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Abstract

In the context of climate change, estimating forest biomass for large regions is key to
national carbon stocks, but few models have been developed at regional level. Based on
mensuration data from large samples (4818 and 1626 trees for above- and belowground
biomass, respectively) of eight major tree species in China, the author developed one-
and two-variable compatible integrated model systems for aboveground and below-
ground biomass, biomass conversion factor (BCF) and root-to-shoot ratio (RSR), using
the error-in-variable simultaneous equations. Furthermore, the differences of above-
ground and belowground biomass among various species were analyzed using the
dummy variable approach. The results indicated that (1) two-variable models were
almost better than one-variable models for aboveground biomass estimation, while the
two model systems were not significantly different for belowground biomass estima-
tion; (2) the eight species can be ranked in terms of aboveground biomass from Quercus
(largest), Betula, Populus, Pinus massoniana, Picea, Larix, Abies to Cunninghamia lanceolata
and in terms of belowground biomass from Quercus (largest), Betula, Larix, Picea,
Populus, P. massoniana, C. lanceolata to Abies; (3) mean prediction errors (MPEs) of above-
ground biomass models for the species were less than 5%, whereas MPEs of below-
ground biomass equations were less than 10%, except for Abies.

Keywords: aboveground biomass, belowground biomass, biomass conversion factor,
root-to-shoot ratio, error-in-variable simultaneous equations

1. Introduction

Increasingly, governments worldwide attach considerable importance to estimating biomass

and carbon storage of forest ecosystems in the context of global climate change. To help

countries conduct national greenhouse gas inventories, forest biomass estimation and carbon

stock assessment, the Intergovernmental Panel on Climate Change (IPCC) provided such

carbon-accounting parameters as biomass expansion factors (BEF) and root-to-shoot ratios

(RSR) for estimating different geographic zones in 2003 [1]. However, it probably has great
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uncertainty to apply these parameters for biomass estimation. Developing individual tree

biomass models and parameters for national monitoring and assessment of biomass and

carbon storage of forest ecosystems has become fundamentally important.

The earliest research on forest biomass abroad can be traced to the 1870s [2]. In recent years,

biomass models for major tree species in America, Canada and some European countries have

been developed or improved [3–11]. Their purpose was to assess and monitor forest biomass

and carbon storage and to provide a basis for evaluating the contribution of forest ecosystems

to the global carbon cycle. Studies on forest biomass in China have only been implemented

since the late 1970s when some related articles were published [12, 13], i.e., a century after the

earliest study abroad. Due to special historical reasons, China did not participate in the

International Biological Program (IBP), initiated by the International Union of Forest Research

Organizations (IUFRO), during the period of 1964–1974 and thus missed the golden develop-

ment stage of forest biomass research [14].

Reviewing the development of forest biomass modeling near 40 years in China, three stages

could be classified: the first is estimating biomass and productivity of major forest types

toward the end of the twentieth century [13, 15–30]; the second is assessing carbon storage in

Chinese forest ecosystems since the beginning of the current century [31–37]; and the third is

the new development stage for monitoring and assessing forest biomass and carbon storage at

provincial and national levels [14, 38]. To monitor forest biomass and carbon storage in the

National Forest Inventory (NFI) system, the National Forest Biomass Modeling Program has

been implemented since early 2009. Up to now, many papers on modeling individual tree

biomass have been published [39–51], which classified 70 modeling populations for develop-

ing individual tree biomass models, determined the sample structure of each population and

studied the modeling methods including nonlinear error-in-variable simultaneous equations,

mixed-effects modeling, dummy variable modeling and segmented modeling approaches.

Also, logarithmic regression and weighted regression were analyzed [52] and goodness evalu-

ation and precision analysis of biomass models were studied [53]. Based on the studying

achievements, two ministerial standards on technical regulations and five ministerial stan-

dards on biomass models have been approved for application [54–60]. In the near future, more

ministerial standards on biomass models for other tree species would be published.

