results show that the thioctic acid amide-based linker was better at

resisting the nonspecific interactions while specifically binding terminal mannose to its

corresponding lectin. It was claimed that this linker can resist adsorption of fibrinogen and

cytochrome c better than ethylene oxide-based SAMs.

Even though the longer chain linkers are preferred due to various advantages, monolayers of

oligosaccharides (e.g., hyaluronan, chitohexaose, and chitosan hexamer) have been success-

fully immobilized on gold by modifying the reducing ends of the carbohydrates with

thiosemicarbazide (TSC) (Figure 6) [53, 58, 59]. The immobilized oligosaccharides SAMs were

then used for specifically capturing different types of cell to be used in cell culture applications

[53, 59, 60].

Mixed SAMs of carbohydrates are generally formed by two different constituents of thiolated

molecules, one having terminal carbohydrates and other lacking carbohydrate molecules. The

Figure 6. Schematic illustration of thiosemicarbazide (TSC)-derivatization and self-assembly immobilization of GlcNAc6

and GlcN6. The photograph is an optical image of carbohydrate-SAMs. Reprinted with permission from Ref. [53],

Copyright 2011, The Royal Society of Chemistry.
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most common way of making mixed SAMs of carbohydrates on gold surfaces is by co-adsorp-

tion of the two components from solution [61]. Other methods to prepare mixed SAMs are by

adsorption of asymmetric disulfides on gold surfaces [18] and by ligand exchange reaction

[62]. In the ligand exchange reaction, new thiolated molecules are introduced on the surface of

the already formed SAMs by a thiol-for-thiol mechanism [62]. However, newly introduced

molecules may not yield homogeneously mixed SAMs. The relative ratio of the component of

the mixed SAM on the surface depends on the mole ratio of the components in the solution.

However, increasing mole ratio of one component in solution does not necessarily increase its

ratio on surface in a directly proportional manner [11].

A main goal of making a mixed SAM is to minimize non-specific interactions and create a

biorepulsive background, as the hydrophobic chain of the linker might not be able to resist

non-specific interactions. Mixed SAMs are also prepared to control the density of the terminal

carbohydrates, as it has been found that crowding of receptors on the substrate surface is not

an optimal condition for the binding of proteins or other analytes [63]. The crowded receptors

may interact with each other or hinder the binding of the approaching analyte to the nearby

receptors.

Mixed SAMs having two different types of terminal carbohydrates can also be created for a

dual function. Aykac¸ and coworkers prepared SAMs of two different carbohydrates, lac-

tose and β-cyclodextrin, on gold nanoparticles to selectively detect human galectin-3

through lactose whereas at the same time loading anticancer drug methotrexate on β-

cyclodextrin [45]. This synergistic effect of two different terminal carbohydrates was found

to be very effective for site-specific delivery of anticancer drug than when they are used

individually.

6. Types of head-group

SAMs of carbohydrates on gold surfaces are extensively prepared based on thiol or disulfide

head-groups. Thiols have higher solubility and normally form a well-ordered surface com-

pared to disulfides [64]. However, they are susceptible to oxidation, forming sulfonates or

disulfides and degrade over the time [11]. Disulfides, being the less soluble component, may

precipitate out forming multilayer contamination if not prepared carefully [11]. In spite of this,

disulfides are frequently used as head-groups for carbohydrate-terminated SAMs [65]. The

carbohydrate-terminated SAMs formed by using dialkyl disulfide groups are found to be

indistinguishable from those formed from the corresponding thiol and are believed to be

formed by the cleavage of disulfide bond [66, 67]. However, such phenomenon is not very well

studied or understood for the disulfides present in the cyclic form such as in the case of lipoic

acid-based linkers. To reduce the problem of oxidation of thiols, they can be protected using

different strategies and reduced in situ just before SAM formation. This can be done by

keeping them as disulfides before and reducing them to corresponding thiols using

dithiothreitol [68] or by first protecting the thiols using the S-trityl group followed by de-

tritylation using trifluoroacetic acid and triethylsilane in dichloromethane [19].
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7. Gold substrates for SAMs formation

