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Abstract

Screening against biochemical targets with compact chemical fragments has developed 
a reputation as a successful early‐stage drug discovery approach, thanks to recent drug 
approvals. Having weak initial target affinities, fragments require the use of sensitive 
biophysical technologies (NMR, SPR, thermal shift, ITC, and X‐ray crystallography) 
to accommodate the practical limits of going smaller. Application of optimized frag‐
ment biophysical screening approaches now routinely allows for the rapid identifica‐
tion of fragments with high binding efficiencies. The aim of this chapter is to provide 
an introduction to fragment library selection and to discuss the suitability of screening 
approaches adapted for lower‐throughput biophysical techniques. A general description 
of metrics that are being used in the progression of fragment hits, the need for orthogonal 
assay testing, and guidance on potential pitfalls are included to assist scientists, consider‐
ing initiating their own fragment discovery program.

Keywords: fragment‐based drug discovery, biophysical screening, efficiency metrics, 
nuclear magnetic resonance spectroscopy, surface plasmon resonance, thermal shift 
assay, isothermal titration calorimetry, fluorescence polarization, X‐ray crystallography

1. Introduction

“Going small” with fragment‐based drug discovery (FBDD) denotes using low molecular weight 

compounds to probe a therapeutic target. This also includes using smaller tailored libraries and 

lower screening throughput in more carefully measured assays. This is a consequence of being 
reliant on biophysical technologies, as compared to classical high‐throughput screening (HTS) 
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approaches performed in 384‐well plates that detect product formation. FBDD at its core is tar‐

get‐based drug discovery, but the initial approach of fragment screening differs from standard 
lead‐like screening, which utilizes much larger higher molecular weight screening libraries.

In theory, modern target‐based drug discovery screening libraries are designed to maximize 

coverage of chemical space. This is especially important for groups that use high‐through‐

put technologies (HTS) and screen against diverse targets. These target‐based programs tend 

to rely on screening the highest practical number of chemical entities from their screening 

libraries, sometimes accumulating millions of compounds [1]. However, with over 166 billion 

possible synthetically accessible organic molecules containing up to 17 heavy atoms (nonhy‐

drogen) [2], even the biggest screening libraries cannot possibly statistically represent this 

vast chemical space [3].

From modeling described in a 2001 article, Hann and colleagues showed how higher molec‐

ular complexity (i.e., ligand size) significantly decreased the probability of protein‐site 
molecular recognition [4]. The authors outlined this as a primary shortcoming of the combi‐

natorial chemistry/HTS approach to drug discovery and promoted the idea that screening 

smaller libraries with reduced complexity could be a complementary approach. Thus, by 

reducing compound complexity, FBDD evades the pitfall of scaffold bias which develops in 
large lead‐like screening libraries.

In this chapter, the reader should come to appreciate how going small is an intrinsically 

orthogonal screening platform that is easily integrated with established biophysical tech‐

niques. The methods, examples, and citations discussed are intended to guide a newcomer to 
FBDD, specifically scientists who have some prior experience with drug screening principles.

2. The rise of fragments as a screening ideology

Fragment‐based drug discovery started as a concept published in 1981 [5] by biochemist 

William P. Jencks, who characterized the binding affinities of molecules to proteins as being 
built from components. Citing several examples, he described how the balance of Gibbs‐free 

energy for a two‐component molecule binding to a protein could also be described through 

the equation  Δ  G  
AB

  0   = Δ  G  
A
  i   + Δ  G  

B
  i   + Δ  G   s ,  where  Δ  G   i   values are the “intrinsic binding ener‐

gies” of the components and  Δ  G   s   is their “connection Gibbs energy.” A key aspect of the con‐

cept is that the component's contribution to the balance of the observed binding energy ( Δ  G  
AB

  0   ) 

would be relatively significant but weak, thus creating a challenge for detection. Jencks’ con‐

cept was obscured at the time due to the excitement around combi‐chem/HTS drug discovery 

approaches. In 1996, the conceptual observations of Jencks were experimentally validated 

by the team of Fesik. His team successfully produced a drug lead by linking fragment hits 

detected by a sensitive two‐dimensional nuclear magnetic resonance (NMR) spectroscopy 

binding assay (often referred to as SAR‐by‐NMR) [6]. Since then, fragment‐based drug dis‐

covery has energized the pharmaceutical industry. In 2011, a drug for BRAF‐mutated meta‐

static melanoma became the first FDA‐approved drug discovered via FBDD [7]. A second, 

for chronic lymphocytic leukemia, was approved in 2016 [8], with several related candidates 

currently making their way through the pipeline [9].
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3. Fragment primary screening

At present, NMR, surface plasmon resonance (SPR), thermal shift assay (TSA), isothermal titra‐

tion calorimetry (ITC), and X‐ray crystallography (Sections 3.2–3.4, 4.1 and 4.2) are the most 

widely used techniques in FDBB. Given their respective throughput capacities NMR, SPR, 
and TSA are often used as the primary screening technology with ITC and X‐ray crystallog‐

raphy reserved as secondary screening. Figure 1 shows the effective ligand affinity coverage 
of each technique which partly demonstrates their utility with FBDD. All biophysical screen‐

ing techniques work best in combination and individual hits need careful orthogonal valida‐

tion. Crystallography is the gold standard as the information gained allows for rapid ligand 

advancement. However, its application as a primary screen is often impractical due to resource 

and time limitations. High concentration inhibitor biochemical or fluorescence polarization 
(FP) assays can be used in some cases for orthogonal validation of primary screening hits where 

crystallography is not an option.

The workflow represented in Figure 2 shows how these techniques might be organized into 
a traditional screening paradigm. It is common to use some of these techniques in paral‐
lel, particularly at the secondary screening stage since there are always fewer compounds to 

evaluate. Pragmatically, scientists should obtain structural insights at this secondary stage 

to validate primary screening results. Structural information is preferred when deciding to 

progress a fragment to the hit generation stage (discussed further in Section 5.2).