From the published papers and ministerial standards, we could find that the aboveground and

belowground biomass models were developed separately owing to the unequal sample sizes

and most of the studies were only based on sample trees of one tree species. In this chapter, the

author will use the mensuration data of aboveground and belowground biomass from 4818 to

1626 destructive sample trees of eight major tree species, respectively. The main purpose was

to develop an integrated individual tree model system for aboveground and belowground

biomass, biomass conversion factor (BCF) and root-to-shoot ratio (RSR), using the approach of

nonlinear error-in-variable simultaneous equations with dummy variable. The system could

assure aboveground biomass models compatible with stem volume models and BCF models

and belowground biomass models compatible with aboveground biomass models and RSR

models. Secondly, the generalized dummy-variable models of aboveground and belowground

biomass for eight major tree species were established and compared and the ranks of eight

Biomass Volume Estimation and Valorization for Energy4



species for aboveground and belowground biomass estimation were provided respectively

from the species-specific parameter estimates.

2. Materials and methods

2.1. Data

During the 5 years between 2009 and 2013, a total amount of 4818 sample trees for 31 modeling

populations of eight major tree species or species groups, namely, Picea spp., Abies spp., Betula

spp., Quercus spp., Populus spp., Larix spp., Cunninghamia lanceolata and Pinus massoniana,

which occupied more than 60% of forest volume in China [39], were felled for aboveground

biomass mensuration. The sample trees were evenly distributed in ten diameter classes of 2, 4,

6, 8, 12, 16, 20, 26, 32 and more than 38 cm for each modeling population, and about 15 sample

trees in each diameter class were selected by height class as evenly as possible. For example, if

three height classes were defined, i.e., low, intermediate and high, then five sample trees

should be selected in each height class. For each sample tree, the diameter at breast height of

stem was measured in the field. After the tree was felled, total trunk length (tree height, from

ground level to the top) and live crown length were also measured. The trunk was divided into

11 sections at points corresponding to 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of tree

height. Base diameters of all sections were measured and the tree volume was computed using

Smalian’s formula [61], which referred to total volume over bark. Specifically, the formula was

written as V = (A1 + A2)/2 ´ L with V as the volume of a section of tree trunk, A1 and A2 as two

areas of the small and large ends of the section and L as the section length. The fresh weights of

stem, branch and foliage were also measured; subsamples were selected and weighed in the

field [54]. Among all sample trees, about one third (1626 trees) were selected for measuring

both aboveground and belowground biomass. The whole roots were excavated out, fresh

weights of stump, coarse roots (more than 10 mm) and small roots (2–10 mm, not including

fine roots less than 2 mm) were measured, respectively and subsamples were selected. After

being taken into the laboratory, all subsamples were oven-dried at 85°C until a constant weight

was reached. According to the ratio of dry weight to fresh weight, each component biomass

was computed and the aboveground biomass of the tree was obtained by summation [54].

Table 1 shows the general situation for biomass samples of eight major tree species or groups.

2.2 Model construction

The general form of individual tree biomass and stem volume models is as follows [45, 62]:

y ¼ β0x1
β1x2

β2 � � � xj
βj þ ε (1)

where y is biomass (kg), xj are predictive biometric variables, which reflect the dimensions of a

tree, such as diameter at breast height D (cm) and tree height H (m), βj are parameters and ε is

the error term. Because the biomass data are significantly heteroscedastic, some measures

should be taken to eliminate heteroscedasticity prior to parameter estimation. In this paper,

weighted regression was applied and the specific weight functions were derived from the

Developing Tree Biomass Models for Eight Major Tree Species in China
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Species Samples Variables Mean Min Max S.D. CV (%)