Gold substrates are so far the most used and studied substrate for the formation of carbohy-

drate SAMs not only because they are capable of supporting stable SAMs due to Au-S bonding

but also due to their conductivity, chemical and physical stability, and biocompatibility. SAMs

of carbohydrates can be prepared on gold surfaces having different morphologies, such as

planar (e.g., bulk or thin-films) to nanostructured surfaces (e.g., nanoparticles, nanostructured

films, and nanoporous structures). Nanostructures of gold are intriguing to scientists because

they can strongly scatter and absorb light due to large optical field enhancements [69] and

have a high surface area-to-volume ratio [70] while still maintaining their other important bulk

properties. Because of these properties, nanostructures of gold have application in diverse

fields, including biomedicine (drug delivery), energy (hydrogen storage, solar cell, and bat-

tery), optics (sensors), and electronics (computer chips, information storage) [69, 71]. Carbohy-

drates SAM on nanoparticles can be prepared using direct and indirect methods similar to

those explained before. However, they can also be prepared; at the same time, gold

nanoparticles are prepared using reduction of gold salts by keeping the desired thiolated

carbohydrates in the same solution mixture. The ligand exchange reaction is another way to

introduce the SAM of desired carbohydrates to the already formed carbohydrate SAMs on

nanoparticles surfaces [62]. SAMs prepared on nanoparticles may not be exactly same as the

SAMs prepared on a planar surface due to the high radius of curvature of nanoparticles [11].

Since the carbohydrate immobilized nanoparticles are free to move around, they are used for

studying the self-recognition of different carbohydrates [52], as possible inhibitors of lung

cancer metastasis [72] and as an antitumor agent [41, 73]. SAMs of carbohydrates are also

immobilized on other robust nanostructures of gold such as nanostructured gold film [74] and

nanoporous gold (np-Au), which can be used as a biosensor transducer [75]. np-Au is a three-

dimensional structure having pores (inter-ligament gaps) and ligaments with widths on the

order of a few nanometers to a few hundreds of nanometers [70, 76]. np-Au was also used as a

solid support for synthesizing disaccharides and trisaccharides starting from simple monosac-

charide-terminated SAMs [77, 78].

8. Characterization techniques

There are wide varieties of methods to characterize the successful formation of SAM having

terminated carbohydrates on gold surfaces and to study their interaction with other biomole-

cules. However, there is no single technique that alone can characterize the carbohydrates

SAMs and their interactions completely, so different techniques should be used to support the

result obtained from one method. Based on the purpose of the study, some of the most

frequently used techniques are now discussed.

8.1. Surface wettability

The wettability of the surface before and after the modification by carbohydrate-terminated

SAMs can be determined using contact angle goniometry by measuring the contact angle
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between water droplet and the surface [35]. The contact angle can be calculated by first taking
images of the droplet of water on the surface and using software to fit different models. If
contact angle is greater than 90°, the surface is considered hydrophobic; and if smaller than
90°, the surface is considered hydrophilic [79]. Unprotected carbohydrate-terminated surfaces
typically create low contact angles owing to their hydrophilic nature. The static contact angle
determined using a sessile droplet is the common method to check the surface wettability.
However, due to the deviation from an ideal nature of the surface, there is always a contact
angle hysteresis ranging from advancing contact angle to the receding contact angle [80]. The
Liedberg group compared the wettability of the surface created with methylated and
nonmethylated galactose-terminated SAMs on gold surfaces [81]. It was found that
nonmethylated galactose surfaces had contact angle <10° demonstrating its hydrophilic prop-
erties, whereas methylated galactose surfaces had contact angle >70° demonstrating relative
hydrophobicity. Dietrich and coworkers used contact angle goniometry to measure the contact
angle of dimannoside-terminated SAMs on gold surfaces, which was found to be 36° ± 2° [79].
The reported contact angle is high compared to a pure hydroxyl-terminated surface, attributed
to the exposed hydrophobic aliphatic linker. Fyrner and coworkers measured the advancing
contact angle of oligo(lactose)-based thiol SAMs on gold, and it was found to be <10° [82]. This
demonstrates a very hydrophilic surface as expected because of the highly hydroxylated
oligosaccharides moieties.