Figure 1. The range of fragment affinities covered by the biophysical techniques described in this chapter. The techniques 
are ranked from the top downwards in order of their typical frequency of use in FBDD programs (SPR being a close 
second). NMR (yellow outline) is represented as a medium‐throughput method but can be low‐throughput based on the 

availability of protein and whether recycling is required. *Fluorescence polarization, technically a biochemical technique 
and highly dependent on probe affinity, is included for comparison but can be applied to fragment screening.
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3.1. Fragment library design

An obvious first step for any primary fragment screening is to resource compounds for the 
screen. However, wielding a proper fragment library as a tool for hit generation conflicts with 
traditional lead‐like screening methods. Central to the conflict is the regular use of high con‐

centrations of compounds to accommodate expected low binding affinities. Practical pitfalls, 
such as compound aggregation, compound precipitation, dramatic pH changes, detector 

saturation, and nonspecific interactions, are a minor concern when nanomolar concentrations 
are used during screening of larger molecular weight molecules, but can become major issues 

when millimolar concentrations are used in fragment screening.

In 2003, scientists at Astex Pharmaceuticals published a synopsis of their emerging fragment 

drug‐discovery program and noted that the average physical properties of their fragment hits 

fell conveniently within different orders of 3 (molecular weight <300, hydrogen bond donors 
≤3, hydrogen bond acceptors ≤3, and ClogP ≤3) [10]. As a compliment to Lipinski's rule of 5 

(RO5), the fragment rule of 3 (RO3) was a convenient target toward which chemical  suppliers 

Figure 2. An example of the typical FBDD screening workflow. The workflow assumes structural information by X‐ray 
or NMR. The hierarchy will not accurately depict the resources of all drug discovery programs. Dashed connections 

represent screening options at the primary and secondary screening stages. Arrows point to the results from each screen 

to be ranked or compared to those of other techniques. Fragments promoted to secondary screening will eventually 
require structural information to be progressed to hit generation. *The ITC technique is typically used for ranking 
fragment hits after secondary screening.
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built fragment libraries from their existing stores. Ten years later, Astex Pharmaceuticals 

revised their position [11], stating that similar to the RO5 described by Lipinski, RO3 was 

more of a guideline and that their refined library consisted of fragments with less than 17 
heteroatoms with molecular mass <230 Daltons. This exemplifies how well‐constructed frag‐

ment libraries should rely heavily on practicality to be effective tools and speaks to the need 
for additional scrutiny of (in order of importance) solubility, stability, and reactivity for effec‐

tive fragment screening.

Commercial and nonprofit access to fragment libraries exists, and several examples have been 
characterized [12, 13]. A custom library allows for existing libraries to be used in addition 

to catalog resources with some tailoring based on specific cheminformatics principles, such 
as optimization of the representative chemical space, avoidance of nuisance compounds, 

and guidance with pharmacophore models. One early‐stage example of note is the Global 

Fragment Initiative (GFI) by Pfizer [14], wherein the library was built from compounds on 

hand, purchased, and synthesized. Each member of the GFI library was rigorously character‐

ized and empirically tested for aqueous solubility up to 1 mM, with the intent of using the 
library for multiple biophysical techniques. How a fragment library is procured will depend 
on an acceptable balance of convenience and cost, but it is highly recommended that the end 

user have methods in place to reliably assess each compound for practical use at high concen‐

trations. For an example of this workflow, see Figure 3.

Fragment hits can have limited traction toward chemical expansion or linking as a conse‐

quence of their size. As a safeguard, Merck strategically redesigned its general FBDD library 
to accommodate more structure‐activity relationships and to fill structural gaps by visual 
inspection [15]. The purposeful move away from diversity in its general library was a con‐

certed effort of cheminformatics and crowdsourcing of medicinal chemists to gain pipe‐

line traction. The strategy leads to larger general screening libraries and effectively restricts 
 widespread application to appropriately equipped programs. Regardless, any FBDD  program 

Figure 3. A suggested library construction workflow for FBDD. Once compounds are obtained as dry stocks, the 
workflow proceeds left to right. Having redundancy built into the screening stocks helps rule out contamination or 
mishandling. It is presumed that fragments will eventually be used in NMR studies, therefore dissolved using deuterated 

solvents (d6‐DMSO and D
2
O). Rigid quality control is recommended to eliminate spoiled or misidentified compounds 

and repeated on hits or on the event of significant additions of fragments to the library.
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design must account for this pitfall and ensure the potential to develop fragment hits through 

chemistry or catalogs.

Finally, Pan‐Assay Interference Compounds (PAINS) are a well‐known classification of chem‐

ical entities to activity across multiple assays and proteins, and they have been thoroughly 

reviewed in regards to their practical impacts on FBDD [16], and related cheminformatics 

filters are available via the Internet [17]. The reduced chemical complexity of fragments does 

inherently diminish the number of “worst offenders” in its library and often bad fragments 
are quickly identified and triaged from screening libraries.

In conclusion, for FBDD, it is prudent to prioritize highly soluble fragment libraries with a 

diversity of ring shapes that can match a broad range of hydrogen bonding interactions from 

the protein target. A minimalistic approach would be to only eliminate mostly predictable 

fragment “show stoppers,” containing toxicophores subject to xenobiotic metabolism, since it 

is often easy to scaffold hop in the early stages of FBDD to remove unwanted motifs.

3.2. Nuclear magnetic resonance

Modern NMR spectroscopy is best known for enabling the three‐dimensional characteriza‐

tion of ordered molecular structures in solution and was the first technique to be used for 
fragment screening [6]. It is also one of the few biophysical techniques that can easily be 
switched between perspectives of the small molecule and the protein at run time. A growing 

list of NMR experiments used in fragment screening can help validate hits without using 

additional biophysical techniques.