Picea spp. 900/295 Diameter D (cm) 17.0 1.0 65.5 12.8 75.6

Height H (m) 12.3 1.4 46.9 8.1 66.4

Stem volume V (dm3) 343.0 0.6 6770.7 609.9 177.8

Aboveground biomass Ma (kg) 174.5 0.4 1668.9 251.3 143.9

Belowground biomass Mb (kg) 41.2 0.1 289.1 61.3 148.8

Abies spp. 751/249 Diameter D (cm) 17.1 1.1 68.0 13.0 76.6

Height H (m) 11.9 1.5 39.0 7.4 62.7

Stem volume V (dm3) 352.4 0.5 4525.0 589.5 167.3

Aboveground biomass Ma (kg) 168.9 0.3 1817.0 262.7 155.6

Belowground biomass Mb (kg) 29.0 0.1 393.4 52.4 180.7

Betula spp. 690/236 Diameter D (cm) 15.9 1.0 60.8 11.8 73.7

Height H (m) 11.3 1.9 33.0 6.2 55.1

Stem volume V (dm3) 235.0 0.3 2782.7 345.9 147.2

Aboveground biomass Ma (kg) 167.4 0.2 1671.0 240.6 143.7

Belowground biomass Mb (kg) 45.0 0.1 343.6 67.0 148.8

Quercus spp. 670/228 Diameter D (cm) 16.1 1.5 54.0 11.6 72.1

Height H (m) 10.9 1.4 28.6 6.3 57.6

Stem volume V (dm3) 253.2 0.2 2487.1 370.9 146.5

Aboveground biomass Ma (kg) 208.2 0.3 1664.1 295.2 141.8

Belowground biomass Mb (kg) 51.4 0.1 385.9 71.6 139.4

Populus spp. 602/207 Diameter D (cm) 16.4 1.2 48.9 11.9 72.3

Height H (m) 12.9 2.4 31.1 6.9 53.6

Stem volume V (dm3) 281.4 0.3 2228.4 385.3 136.9

Aboveground biomass Ma (kg) 174.1 0.2 1065.1 241.3 138.6

Belowground biomass Mb (kg) 35.6 0.1 384.5 54.3 152.7

Larix spp. 602/199 Diameter D (cm) 16.7 1.5 54.2 12.3 73.7

Height H (m) 12.6 1.4 37.5 7.6 60.0

Stem volume V (dm3) 316.6 0.6 3016.6 471.7 149.0

Aboveground biomass Ma (kg) 160.4 0.2 1301.9 231.1 144.1

Belowground biomass Mb (kg) 41.0 0.1 300.0 61.8 150.9

Cunninghamia lanceolata 302/108 Diameter D (cm) 16.4 1.8 42.0 11.8 71.8

Height H (m) 11.5 1.9 33.0 7.1 61.7

Stem volume V (dm3) 293.7 0.6 1815.2 409.7 139.5

Aboveground biomass Ma (kg) 75.6 0.3 644.9 105.5 139.5

Belowground biomass Mb (kg) 25.9 0.1 174.9 37.7 145.8

Biomass Volume Estimation and Valorization for Energy6



residuals of independently fitted models by ordinary least squares regression [62, 63]. Since

models based on one (D) or two variables (D and H) have been commonly used, this paper

develops both one- and two-variable models. The aboveground biomass, belowground bio-

mass and stem volume models based on two variables can be expressed respectively as:

Ma ¼ a0D
a1Ha2 þ ε (2)

Mb ¼ b0D
b1Hb2 þ ε (3)

V ¼ c0D
c1Hc2 þ ε (4)

where Ma and Mb are aboveground and belowground biomass (kg), respectively; V is stem

volume (dm3); ai, bi and ci are parameters; and other symbols are the same as above.

2.2.1 Integrated compatible model systems

The aboveground biomass is correlated to stem volume through biomass conversion factor

(BCF), which is equal to biomass expansion factor (BEF) multiplied by basic wood density

following the IPCC’s approach [64]. Because the BCF is an important parameter for forest

biomass estimation [65], it is very common to develop both an aboveground biomass model

and a BCF model that are compatible with stem volume model [45, 51]. Similarly, below-

ground biomass is connected with aboveground biomass model through root-to-shoot ratio

(RSR) [66, 67]. Because the RSR model is also an important parameter for forest biomass

estimation, generally both belowground biomass model and RSR model compatible with

aboveground biomass model are developed simultaneously [44]. Therefore, we can develop

an integrated aboveground and belowground biomass model system through using the

nonlinear error-in-variable simultaneous equation approach [51, 68]. Because the belowground

biomass observations were only 1/3 of the aboveground biomass observations, a dummy

variable (x) was required for those trees for which no belowground biomass observation was

available, i.e., 1 for the trees with belowground biomass observation and 0 for the trees with no

belowground biomass observation [69]. The system can ensure the compatibility between

Species Samples Variables Mean Min Max S.D. CV (%)

Pinus massoniana 301/104 Diameter D (cm) 16.5 1.2 47.2 11.9 72.4

Height H (m) 12.1 1.6 30.3 7.2 59.4

Stem volume V (dm3) 300.8 0.3 1825.4 405.7 134.9

Aboveground biomass Ma (kg) 125.1 0.1 1079.3 171.6 137.2

Belowground biomass Mb (kg) 35.5 0.1 285.0 53.7 151.6

Min—minimum, Max—maximum, S.D.—standard deviation, and CV—coefficient of variation.