8.2. Thickness and roughness

Ellipsometry is a powerful optical technique used for measuring the thickness and roughness
of the carbohydrate-terminated SAM surface. This technique is based on changes in the polar-
ization of incident radiation upon interacting with the surface of interest. The Konradsson
group utilized this technique to study the increase in thickness of the oligo(lactose)-based
SAM by introducing one, two, and three lactose units [82]. As expected, the thickness of the
immobilized SAMs for one lactose unit 15.7 ± 0.2 is increased to 20.9 ± 0.2 for two units and to
29.8 ± 0.2 for three units. Another study using ellipsometry showed that (CH2)15 alkanethiol
linker gave a height of 22 Å, which the addition of globotriose increased to 32 Å and on
insertion of triethylene glycol between globotriose and the alkanethiol linker increased to 40
Å [68]. The results also showed that the thickness of the mixed monolayer increases
nonlinearly with an increase in the ratio of the globotriose in solution, as the composition of
globotriose in the incubation solution differs from that immobilized on the gold surface.

Atomic force microscopy (AFM) is another important tool, which can be used to directly
image the sample to see the roughness on the surface with the resolution on the order of a
fraction of a nanometer. It consists of cantilever having sharp tip made of silicon or silicon
nitride that gets deflected upon interaction with the surface. Depending on the nature of study,
deflecting force or force needed to keep the cantilever at a constant height can be measured
using mainly two different modes, contact mode and non-contact mode (tapping mode). The
Penades group prepared SAMs of disaccharide maltose on flat gold (111) surface as a
neoglycoconjugate to mimic the glycolipids of cell membranes and characterized them using
AFM [83]. They have found that despite the bulkiness of the carbohydrate groups, the SAMs
were found to be well-ordered and densely packed comparable to SAMs of alkanethiols. A
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similar conclusion was reached when α- or β-linked glucopyranosylamide derivatives SAMs

were prepared on gold and studied using the contact mode of AFM [34]. The study has also

found that acetate analogues of the same compound form multilayered films instead of

forming SAMs under the similar deposition conditions. AFM was also used for monitoring

the interactions of mannose-terminated SAMs to Con A by observing changes in roughness on

the surface before and after the immobilization of Con A [24]. Increase in roughness and the

average z-dimension value from ≈2.5 to ≈4.0 nm was observed after Con A immobilization.

Relatively smaller height of Con A compared to the one obtained from X-ray crystallography

(≈6.3–8.9 nm) was attributed to the tip-induced changes when contact mode was used. Figure 7

shows work by Chikae and coworkers where AFM was used for monitoring changes in

roughness on the surface after each modification step [21]. Figure 7A shows the AFM image

of clean flat gold substrate, 7B is the image after immobilization of sialic acid SAM, and 7C and

7D represent the images after capturing of Aβ(1–40) and Aβ(1–42), respectively after incuba-

tion of 20 μM Aβ peptides at room temperature for 180 min.

In a slightly different direction, AFM was also used for controlling the spacing of already

immobilized carbohydrate SAMs by increasing the imaging force above the displacement

threshold [84], which was then used to monitor the binding affinity of viral envelope glyco-

protein gp120 to SAM of galactosylceramide prepared at controlled edge-to-edge gaps. The

protein shows better immobilization when edge-to-edge separation of SAMs falls between 1.3

and 9.4 nm, with a 4.8 nm gap giving the optimal binding.

8.3. Chemical composition

X-ray photoelectron spectroscopy (XPS) is a powerful surface characterization technique,

which provides useful information about elemental and chemical composition of carbohydrate

SAMs. Cheng and coworkers utilized the XPS technique to determine the carbon, sulfur, and

oxygen composition of diluting SAM, linker, and functionalized mannose [85]. In another

study, high-resolution XPS analysis of C1s spectrum was performed by Dhayal and Ratner to

identify the O-C-O functionality and separate/quantify the relative coverage of carbohydrate

molecules in mixed SAMs [86]. They also found that the ratio of thiolated molecules in the

solution is directly dependent on types of SAMs formed on the surface. High-resolution XPS

was also used to track the nitrogen atom after the alkyne/azide click reaction [87]. The N1s

spectra clearly does not show any peak before the click reaction, but after the click reaction, the

N1s spectra shows a peak at 402 eV supporting the formation of triazole rings.