Samples are prepared in situ by using automation (such as the Gilson GX‐271 in Figure 4) or 

by pipetting manually. One immediate benefit of the manual method is the ease with which a 
scientist can eliminate precipitated or turbid samples by optical analytics. Individual inspec‐

tion of samples is time‐consuming but a must for any successful FBDD program, providing 

important feedback about the fragment library. Fragments must be dissolved in deuterated 

solvent (e.g., 99.9% d6‐DMSO, Cambridge Isotope Laboratories, Inc., USA) for programs using 

NMR at any stage (see Figure 3). Typical concentration ratios for test samples are 10:1 up to 

30:1 fragment to protein in the chosen buffer (phosphate buffers being the most common). 
Prior knowledge of the K

d
 and stoichiometry is not required but can be used to tune concen‐

trations to avoid unintended site saturation by an individual fragment, which is a general 

concern when screening fragment mixtures or performing competition experiments. Finally, 

the issue of whether or not to use surfactants (e.g., 0.05% Triton X100) to help eliminate false 

positives is best left to a case by case basis, but if used, the conditions should be consistent 

with orthogonal techniques, with the exception of crystallography.

Spectroscopy experiments that indicate binding from the fragment's perspective are structur‐

ally less informative but have a higher dynamic range than do protein‐detected experiments. 

Because significant cost savings can be made by using unlabeled protein, early‐stage, bud‐

get‐conscious programs may focus on using the ligand‐detected suite of experiments shown 

in Figure 4, often acquiring them in parallel for each sample. The saturation transfer differ‐

ence (STD) experiment can provide a binding‐epitope map, as magnetization can only travel 
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through the protein to the bound fragment [18]. The epitope map enables a scientist using 

unlabeled protein to identify the portions of the fragment in closest proximity to the protein 

and, conversely, the portions available for expansion or linking for hit generation. Specialized 

experiments, such as the interligand nuclear Overhauser effect and target immobilized NMR 
screening (ILOE [19] and TINS [20], respectively), are best reserved for the study of diffi‐

cult proteins or competition experiments. From the protein perspective, several variants of 

the two‐dimensional HSQC experiment (typically 1H nuclei measured directly and X nuclei, 

indirectly) that helps to disperse the numerous signals in a protein target and depend on the 

protein isotopic enrichment strategy. TROSY (another HSQC variant) can be used for large, 

usually perdeuterated proteins but requires a high‐field instrument (i.e., 800 MHz and up); 
the discovery of methods to selectively label methyls [21] has simplified the resulting spectra 
and enabled screening on lower‐field instruments (e.g., 500 MHz) [22].

To reduce protein consumption, NMR FBDD relies on the screening of equimolar fragment 
mixtures. This step is immediately followed by mixture dereplication, usually involving man‐

ual interpretation of spectra, although with careful sample preparation and a well‐curated 

fragment spectral database, hits can be identified by software (e.g., Mnova Suite, Mestrelab 

Research S.L.; ACD/Spectrus Suite, Advanced Chemistry Development, Inc.; Topspin, Bruker 

Inc.). Individual reference spectra are acquired during the quality control steps of the frag‐

ment library design, and mixtures are then designed to avoid spectral overlap and reactivity. 

The number of fragments used per mixture is not standardized; but, basic statistical prin‐

ciples support using as few fragments as possible while avoiding mixing acids with bases 

Figure 4. Screening fragments by NMR may include the use of automated sample preparation and handling. Common 

NMR experiments used in FBDD programs are listed, categorized according to their use of the magnetization pathways 

indicated. For ligand‐detected experiments, additional pathways to the unbound ligand also exist. The white arrow 

indicates magnetization transfer from the protein to its bound ligand and is specific to the saturation transfer difference 
(STD) experiment.
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or nucleophiles with electrophiles. For 1H‐observed experiments, 5–7 compounds per mix‐

ture is a reasonable starting point. Validation of hits is accomplished by a second round of 

screening individual fragments. At the validation stage, the use of spectroscopy experiments 

that provide binding site information (e.g., HSQC, STD mapping, ILOE) is highly recom‐

mended if crystallography is not readily available. Any resulting structural information is 

crucial for promoting the fragment into the downstream processes of medicinal chemistry 

and hit generation.

With the exception of WaterLOGSY, titration and analysis of the resulting signal of these 

NMR experiments can provide binding affinity scores for fragments with reasonable accu‐

racy. In addition to the previously described STD experiment, 19F NMR screening by filtered 
transverse relaxation (T

2
), a filter also referred to as a Carr‐Purcell‐Meiboom‐Gill (CPMG) 

scheme, can be a powerful option if used in competition with a known fluorinated ligand 
having a K

d
 measured carefully by using more rigorous techniques (e.g., SPR, ITC, FP). The 

potential benefit is that one sample can be analyzed for fragments in competition with or, 
perhaps, having an allosteric contribution to binding, and binding affinity is back‐calculated 
relative to an internal nonbinding control or electric reference signal [23].

There are relatively few drawbacks to using available NMR facilities in a FBDD program 

considering the method's ability to contribute to every aspect of the workflow, such as library 
quality control and hit generation. The two drawbacks that are most often cited are the speed 
of the screen from sample preparation to data analysis and the demands on protein produc‐

tion for screening by NMR.

3.3. Surface plasmon resonance

Surface plasmon resonance shares the spotlight with NMR as a major screening technique 
for FBDD programs. The hurdles that come with using an immobilized protein for screening 

are counterbalanced by increased sensitivity and immediate access to kinetics data. Although 

absolute binding kinetics are not assured when dealing with weak affinities, for well‐opti‐
mized experiments, obtaining k

a
 (binding), k

d
 (dissociation) rates, and the K

D
 (binding con‐

stant) value is certainly possible. Consequently, interpreting the resulting sensorgram can 
be challenging; but thankfully, the biosensor community has over 25 years of experiments 
to help set standards—hundreds just in 2009 [24]. With improvements in software to include 

experiment wizards, relatively new users can screen numerous fragments.

These experiments generally have long lead in times, as protein immobilization chemistry 

and buffer conditions need to be carefully perfected prior to screening experiments. Setting 
aside the routine instrument maintenance and screen validation using appropriate controls, 

the traditional stages of each experiment have been buffer and compound preparation, target 
immobilization, start‐up samples (i.e., buffer match, blanks, and positive controls), fragment 
primary screen, data reduction and analysis, hit selection, and secondary dose response of hits.