The sample sizes are for aboveground and belowground biomass mensuration, respectively.

Table 1. General situation of biomass samples for eight major tree species.

Developing Tree Biomass Models for Eight Major Tree Species in China
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aboveground biomass, belowground biomass, stem volume, BCF and RSR. The one- and two-

variable integrated systems are as follows, respectively:

Ma ¼ a0D
a1 þ ε

Mb ¼ b0D
b1xþ ε

V ¼ c0D
c1 þ ε

BCF ¼ a0D
a1=c0D

c1 þ ε

RSR ¼ b0D
b1x=a0D

a1 þ ε

8

>

>

>

>

<

>

>

>

>

:

(5)

Ma ¼ a0D
a1Ha2 þ ε

Mb ¼ b0D
b1Hb2xþ ε

V ¼ c0D
c1Hc2 þ ε

BCF ¼ a0D
a1Ha2=c0D

c1Hc2 þ ε

RSR ¼ b0D
b1Hb2x=a0D

a1Ha2 þ ε

8

>

>

>

>

<

>

>

>

>

:

(6)

where, Ma, Mb, V, BCF and RSR are aboveground biomass, belowground biomass, stem

volume, biomass conversion factor and root-to-shoot ratio, respectively, which are regarded

as error-in-variables; D and H are diameter at breast height and tree height, which are

regarded as error-free variables; x is a dummy variable to distinguish if belowground biomass

is available; and ai, bi and ci are parameters.

Various methods have been attempted to estimate the parameters of the simultaneous equations.

Parresol [63] used the seemingly unrelated regression (SUR) for solving the additivity of simulta-

neous biomass equations. Tang et al. [70] further developed an error-in-variable modeling

approach to estimate the parameters of simultaneous equations, which has been widely used in

recent years [40, 45, 49, 51]. In this study, the error-in-variable simultaneous equation approach

was used to estimate the parameters of the integrated systems based on maximum likelihood

estimation through ForStat software (statistical software with analytical tools for forestry as well as

general statistical procedures, developed in the Chinese Academy of Forestry, Beijing, China) [68].

In addition, the weighted regression method was used to eliminate the heteroscedasticity

commonly exhibited in biomass and volume data by using specific weight functions, which

were derived from the residuals of biomass or volume equations fitted through the ordinary

least square (OLS) technique [52, 62]. For biomass conversion factor and root-to-shoot ratio

modeling, the OLS regression technique was directly used to estimate the parameters because

the BCF and RSR data mostly exhibited homoscedasticity.

2.2.2 Generalized dummy variable models

The one-variable biomass equation was the most widely used model in estimating individual

tree biomass [3, 7]. The power function of one-variable aboveground biomass equation was

based on the WBE theory for the origin of allometric scaling laws [71, 72]. According to the

results from Zeng and Tang [73], the generalized one-variable aboveground biomass model

can be expressed as:
Ma ¼ aD7=3

þ ε (7)

Biomass Volume Estimation and Valorization for Energy8



That is, the power parameter of the allometric model is constantly equal to 7/3 (≈2.33), only the

parameter a depends on tree species. If a variable vector z was defined as dummy variable to

indicate tree species, then the generalized model (7) could be expressed as:

Ma ¼ aþ vazð ÞD7=3 þ ε (8)

where a is the global parameter and va is tree species-specific parameter vector. The dummy

variable vector z includes seven elements, indicating the eight tree species by the following

combinations:

z1 = 1, z2 =0, z3 = 0, z4 = 0, z5 = 0, z6 = 0 and z7 = 0 for Picea spp.

z1 = 0, z2 = 1, z3 = 0, z4 = 0, z5 = 0, z6 = 0 and z7 = 0 for Abies spp.

z1 = 0, z2 = 0, z3 = 1, z4 = 0, z5 = 0, z6 = 0 and z7 = 0 for Betula spp.

z1 = 0, z2 = 0, z3 = 0, z4 = 1, z5 = 0, z6 = 0 and z7 = 0 for Quercus spp.

z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = 1, z6 = 0 and z7 = 0 for Populus spp.

z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = 0, z6 = 1 and z7 = 0 for Larix spp.

z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = 0, z6 = 0 and z7 = 1 for C. lanceolata

z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = 0, z6 = 0 and z7 = 0 for P. massoniana

Consequently, from comparing the estimated values of species-specific parameter vector v
a
,

the differences among various tree species could be analyzed.