Infrared (IR) spectroscopy provides the information regarding the chemical composition

present on the SAM surface based on frequencies and intensities of the molecular vibration. A

simple carbohydrate molecule show characteristic bands in two different regions; the first is a

broad band at around 3300–3500 cm−1 due to stretching of OH groups and the second is

several modes between 1200 and 1000 cm−1 due to hemiacetal of carbohydrates (O-C-O) [13].

Increasing broadness of OH band and shifting to lower frequency indicate higher

intermolecular and intramolecular hydrogen bonding, creating well-ordered densely packed

monolayer formation [33]. Several other special molecules might be introduced through the

linker when preparing the carbohydrate SAM that can be easily seen through the change in
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position and sudden appearance or disappearance of the bands. Amide group present in the

linker of the carbohydrate SAM was found to show bands at ≈1650 and ≈1560 cm−1 for amide I

and amide II, respectively [34, 88]. Similarly, if the hydroxyl groups are protected with an

acetyl group, a strong band will be seen at 1765 cm−1 due to ester functionalities.

8.4. Binding affinity

Surface plasmon resonance (SPR) is a popular biosensing tool based on change in the refrac-

tive index at the metal-sample interface. It is used for studying the affinity-based interactions

Figure 7. AFM images of the bare gold substrate (A); after cycloaddition of the sialic acid (B); the attachment of 20 μMAβ

peptides after incubation at RT for 180 min; Aβ(1–40) (C) and Aβ(1–42) (D). Reprinted with permission from Ref. [21],

Copyright 2008, Elsevier.
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of the biomolecules such as protein-protein interactions, label-free immunoassay, enzyme-

substrate interactions, DNA hybridization, and diagnosis of virus-induced diseases in real

time [89]. This method has also been widely used for studying the interactions of carbohydrate

SAMs with proteins. Schlick and Cloninger studied the inhibition property of glycodendrimer

for the binding of Con A to the SAM presenting mannose [90]. The equilibrium dissociation

constant (Kd) of Con A to the mannose functionalized surface was initially determined to be 78

nM. The smaller Kd value for this interaction was attributed to multivalent interactions on the

surface. A multivalent glycodendrimer framework was used to inhibit the interaction of

mannose-functionalized dithiol SAMs on gold surfaces to Con A, whose IC50 values were

found to be in the range from 260 to 13 nM. In another study, SPR was used for one-step

detection of galectins, a β-galactoside-binding lectin well-known as a biomarker for different

cancer, by preparing mixed SAMs of thiolated lactoside and triethylene glycol (TEG) [44]. The

sensor designed is very sensitive that it can detect ≈ 1 nM galectin-4 and -8, in spite of very

weak interactions of galectins and lactoside with Kd ≈ 1.0 × 10-3 –1.0 × 10-6 M because of

suppression of nonspecific interactions by TEG.

Localized surface plasmon resonance (LSPR) is a relative new biosensing technique. Scien-

tists are exploring this technique because of its simplicity and possibility to be miniaturized,

decreasing the application cost [91]. This technique is very sensitive and supports label-free a

real-time biosensing. Similar to SPR, LSPR-based biosensing also depends upon the change in

RI with output data commonly represented by measuring wavelength or intensity shift. LSPR-

based biosensing, however, also depends on shape, size, and composition of the material used

as a transducer [92]. The important step of LSPR-based biosensing is the fabrication of

plasmonic sensitive metal nanostructures. Wide varieties of nanostructures have been created

using different techniques with the goal of finding simple preparation methods, highly sensi-

tive structures for detecting and studying biomolecules and their interactions, chemically and

physically robust structures, and those that can be easily regenerated. Even though

nanostructures of many noble metals can generate the LSPR signal, nanostructures of gold

and silver are frequently used for LSPR-based biosensing [74]. Silver-based nanostructures

show better sensitivity with sharper peaks than gold-based nanostructures [93]. However,