Successful FBDD programs focus most practical attention on the preparation of the chip 
immobilization surface, ensuring stability between experiments. This focus on stability 

assumes that the loading conditions for the protein have been standardized and validated 

across multiple coupling methods, such as a covalent amine coupling [25] (to amine termini 
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or lysine) or the less‐amenable (regarding FBDD) coupling by protein tags (e.g., biotinylation 

or poly‐histidine).

Once the target is loaded, screening samples should be prepared as single‐point concentra‐

tions, for example 100 μM. The concentrations can be variable, but the expectation is that 

they are carefully prepared to avoid common problems such as precipitation and aggregate 

formation that may produce nonstoichiometric binding to the target. The use of detergents is 

allowable for the sake of the target but further complicates buffer matching in the reference 
channel. Troublesome fragments identified by their atypical sensorgrams are usually triaged 
from screening collections.

Once the data have been collected, data reduction and normalization follows and requires 
some practice to prosecute these steps efficiently. An experienced scientist can perform a 
first pass of the entire data set to quickly exclude sensorgrams for which a reasonable curve 
fit is unlikely due to compound incompatibilities or systemic problems with the instrument 
(Figure 5). Next, data reduction can seem like a tedious process to simply “clean” the sen‐

sorgrams; but in addition to aligning the injection time points, it checks the soundness of 
the blank injections, which yield important problem‐solving data. Finally, the configuration 
of most instruments requires multiple runs to cover entire fragment libraries, so run‐to‐run 
variation naturally exists. Normalization seeks to enable the comparison of experimental 

responses, regardless of target density, binding activity, molecular weight, and buffer mis‐

match. The most expedient way to achieve this is by using the known concentration and bind‐

Figure 5. Ideal (green) and unfortunate (red) sensorgrams simulate binding and nonbinding events during the SPR 

experiment. Aggregation is typically concentration‐dependent, whereas incorrect stoichiometry will not fit simple 
binding models. Relative occupancy (θ) of 100%, with a 1:1 stoichiometry indicated at the dashed line, represents how 

using high concentrations of fragments that appear to bind do so nonspecifically, binding weakly to multiple sites on the 
protein, chip surface, or nothing at all.
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ing affinities of the control compound injections to convert the response unit (RU) to a relative 
occupancy (θ), wherein 100% would be saturated binding (i.e., Req/Rmax

).

Recently developed methods have increased the throughput of dose response studies, pro‐

viding kinetic information earlier in the screening workflow and practically eliminating the 
need for a secondary set of experiments for hits. For example, a nonbinding diluent (i.e., 20%, 

w/v sucrose) can be used to create a range of compound concentrations from the same sample 

[26], or individually prepared sample concentrations can be sequentially injected (e.g., “single 
cycle kinetics” or kinetic titration) [27]. Both methods save time by avoiding multiple regen‐

eration steps. Further gains have been realized by using Taylor dispersion injections [28] in a 

longer flow path (e.g., OneStep™, SensiQ Technologies Inc.) to deliberately produce a gradi‐
ent of analyte concentration flowing across the chip surface: by modeling [29] this dispersion 

from a known initial concentration, the same kinetic data can be obtained during the injection 

phase of the experiment.

3.4. Thermal shift assay

Protein exists in a thermodynamic equilibrium between the folded and unfolded state. As 
the temperature of the system increases, the ratio of folded to unfolded protein shifts toward 

the unfolded state, making it possible to determine the temperature at which half of the 

protein is in the unfolded state. This point is referred to as the melting temperature of the 

protein (T
m

). The thermal shift assay relies on ligand‐induced conformational stabilization, 

which is based on the energetic coupling of ligand binding and protein denaturation. In short, 

 fragment binding alters the ratio of folded to unfolded protein by stabilizing the folded state 

(Figure 6). Adding a stabilizing fragment will shift the T
m

, allowing for the calculation of ΔT
m

 

Figure 6. This figure demonstrates the theory associated with thermal shift interactions. Ligand binding causes 
stabilization of the protein in the more ordered folded state (represented in green). Thus, more thermal energy is 

required to move ligand stabilized protein from the folded to the unfolded state. Protein in the absence of ligand is 
represented in red. This protein requires less thermal energy to shift to the disordered state.
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as an indicator of fragment binding [30–32]. Several methods available to measure the ratio of 

folded to unfolded protein in a given condition are: circular dichroism, infrared spectroscopy, 

differential scanning calorimetry, measurement of the intrinsic fluorescence of exposed tryp‐

tophan residues, and TSA, which is the most commonly applied technique. These methods 
were first adapted for use in TSA as a simple and inexpensive biophysical method for drug 
discovery in 2001 [30]. This work determined that ligand‐induced protein stabilization could 

be tracked with environmentally sensitive dyes over a range of experimental temperatures. In 

an aqueous environment, the dye is quenched, giving minimal quantum yield. As the protein 
is denatured in the increasing temperature, its hydrophobic core is exposed to react with the 

dye. This interaction measurably increases the quantum yield of the dye.

Thermal shift has since been revised and optimized for use as an economical fragment screen‐

ing method. A typical TSA has minimal requirements for the quantity of the target protein. A 
pilot assay should be completed wherein the concentration of protein is altered over a given 

range, as running TSA with an excess of protein can saturate the detector. Alternatively, too 

little protein will give a flat curve and negatively affect the signal‐to‐noise ratio in the result‐
ing data (Figure 7). Thermal shift assays are commonly completed with 1–10 μM target pro‐

tein, which should be as pure as possible. Gross impurities within the sample protein could 

lead to multiple curves, reducing the accuracy of the resulting data.

In addition to protein, TSA requires an environmentally sensitive dye. Historically napthyl‐
amine sulfonic acid dyes (such as 1,8‐ANS, 2,6‐ANS, or 2,6‐TNS) were used for this purpose. 