2.3 Model evaluation

Many statistical indices could be used to evaluate individual tree biomass models [63].

According to the study results from Zeng and Tang [53], the following six statistical indices,

namely, the coefficient of determination (R2), standard error of estimate (SEE), mean prediction

error (MPE), total relative error (TRE), average systematic error (ASE) and mean percent

standard error (MPSE), were very important for assessing biomass models. In this study, the

same six statistical indices were used for model evaluation [50, 51]:

R2 ¼ 1−∑ yi−byi
� �2

=∑ yi−y
� �2

(9)

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ yi−byi
� �2

= n−pð Þ
q

(10)

TRE ¼ ∑ yi−byi
� �

=∑byi ´ 100 (11)

ASE ¼ ∑ yi−byi
� �

=byi=n ´ 100 (12)

MPE ¼ tα � SEE=yÞ=
ffiffiffi
n

p
´ 100

�
(13)

MPSE ¼ ∑ yi−byi
� �

=byi
�� ��=n ´ 100 (14)

Developing Tree Biomass Models for Eight Major Tree Species in China
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where yi are observed values, ŷi are estimated values, y is mean value of samples, n is the

number of samples, p is the number of parameters and t
α
is the t-value at confidence level α

with n-p degrees of freedom.

3. Results and analysis

The one- and two-variable integrated systems (Eqs. (5) and (6)) for eight tree species or groups

were estimated using the error-in-variable simultaneous equation approach through ForStat

(Tables 2 and 3). The six fitting statistics, R2, SEE, TRE, ASE, MPE and MPSE, were calculated

and could be used for evaluating the goodness-of-fit of the three models (Table 4). From the

Species

Aboveground biomass models Belowground biomass models Stem volume models

a0 a1 b0 b1 c0 c1

Pi 0.17417 2.2270 0.04853 2.1954 0.1528 2.4548

Ab 0.10195 2.3676 0.02873 2.2452 0.1297 2.5106

Be 0.13392 2.3401 0.05767 2.2039 0.1712 2.3653

Qu 0.16592 2.3409 0.10619 2.0373 0.1448 2.4351

Po 0.09198 2.4490 0.02958 2.3200 0.1410 2.4702

La 0.12473 2.3190 0.03154 2.3355 0.1464 2.4737

Cl 0.09782 2.3099 0.02853 2.2500 0.1144 2.5421

Pm 0.13771 2.3243 0.01959 2.4400 0.1514 2.4655

Pi—Picea spp., Ab—Abies spp., Be—Betula spp., Qu—Quercus spp., Po—Populus spp., La—Larix spp., Cl—Cunninghamia

lanceolata, and Pm—Pinus massoniana. Same in Tables 3–7.

Table 2. The parameter estimates of the one-variable integrated system (Eq. (5)).

Species

Aboveground biomass models Belowground biomass models Stem volume models

a0 a1 a2 b0 b1 b2 c0 c1 c2

Pi 0.11007 2.1369 0.2615 0.03284 2.3516 −0.0527 0.07763 1.7758 1.0122

Ab 0.06720 2.0221 0.5442 0.02412 2.5974 −0.3600 0.07429 1.8135 0.9975

Be 0.08322 2.0749 0.4844 0.04531 2.1630 0.1401 0.08383 1.8246 0.8965

Qu 0.10520 1.9808 0.5939 0.09338 2.1694 −0.1091 0.07796 1.8607 0.9115

Po 0.06304 2.2460 0.3588 0.03216 2.5313 −0.2697 0.07611 1.9503 0.7927

La 0.07437 2.0003 0.5438 0.02195 2.2354 0.2369 0.07610 1.8067 0.9827

Cl 0.06740 1.9253 0.5765 0.02252 2.5080 −0.2072 0.07417 1.7949 1.0121

Pm 0.10462 2.1591 0.2857 0.01744 2.5697 −0.1028 0.09393 1.8696 0.8451

Table 3. The parameter estimates of the two-variable integrated system (Eq. (6)).