silver nanostructures are prone to oxidation causing change in plasmonic properties and also

weakening thiol-metal binding [94], making gold nanostructures the metal of choice for LSPR-

based biosensing. Bellapadrona and coworkers prepared LSPR sensitive gold island films by

evaporation of gold on glass followed by annealing [95]. As-prepared structures were used to

form mannose SAM, and interaction with Con A was monitored by change in peak intensity

and wavelength. The binding kinetics of mannose to Con A were also determined whose kon

and koff are 2.0 ×104 M-1 s-1 and 2.6 × 103 s-1, respectively. The detection limit of Con A on

mannose-terminated SAM was achieved down to <5 nM. Previously, our group has also

prepared a robust and sensitive nanostructured gold film (NGF) using a simple electrochemi-

cal method [74]. By immobilizing mixed SAMs presenting mannose, we were able to show the

real-time interaction of Con A to mannose-terminated SAMs.

LSPR was applied to study monolayers of colloidal Au nanoparticles supported on glass.

These were modified by polymer brushes presenting multiple glucose residues, and LSPR

was used to determine a binding constant of 5.0 ± 0.2 × 105 M-1 noted as larger than that for
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Con A binding to methyl α-D-glucopyranoside of 2.4±0.1 × 103 M-1 in solution due to multiva-

lent binding effects [96]. The use of supported gold nanoparticles modified with a polymer

brush presenting many mannose units was also applied to follow Con A binding, resulting in

an apparent association constant of 7.4 ′ 0.1 × 106 M-1, noted as much greater than that for Con

A to methyl α-D-mannopyranoside in solution of 7.6±0.2 × 103 M-1, with the difference attrib-

uted to multivalent binding [97]. Galactose presenting polymer brushes was also used to

modify colloidal gold monolayers and their binding of the lectin RCA120 was followed by

LSPR, and the binding of HepG2 cells which contain galactose receptors was followed by

optical microscopy [98]. The interaction of wheat germ agglutinin (WGA) with a disulfide-

modified telomer polymer on a colloidal gold monolayer was also followed by LSPR [99].

Cyclic voltammetry: Cyclic voltammetry (CV) is one of the commonly used electroanalytical

techniques for the study of SAMs. In this technique, the potential is linearly scanned back and

forth making a triangular waveform in appropriate electrolyte solution. SAMs of carbohy-

drates and their interactions with biomolecules are normally determined by monitoring a

decrease in peak current of a voltammogram. Li and coworkers used mannose-terminated

SAMs to capture E. coli bacteria and the change in the peak current before and after the

immobilization of bacteria was monitored [100]. It was found that the peak current decreased

exponentially reaching a plateau within 5 min due to immobilization of E. coli, which means

that there is a less free space surrounding the electrode for the probe molecules to reach the

surface of the electrode. However, cyclic voltammetry may not always be a suitable technique

to study the interactions, as the peak current may reach a plateau beforehand as the well-

ordered SAM on gold surfaces leaves no further possibility for the peak current to decrease,

which also means that if no probe molecules can penetrate the SAM, they also cannot penetrate

any other biomolecules immobilized on SAM surface, and no change in current response will

be seen [21, 75].

Electrochemical impedance spectroscopy (EIS) is another very sensitive technique used for

biosensing [101]. This technique measures the resistive and capacitive properties of materials

by applying a small alternating sinusoidal potential, typically 2–10 mV around a fixed poten-

tial usually chosen as the formal potential of a redox probe. An impedance spectrum is

obtained by varying the frequency over a wide range and is most commonly represented in

the form of a Nyquist plot [102]. Interactions of terminal carbohydrates of SAM with other

biomolecules are observed by measuring the charge transfer resistance of the electrode before

and after the modification of the surface. The Heineman group used EIS to detect the mannose-

specific bacteria E. coliORN 178 on mannose-terminated SAM on a gold surface [103]. With the

incubation of E. coli ORN 178 on the mannose surface, the charge transfer resistance (Rct)

increased drastically in the Nyquist plot because of the selective binding, whereas incubating

with E. coli ORN208 did not show any significant change in the signal supporting non-speci-

ficity toward mannose. Monitoring the change in signal with change in concentration of E. coli