Currently, SYPRO Orange is used more commonly as its fluorescence (Ex/Em of 300, 550/630 
nm) is better adapted to rtPCR instruments. This dye is supplied from the vendor as a 5000X 
concentrate in DMSO. A pilot assay should be conducted to determine the appropriate con‐

centration of SYPRO Orange for a given assay, as is done for protein concentration. In prac‐

tice, many assays can be effectively run at a 5X concentration of SYPRO Orange. After the 
appropriate dye concentration has been established, a master mix of dye and buffer can be 
applied to the assay plate. At this point the plate is ready for the application of a fragment 

library.

Figure 7. The importance of protein concentration in TSA. As protein concentration moves above or below the optimal 

range for the assay the curves fail to accurately represent the system and will increase the error of melting temperature 

calculation.
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As in many fragment‐screening assays, the quality of the library is paramount. In the assay 
development stage, a pilot assay should be run in which the concentration of solubilizing 

agent is varied over a range to define any effects that the agent might have on the stability of 
the protein. If time and availability of fragments allow, then a screen of fragment alone should 

be performed to check for fluorescence in the absence of ligand; this additional screen could 
yield data that is useful for removing problem compounds within the library. With an appro‐

priate fragment library, it is possible to apply fragment to the screening plates. This is typi‐

cally accomplished by using a pin tool or similar device capable of accurately delivering small 

volumes. After the plate has been exposed to the fragment library, it should be sealed with a 

fluorescently inert plate seal to avoid sample evaporation during the course of the assay. The 
assay plate should then be centrifuged to remove any air pockets from the samples, as these 

might reduce the quality of the data.

It has been established that TSA can be completed in a standard qPCR instrument [33]. The 

minimal requirement is the ability to evenly heat the samples over a suitable range of tem‐

peratures and record fluorescence. Deconvolution of resulting data output is variable based 
on instrumentation. This step can be time consuming and automation in data processing is 

helpful if large‐scale projects are planned. Results should be recorded as fluorescent units 
recorded at each temperature in each well. This information can then be moved into data 

analysis software (e.g., Graphpad Prism, Graphpad Software, Inc.). Plotting fluorescence units 
against temperature should result in a sigmoidal curve reflecting the folded and unfolded 
states of the protein over a range of temperatures (Figure 8a and b). The signal commonly 

drops after it has reached a plateau. This drop is the result of aggregation in the protein‐dye 

complex after denaturation [33]. Failure to remove data points resulting from this drop in 

signal can detrimentally affect subsequent curve fitting (Figure 8a and b). The Boltzmann 
equation can be adapted to calculate the exact T

m
 for each protein. Alternatively, it is possible 

to plot the derivative of the signal against temperature, recording the maximum of this deriv‐

ative as the melting temperature (Figure 8c). The appropriate method for calculating the T
m

 

can vary by target. Different methods should be tested to determine which calculation most 
accurately reflects the T

m
 of the experimental protein [32]. The thermal stability of a protein is 

increased to varying degrees when ligand is bound. The extent of this shift can vary greatly. 

In the case of fragment binding, thermal stabilization can be as little as 0.5 °C, making it cru‐

cial to establish the baseline stability of the protein within the experimental environment. It 

is then possible to establish the threshold of ΔT
m

 for a positive result in fragment stabilization 

of the ligand. As a rule of thumb, the standard deviation should not be greater than 10% of 

the ΔT
m

 [34].

There are many benefits to using TSA for the initial biophysical screening of a fragment 
library. First, the assay does not rely on the biochemical activity of the target and can be per‐

formed with limited knowledge of the target's function, which is beneficial for FBLD because 
fragment binding often does not yield a measurable biochemical result. Additionally, TSA 

requires only a small amount of minimally stable protein whose thermal stability can be 
tracked in the presence and absence of the ligand [30]. Thermal shift assays can be completed 

by using widely available RT‐PCR instruments [33] and is relatively simple to perform with 
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limited training, reducing the up‐front cost of implementing. This medium‐ to high‐through‐

put assay typically enables the testing of up to 384 compounds in only 30–40 min.

Thermal shift assay is not a silver bullet per se and has some limitations and drawbacks. 

Traditional methods of assaying thermal shift will not work if a protein does not contain 

a hydrophobic core, as there will be nothing for the dye to differentially interact with when 
the target unfolds. Similarly, this assay will not produce valuable data if the surface of the 

protein is hydrophobic because the dye will fluoresce before the protein unfolds. Changing 
the dye used in the assay can mitigate these issues. The fluorescent readout of this assay 
also creates limitations. Some fragments commonly found in screening libraries fluoresce 
and interfere with the signal from SYPRO Orange. This phenomenon is readily evident 

upon inspection of the resulting data but requires a deconvolution step to avoid false‐posi‐
tive or false‐negative results. Additionally, TSA does not provide accurate affinity data. 
However, a concentration versus ΔT

m
 curve can be fit to generate an EC

50
 value that can 

estimate the range in which subsequent biochemical or biophysical assays can be more 
effective [34, 35]. With these limitations in mind, TSA can be a powerful tool for detecting 

fragment binding.

Figure 8. Curve fitting. (a) In this figure fluorescence intensity is plotted against temperature in blue. Above 41°C the 
dye begins to denature causing a decrease in signal. Fitting the full curve with the Boltzman equation (shown in red) 
would give an inaccurate estimation of T

m
. (b) In this figure fluorescence intensity is plotted against temperature in blue. 

The data here is trimmed as signal begins to decrease improving the curve fitting (shown in green). (c) In this figure the 
change in fluorescence intensity over the change in temperature is plotted against temperature in purple.
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3.5. Fragment validation

For the purposes of validation, a “good” fragment hit should be spatially described within 

a known target site via crystal structure, two‐dimensional NMR studies, or at least, a ligand 

epitope map. The structural information enables the chemical expansion or linking of frag‐

ments during hit generation.