ORN 178, it proved possible to determine the detection capacity of the system, found to be

from 102 to 103 CFU/mL. In another work, EIS was used to study the resistance of different

carbohydrate-derived lipoic acid derivatives for nonspecific binding [65]. The interaction of

single chain antibody (scFv) with rabbit IgG was studied on a gold surface. It was found that

human serum and HeLa cell interfered with the interactions shown by an increase in charge
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transfer resistance. However, when galactose presenting SAM and bovine serum albumin

(BSA) was prepared along with the scFv, the resistance decreased compared to scFv alone,

but it did not increase upon passing human serum and HeLa cells, showing the effectiveness of

the galactose SAM to resist background interactions. When antibody was passed over the SAM

surface, it showed an increase in resistance due to selective binding.

Quartz crystal microbalance (QCM) is one of the frequently used techniques for biosensing in

which a piezoelectric crystal, most commonly a quartz-crystal coated with a gold electrode, is

made to vibrate at a particular frequency [104]. Depending on the increase in mass by the

immobilization of the analyte to bioreceptor on the resonator surface, the resonance frequency

of quartz crystal decreases, which can be measured electrically and the amount of mass change

can be determined [105]. QCM is widely used to study carbohydrate SAMs and their interac-

tions with different biomolecules. Zhang and coworkers used click reaction to immobilize

Figure 8. QCM analysis of Erythrina cristagalli lectins (ECLs) and Con A binding on (A) mannose SAM and (B) lactose

SAM. ECL is specific to lactose but not to mannose, while Con A is specific to mannose but not to lactose. Reprinted with

permission from Ref. [24], Copyright 2006, American Chemical Society.
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azido sugars (mannose and lactose) on the alkyne-terminated SAM and studied their interac-

tions with con A and Erythrina cristagalli lectins (ECLs) using QCM (Figure 8) [24]. It can be

seen that ECL does not result in a change in frequency on the mannose modified resonator,

whereas small concentration of Con A gives larger frequency change due to specific interaction

with mannose. Similarly, Con A does not show any interaction with a lactose-functionalized

resonator.

9. Applications

The carbohydrates present on the cells surface can act as a receptor for many pathogens to

facilitate cell-cell adhesion through which humans can be infected, for example, mannose

binds pathogenic bacteria E. coli and sialic acid binds influenza virus. Therefore, cell surface

can be mimicked by preparing SAMs of carbohydrates to study and understand different

types of binding and inhibition studies in vitro. SAMs of carbohydrates are also used for

detecting disease biomarkers and carrying drugs.

9.1. Carbohydrate–lectin interactions

The diverse arrangement of carbohydrate in biological molecules makes their study challeng-

ing. However, the ubiquitous presence of 10 common monosaccharaides, namely, D-glucose (D-

Glc), D-mannose (D-Man), D-galactose (D-Gal), N-acetylglucosamine (D-GlcNAc), N-acetylga-

lactosamine (D-GalNAc), D-glucuronic acid (D-GlcA), L-fucose (L-Fuc), N-acetylneuraminic acid

(Neu5Ac), D-xylose (D-Xyl) and L-iduronic acid (L-IdoA), has made it easier to understand

these structures and their functions, mainly by selecting lectins specific to these monosaccha-

rides. Lectins are the proteins having an ability to bind specific types of carbohydrate [106] and

hence to variety of glycoproteins, bacteria, and viruses through their carbohydrate-binding

moieties [107]. Examples of commonly used lectins include Concanavalin A (Con A)-specific to

mannose and glucose [108], peanut agglutinin (PNA) and jacalin-specific to galactosyl (β-1,3)

N-acetylgalactosamine sugar sequence [109] and wheat germ agglutinin (WGA)-specific to N-

acetylglucosamine.

Carbohydrate-lectin interactions can be studied in solution using techniques like isothermal

titration calorimetry [110] or on gold surfaces using SPR, LSPR, EIS, and QCM [75, 104]. It has

been found that the interactions between carbohydrate and lectin are stronger when

performed on solid surfaces. The reason behind this is the favorable multivalency condition

on the solid surface [111]. However, care should be taken when studying the interactions on

solid surface as the defects on immobilized film can cause the analyte (protein) to immobilize

directly on solid surface and can also precipitate the protein. The main goal of the carbohy-

drate-protein interactions study is to find the binding constant or to detect protein at low

concentration. The change in response before and after the interactions of carbohydrate and

lectin mostly in the form of optical, electrochemical, thermal or mass response is recorded.

Then the change in response is recorded for wide range of concentrations creating a calibration

plot, from which binding kinetics can be determined. The lower the value of Kd, the stronger is
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the binding between carbohydrate and lectin. Kd is the important information needed to guide

the preparation of different inhibitors.

Since monosaccharides are easier to be derivatized to prepare SAMs, their interactions with

their corresponding lectins have been well explored using different techniques. For example,

Kd of mannose and Con A interactions are reported in the range of tens of nanomolar to few

hundreds of nanomolar [112]. The variation on Kd arises due to the number of factors, includ-

ing techniques used, type of substrate and SAM, preparation method, and functional activity

of lectins. Loaiza and coworkers prepared screen-printed carbon electrodes modified with

gold and functionalized with D-glucose and D-mannose SAMs [113]. The substrate was then

used for detecting Con A using an electrochemical impedimetric technique finding detection

limits of 0.099 and 0.078 pmol for D-glucose and D-mannose SAMs, respectively.

9.2. SAMs of carbohydrates for the detection of E. coli

Escherichia coli (E. coli) is a gram negative, rod-shaped bacteria naturally found in the intestines

of humans and other animals. Many subset of E. coli are harmless; however, they are also the

major cause of diarrheal disease among children in low-income countries [114]. The subset of

E. coli uropathogenic E. coli (UPEC) is a leading cause of urinary tract infection (UTI) in

humans [115]. According to the National Kidney Foundation, there are nearly 10 million

doctor visits each year due to UTI, and one in five women will have it at least once in a lifetime.

E. coli uses the FimH adhesin present at the tip of the type 1 pili to mediate adherence and

invasion to urothelial cells through D-mannose groups present on the cell surface [116].

Invasion of E. coli into urothelial cells can not only lead to substantial medical cost for treat-

ment but also damage different parts of the urinary system, including kidney creating poten-

tially life-threatening complication if untreated. The culture and colony counting method is

one of the preferred methods for the detection of bacteria, but it normally takes days to obtain

the results. Research for developing simple, sensitive, and selective techniques, which can

detect, with or without labeling, bacteria cells in shorter periods of time at cheaper price, are

ongoing. Mannose microarrays prepared using SAM technique is a promising way to prepare

such types of detector. Some of the previously reported work based on E. coli detection on

mannose SAM surface is discussed below.

Understanding the microbial force of adhesion to the carbohydrate surface can help develop

a new approach for detection and prevention of bacterial infection by blocking or decreasing

the adhesion capacity. The forces of adhesion of UPEC to the mannose presenting SAM

surface, representing the surface of epithelial cells, have been studied using optical tweezers

by Whitesides group [117]. The group was successful to orient the bacteria end-on on

mannose surface, from where they can be immediately detached and reattached onto man-

nose surface and the force required to detach from the surface was measured. In another

study, SAMs of octadecanethiol on a gold electrode surface and polydiacetylene derivatives

with or without terminal mannose were used to prepare bilayer similar to the biological

membrane. Incubation of the prepared electrode in E. coli solution having 9 × 108 cells/mL for

5 min changes the initial blue color of the electrode to red, which can simply be observed

through naked eyes. The change was further confirmed by resonance Raman spectroscopy,
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UV-vis and EIS. Transmission electron microscope (TEM) was used to detect E. coli ORN 178

strain and distinguish it from non-mannose binding strain E coli ORN 208 on gold

nanoparticles (AuNP) encapsulated by SAM of mannose. TEM micrographs of the area of

pili clearly show selectively bound mannose encapsulated AuNP on pili of E. coli ORN 178

strain, but not on pili of the E. coli ORN 208 strain [118]. Recently, detection and comparison

study of E. coli ORN 178 and E. coli ORN 208 was also performed using EIS technique where