Hit rates in fragment‐based screening are typically high, frequently at least an order of magni‐
tude higher than those of ligand‐based screening. Hits in the primary screen can be narrowed 

by using an orthogonal technique of comparable throughput for validation. Considering the 
numerous techniques available at the primary screening stage, the path to validation can be 
variable. Using an orthogonal approach to primary screening assumes that fragments that are 

hit by both techniques will translate successfully in secondary screening.

Using multiple techniques for fragment primary screening may yield a diminishing return. 
For example, after solving 71 crystal structures from soaking 361 fragments and statisti‐

cally comparing the results of other fragment screening techniques [36], one group found 

that nearly half of the 71 “good” fragment hits were missed by other techniques. When used 
in combination, hit validation was statistically worse, but this fact was heightened by the 

inclusion of hits that were originally missed by crystallography. Therefore, orthogonal pri‐

mary screening with at least two techniques still achieves the goal of fragment hit validation. 
However, if the primary fragment screening techniques do not provide meaningful structure 
characterization, then NMR or crystallography is required in a secondary screening capacity.

4. Fragment secondary screening

4.1. X‐ray crystallography

Several companies, including Astex Pharmaceuticals, SGX Pharmaceuticals, Plexxikon, and 

Abbott, have effectively used structural biology in their fragment‐based lead discovery 
efforts. This valuable tool avoids the pitfalls of false‐positive results and nonspecific bind‐

ing that may result from other fragment‐screening methods. Any fragment hit discovered 

via crystallography is inherently validated for the given target. Crystallography gives a clear 

picture of the fragment binding posture within the active site. This information can greatly 

facilitate the design of libraries based on the initial hit.

Using crystallography as a method of fragment‐based lead discovery has some limitations. 

It has long been associated with slow throughput. Additionally, some targets, such as mem‐

brane‐associated proteins, do not readily lend themselves to crystallization. Crystallography 

often requires extensive and time‐consuming efforts to arrive at crystallization conditions 
suitable for fragment soaking experiments. Even if these conditions have been determined, 

ready access to a suitable beam line and expertise in crystallography and data reduction can 

be hurdles in the rest of the lead discovery process. Protein in crystallization conditions is in 

a crystal lattice, which does not completely reflect a physiological environment. This artificial 
environment can lead to artifacts in the data and an inaccurate picture of fragment binding. 
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Although a crystal structure is rich in information, it does not reflect the potency or the bio‐

chemical activity of the bound fragment. With a wealth of structural information, it will not be 

possible to rank hits based on these criteria; orthogonal assays are critical for these purposes, 
and crystallography alone will not suffice.

The process of generating a fragment structure typically follows a set path. First, protein must 

be purified. Then, crystallization conditions for the purified protein are determined. Crystals 
can then either be grown in the presence of a fragment or soaked into a preexisting crystal. 

The resulting crystals are flash frozen and used for data collection either in house or at a larger 
beam line. The data is analyzed to generate a three‐dimensional model of the fragment bind‐

ing site within the target protein. This model can be used in iterative design efforts to grow 
the fragment into the binding site or link it to other fragments in neighboring sites.

Perhaps one of the most critical hurdles to successfully implementing structural biology into 

the FBLD process is having a suitable supply of the target protein. In most cases, protein used 

for X‐ray crystallography must be pure and in high yields. A typical screen for crystallization 

conditions is completed by using as much as 20 mg/ml of protein. If initial crystal screening 

efforts using native protein are not effective, then it may be necessary to modify the target via 
removal of mobile loop regions or trimming the terminal ends. Creating multiple variants is 

commonly a valuable step in generating robust high‐resolution structural data.

Once protein is available with sufficient yield and purity, screening for crystallization condi‐
tions begins. This is typically performed as a high‐throughput screen with as many as 1000 

set conditions in a single experiment. Many commercially available sparse matrix and addi‐

tive crystallization screens use conditions that have historically yielded crystals. When these 

experiments yield a hit, the conditions can then be optimized to yield larger, highly reproduc‐

ible crystals. Suitable crystals for fragment soaking should have fairly high resolution (<2 Å). 
Starting with a higher resolution structure improves resulting maps and increases the chances 

of producing an accurate model of fragment binding. If multiple crystallization conditions are 

available, it is best to choose the one that more closely represents physiological conditions, 

even at a slight cost to resolution. This trade‐off will result in fragments with best chance of 
advancement to be prioritized.

Fragments suitable for X‐ray crystallography benefit from good solubility, as insoluble frag‐

ments have a low probability of yielding a structure with suitable occupancy of the ligand. 

Compounds are soaked at high concentrations to improve the chances of high occupancy 

within the structure. Given this fact, a fragment should have a solubility of at least 1 mM 

[37]. SGX pharmaceuticals benefited from generating a brominated fragment library, which 
enabled detection of anomalous scatter as an indication of successful soaking, streamlining 
the data collection process. To further increase throughput, fragments were soaked in mix‐

tures composed of fragments with diverse shapes. Resulting structures could then be decon‐

voluted based on the shape of the ligand in the active site [36]. Fragment mixtures do run the 

risk of decreasing the effective concentration of individual fragments in the mixture because 
high fragment concentration contributes to high‐occupancy crystal structures, which can be 

detrimental to an experiment. In addition, these mixtures increase the chances of damaging 

the crystal in the soaking process, and fragments within the mix can interact with one another, 
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skewing the results of the experiment. In one report, fragment mixtures resulted in 11 struc‐

tures, whereas 20 structures resulted from individual soaking experiments [37]. These data 

suggest that if time and resources permit, soaking individual fragments is preferable to using 

mixtures.

If all other factors fall into place, a data set is collected. Improper treatment of this data set can 

result in an inaccurate and misleading model of fragment binding. Methods of data reduction 

and refinement are highly variable, and model building is a continuously evolving process. 
Certain steps in model building are especially pertinent when dealing with fragments. When 

searching for ligand density in a map, it is tempting to perform a quick refinement, and pre‐

sume the location of a ligand. This approach is especially hazardous when modeling small 

fragments. If the map is not of high enough quality when the search for ligands begins, it is 
possible that water, a poorly resolved side chain, or even highly conserved buffers could mas‐

querade as bound fragments [38]. It is best to perform several rounds of refinement before the 
ligand hunt begins. Model in any waters and then refine a few more times [37]. If the fragment 

is bound, a convincing map should take shape, and the creation of an accurate model of the 

target protein bound to fragments should be possible.

As technology progresses, many of the limitations of structural biology are being addressed. 

Most notably, throughput is being increased by incorporating automation. As this occurs, 

obtaining structural data is no longer the rate‐limiting step in lead development. In several 

cases, automation of this process has improved to the extent that structural studies are suc‐

cessfully being used as a primary screen. Although this approach might not yet be a feasible 

option in laboratories with limited resources and limited access to beam lines, it holds prom‐

ise for an improved fragment screening process in the future.

4.2. Isothermal titration calorimetry

Calorimetry measures the thermodynamics of a molecular interaction via observations of 

heat change in a reaction occurring in an adiabatic (thermodynamically closed) system [39]. 

In the context of drug discovery, the molecular interaction most commonly measured is the 

heat of binding of a small molecule to a protein target, although reaction kinetics can be 

measured under specific circumstances [40]. Measuring the heat associated with a molecular 

interaction allows direct measurement of the extent of breakage and formation of noncovalent 

interactions upon complex formation [39]. Using other methods, such as coupled reactions 

(e.g., product release) and fluorescent binding techniques, the change in enthalpy can only be 
inferred via the Van't Hoff relationship [41].

Classically, calorimetry has been applied to measurement of a binding interaction in two dif‐

ferent ways: isothermal titration calorimetry, which measures heat release upon binding; and 
differential scanning calorimetry (DSC), which measures thermal stabilization of a protein 
due to binding of a small molecule. These methods offer a very detailed look at the thermody‐

namics of binding and have been used successfully in optimization after initial fragment hits 

have been identified. For the purposes of this chapter, discussion will be limited to ITC, as it is 
more directly applicable to FBDD. As a direct measurement of the heat of binding, ITC allows 

the researcher to remove the effects of fluorescent tags, antibody relationships, or coupling 
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chemistry from the investigation of a binding relationship. Because ITC is a solution‐based 

method, surface physical effects that interfere with binding (often seen with SPR) are not an 
issue.

Directly determining the thermodynamic components of overall binding allows a researcher 

to optimize a lead compound for a chosen target through specific binding interactions while 
minimizing off‐target effects that often derail drug discovery programs. When combined 
with X‐ray‐based binding information or applied to analysis of structure‐activity relation‐

ships, ITC can be a powerful tool in drug discovery. Overall binding of a small molecule to a 

target (as expressed by K
D
) can be broken down into enthalpic (specific interactions such as 

H‐bonding and π‐stacking) and entropic (nonspecific events such as bound water release and 
increases in conformational flexibility) components.

The normal range of dissociation constants that can be measured by ITC is from 10 nM to 100 

μM [41]. This range can be extended below 1 nM or above 1 mM by using displacement meth‐

ods [42, 43], although a suitable displacement ligand (independently characterized) must be 

identified beforehand. Displacement ITC has not yet gained wide acceptance in drug discov‐

ery as of this writing, with most researchers reporting results of direct binding studies. Most 

fragments have binding affinities in the millimolar range, limiting the applicability of ITC 
as a screening method. In addition, large amounts of protein are typically required (usually 
0.1–0.3 mg of protein per experiment, this moderate amount adds up for multiple samples 

and repeats). Each titration requires a moderate amount of time (45 min–1 h), but for a large 
number of samples, experiment time becomes a hurdle to using ITC as a screening method.

For these reasons, ITC is usually brought in to the drug discovery process after screening, as 

part of hit validation and lead optimization [44]. Fewer compounds are involved, allowing 

more focus on the large amount of information provided by ITC [44–46]. After a compound of 

interest is identified, a small set of structurally similar compounds can be purchased or syn‐

thesized to gain insight into the nature of binding to a target [47, 48]. At this stage, ITC offers 
the most benefit, as small molecules can be identified that maximize enthalpic interactions 
and minimize entropic interactions with the target.

Recent research into high‐throughput calorimetry offer solutions to researchers wanting 
to incorporate calorimetry into an earlier stage in their screening cascade. Research into 

 technologies in pursuit of the so‐called “lab on a chip” has led to the development of both 

microfluidic [49] and droplet‐based systems [50–52]. The droplet‐based system has been 

applied to both binding and kinetics.

4.3. Fluorescence polarization

Biochemical screening is not a typical choice for the primary screening of fragments but can 

be used to verify an inhibition of function, and inhibition by a known mechanism which may 

help discriminate fragments binding to alternative target sites.

Fluorescence polarization‐based assays are an option in FBDD when preliminary information 

about a target, such as small molecules that bind, is known. FP assays are competition assays in 

that they indirectly measure the effect of a compound on binding of an enzyme to a  fluorescent 
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probe. A fluorescent probe ideally starts out as a small molecule that binds tightly to an enzyme 
with known stoichiometry. This small molecule is chemically modified by the addition of a flu‐

orescent label via an aliphatic or polyol linker to generate a fluorescent probe. Signal readout, 
represented in millipolarization units (mP), is calculated by measuring the amount of plane‐

polarized light passing through two filters (perpendicular and parallel to the plane of incident 
light) that remains after interaction with a solution containing probe and calculating the ratio 

of parallel to perpendicular light [53, 54]. In an FP assay, a plate reader measures the difference 
in relative tumbling between a free probe (high amount of tumbling, leading to more scattered 
emission, and thus low FP signal) and probe bound to a protein (low amount of tumbling, with 

more ordered emission relative to incident light, leading to high FP signal).