α-mannoside-terminated SAM was immobilized on a gold disk electrode [103]. The system

is sensitive to detect bacteria in the range from 102 to 103 CFU/mL. To make label free and

sensitive sensor for detecting bacteria, the synergistic combination of mannose SAM and

Con A was utilized as a molecular recognition unit (Figure 9) [104]. Compared to the direct

interaction of SAM of mannose to E coli, this synergistic combination showed significant

improvement in attachment, sensitivity and specificity when monitored through the quartz

crystal microbalance (QCM) transducer.

The adhesion of Con A to E. coli was through the multiple binding to lipopolysaccharides (O-

antigen) exposed on cell wall of E. coli. LOD for mannose/Con A sensor was improved down to

7.5 × 102 cells/mL from 3.0 × 107 cells/mL for mannose-alone sensor. Similarly, four decades

wider linear range (7.5 × 102 – 7.5 × 107 cells/mL) was found for the mannose/Con A-based

sensor compared to mannose-alone QCM sensor [104]. In detecting E. coli on mannose-termi-

nated SAMs, it is always preferred to have minimum nonspecific interaction for better selec-

tivity and specificity of the detector. Grabosch et al. introduced a dual click chemistry strategy

for creating a biorepulsive background with the exposed mannose terminal SAMs [27]. A

polyethylene glycol linker having azide and amine terminal groups was used to support dual

click reactions. Azides react with alkynes to form triazole ligation products and amines react

with isothiocyanate to form thiourea bridges where the other ends of alkyne and isothiocya-

nate consist of thiol head group and terminal mannose, respectively. The SAMs of mannose

prepared by this dual click strategy was found to be very effective in reducing the nonspecific

interactions while specifically and selectively capturing green fluorescent protein (GFP)-

tagged E. coli strain (pPKL1162) evident by epifluorescence micrographs with and without

Figure 9. Schematic presentation of direct E. coli detection and Con A-mediated E. coli detection. Reprinted with permis-

sion from Ref. [104], Copyright 2007, American Chemical Society.
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terminal mannose (Figure 10). The same strand of E. coliwas also successfully detected on self-

assembled dendritic monolayer (SADM) having disulfide cores using SPR and resonance-

enhanced surface impedance (RESI) [26]. Generation one dendrimer having four terminal

mannoses was found to have the binding efficiency of approximately 3600 cells·(pmol of

Man)-1 whereas generation three dendrimer having 16 terminal mannose have binding effi-

ciency of 4200 cells·(pmol of Man)-1. In this work, binding efficiency of generation three

dendrimer having terminal mannoses and hydroxides groups to E. coli was also compared

showing that mannose-terminated surface can improve the attachment of cells by 2.5-fold.

10. Summary

SAMs of carbohydrate can be prepared on gold surfaces to present multivalency and mimic

the cell surface to study different physiologically significant interaction in vitro. In this chapter,

we have presented the direct and indirect methods for forming SAM of carbohydrates on gold

Figure 10. Adhesion of fluorescent bacteria to the different stages of the SAM during the ‘dual click’ approach. The GFP-

transformed E. coli bacteria (pPKL1162) enable a fast, direct fluorescence readout to investigate bacterial adhesion on

surfaces. The native gold surface (I) was used as reference in each of the other experiments. As can be seen in the

epifluorescence micrographs, the (non-specific) adhesivity of the alkyne-terminated SAM II is comparable to the one of

the native Au surface. Introduction of the OEG chain reduces the adhesion significantly, while the α-mannosyl-terminated

SAM is effectively recognized by the E. coli leading to heavy adhesion. Reprinted with permission from Ref. [27],

Copyright 2013, The Royal Society of Chemistry.
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surfaces. Common strategies of preparing SAMs using indirect method are discussed and

presented. We have also tabulated some of the commonly used carbohydrate terminal groups

of the SAM, and their applications are presented. Different characterization techniques based

on nature of study were also presented. Finally, the application of carbohydrates SAM for

lectin and bacteria detection has been discussed.
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