Depending on assay design, FP can be applied to either binding or activity assays, with ready‐

to‐use kits available from BellBrook Labs [55] or Cayman Chemical [56]. Activity assays using 

FP rely on endpoint detection of binding to a probe, thus, are modified binding assays. For 
applications for which no kit is available, a small amount of synthesis can combine a small 

molecule of interest with a wide variety of synthetic fluorophores available from major ven‐

dors. When designing a probe for FP, resources such as the Molecular Probes Handbook [57] 

can be valuable.

FP is less commonly used in fragment screening than perhaps it should be. The range of bind‐

ing affinities normally found in fragment libraries is in the high‐μM to low‐millimolar range, 
previously considered to be out of the range of FP when tight binding probes are used [58]. 

Although still somewhat limited in application by the need for a well‐characterized probe, 

FP offers an inexpensive way to screen large numbers of compounds and has been used for 
many years in conventional drug discovery programs. With the advent of fragment‐based 

techniques, FP is finding use both as a site directed primary [59, 60] and secondary [61–64] 

screening method, and has been used to validate new methods [65].

5. Fragment hit progression

For fragments, it is important to see activity in more than one assay, but equivalent potency in 
assays is not so important, and is not the best way to determine which molecules to  promote. 

Various combinations of advanced metrics (i.e., efficiencies) with empirically driven evalu‐

ations (e.g., PAINS, metabolic stability) can help scientists make informed decisions on hit 

progression. An outside example of the successful application of metrics is sabermetrics. 

Today widely used in baseball, but also heavily scrutinized and evolving, sabermetrics uses 

advanced statistics to define in‐game performance and improve decision‐making by manag‐

ers. Just like a game manager, scientists have to be aware of the limitations and effects of fol‐
lowing a metric's indication, being consistent about hit progression occasionally in the light 

of conflicting results. Some experts [66] suggest using ligand efficiencies that can be easily 
determined without a calculator to facilitate discussions. Several metric‐focused reviews are 

available to consult; one in particular covers a large number of reported hit‐lead programs 
[67] for a wider perspective.
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5.1. Empirically based fragment evaluations

Fragment screening methods virtually ensure that most screens will produce multiple hits for 

any target. Thus, the challenge to the researcher is not identifying compounds that interfere 

with a specific enzyme but determining which of many is the best to carry forward. Several 
metrics have emerged to guide the selection of fragment lead molecules through the drug 

discovery process: these metrics combine physical properties (e.g., molecular weight, cLogP, 

polar surface area, number of H‐bond donors and acceptors) with potency data. The earliest 

of these was simply termed ligand efficiency (LE) and involved dividing the free energy (ΔG) 

of binding by the total number of nonhydrogen atoms in the molecule [68]. With the introduc‐

tion of LE, researchers now havea relatively simple way to keep focused on the specificity of 
binding to the target, potentially avoiding downstream problems due to nonspecific binding 
[69].

Another metric in wide use in FBDD is lipophilic ligand efficiency (LLE) [70], which takes into 

account the total lipophilicity and potency of a molecule (IC
50

, K
D
, K

i
). A useful modification 

of LLE (LLE
Astex

) also controls for molecule size [71]. These statistical means of grading perfor‐

mance can support the early and late stages of the FBDD workflow and can be extended into 
progression analyses used during lead development (Figure 9). Which metric to use is up to 

the individual researcher and is based on the specific goals of the research program. Further 
reading to find an appropriate metric to use is recommended.

5.2. Hit generation

Fragments that progress to the hit‐generation stage typically do so with structural insight 

that either describes the fragment bound to its protein target or the binding epitope mapped 

Figure 9. A typical progression analysis found in lead development can also include ligand efficiency metrics in a 
seamless fashion.
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onto the fragment. A typical downstream workflow for hit generation includes a path that 
is structure blind, but this is essentially a diversion from traditional target‐based discov‐

ery and may lead to an SAR bottleneck. The hit‐generation stage refers to acquisition and 
screening of larger nonfragment ligands, which are obtained by catalog or synthetically 

prepared. This workflow includes either a chemical elaboration of individual fragments or 
the linking of at least two fragments, which then requires some optimization of the linker 
between them.

The hit generation phase is a practical place for virtual screening to be used to assist in frag‐

ment development. Method comparisons [72, 73] suggest that the currently available force 

fields and docking procedures based on lead‐like molecules will provide adequate results 
for fragments (i.e., better than randomized screening). However, the careful consideration of 
a scoring function to reliably discern weak interactions cannot be overemphasized. Scientists 

have recognized this distinction within FBDD and have sought to improve the scoring func‐

tions for fragments [74]. One notable viewpoint is that fragment elaboration or linking may 

be facilitated when binding poses are expressed as Gibbs energy [75].

6. Conclusions

Considering that FBDD has been attributed to at least two FDA drug approvals, and that the 
platform is relatively easy to integrate into existing technologies, many companies and aca‐

demic groups have started their own fragment‐based discovery programs. The biophysical 

techniques each group uses will be dictated by the target, available facilities, and individual 
preferences of the investigators. Generally speaking, as long as the protein target has been 

successfully used with a technique in lead‐like screening and structural information is avail‐
able, there are virtually no other major obstacles to generating new chemical matter for a 
given target‐based screening program. What remains are practical challenges, two of which 

bear repeating for those who are in the beginning stages of FBDD.

First, the key practical difference between lead‐like screening and fragment screening is the 
use of high concentrations of the fragments. The increased concentration impacts the com‐

pound library that is used and the clarity at which hits are delineated. Some suggestions 

have been made as to the optimal concentrations to use for a given technique. These are only 
suggestions and will likely change based on the system and techniques employed. With 
some practice, these procedures can be suitably optimized and need less attention going 
forward.

Second, is the challenge of directing fragment  build out and/or fragment linking chemistry 

which can be resource intensive. As such, medicinal chemists are aided by the use of a pre‐

ferred ligand efficiency metric early in the FBDD process to assist the ranking of fragment 
hits. Certainly other empirical and nonempirical factors will influence the progression of frag‐

ments, but metrics will help organize the structure‐activity relationship which is a key driver 

of the expansion or linking of fragments during hit generation.
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