Biomass Volume Estimation and Valorization for Energy10



Species Systems Items R
2

SEE MPE (%) TRE (%) ASE (%) MPSE (%)

Pi (5) AB 0.9109 75.05 2.81 1.31 −2.44 24.21

BB 0.7842 28.55 5.51 −0.25 −3.75 40.29

SV 0.8380 245.64 4.68 2.63 0.19 27.65

(6) AB 0.9061 77.10 2.89 0.37 7.68 25.26

BB 0.7751 29.19 5.63 0.65 9.28 43.70

SV 0.9744 97.70 1.86 0.44 6.01 15.87

Ab (5) AB 0.9223 73.29 3.10 0.28 −1.24 22.19

BB 0.5474 35.29 11.97 −1.15 −2.74 49.06

SV 0.9222 164.52 3.34 −0.60 −0.29 20.79

(6) AB 0.9434 62.61 2.65 0.24 4.97 22.50

BB 0.5547 35.08 11.89 0.37 7.64 52.51

SV 0.9800 83.41 1.69 0.25 4.34 13.05

Be (5) AB 0.9139 70.63 3.15 2.02 0.11 22.52

BB 0.7734 31.95 6.16 2.47 −1.15 37.64

SV 0.9118 102.74 3.26 2.87 7.19 26.85

(6) AB 0.9332 62.27 2.78 1.05 2.47 21.30

BB 0.7741 31.97 6.17 0.18 1.16 38.38

SV 0.9566 72.13 2.29 0.49 6.53 19.60

Qu (5) AB 0.9030 91.99 3.35 2.67 0.93 27.82

BB 0.8168 30.73 5.23 2.21 −1.83 40.37

SV 0.9262 100.81 3.01 4.11 4.36 27.33

(6) AB 0.9285 79.04 2.87 1.67 2.81 24.66

BB 0.8133 31.09 5.29 1.11 2.35 41.08

SV 0.9790 53.88 1.61 1.07 3.71 16.72

Po (5) AB 0.9379 60.17 2.76 1.51 −0.86 17.55

BB 0.8440 21.51 5.47 2.21 −2.71 32.15

SV 0.9539 82.81 2.35 −0.41 1.51 15.87

(6) AB 0.9506 53.72 2.47 1.17 1.25 17.11

BB 0.8618 20.29 5.15 1.77 1.15 32.11

SV 0.9842 48.49 1.38 0.83 1.04 9.48

La (5) AB 0.9123 68.47 3.41 1.26 1.15 23.18

BB 0.6773 35.22 8.65 −0.52 0.14 37.37

SV 0.9016 148.10 3.74 0.10 4.26 25.04

(6) AB 0.9432 55.14 2.75 0.22 6.91 24.68

BB 0.6675 35.83 8.81 −0.83 6.78 40.08

SV 0.9770 71.63 1.81 0.21 5.58 15.05

Developing Tree Biomass Models for Eight Major Tree Species in China
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fitting results of integrated systems (Eqs. (5) and (6)), the parameter estimates of the BCF and

RSR models could be obtained (Table 5).

From comparison of the fitting statistics of two integrated systems (Eqs. (5) and (6)) in Table 4,

we can found that for aboveground biomass estimation, two-variable models were better than

one-variable models except Picea. For belowground biomass estimation, one- and two-variable

models were not significantly different, even some of one-variable models were slightly better

than two-variable models, such as Picea, Quercus, Larix and C. lanceolata. Considering that tree

height measurement is time consuming and two-variable biomass models are not significantly

different from one-variable models, especially for belowground biomass estimation, it was

commended to apply one-variable models in forestry practice such as National Forest Inventory.

From Table 2, it was found that the estimates of parameter a1 were approximately equal to 7/3,

confirming the results of an earlier study [73]. To analyze the difference among various tree

species, the dummy model (8) was fitted using the aboveground biomass data of all eight

species (Table 6).

According to the parameter estimates in Table 6, we could rank the eight tree species by

aboveground biomass estimates in descending order as Quercus, Betula, Populus, P. massoniana,

Picea, Larix, Abies and C. lanceolata. That is, Quercus had the largest aboveground biomass,

whereas C. lanceolata had the smallest one for the same diameter trees. The aboveground

biomass estimates of the dummy model (Eq. (8)) for Quercus, Betula, Populus, P. massoniana,

Species Systems Items R
2

SEE MPE (%) TRE (%) ASE (%) MPSE (%)

Cl (5) AB 0.9614 30.62 2.98 3.24 1.03 22.99

BB 0.8414 15.08 7.43 1.66 1.75 38.39

SV 0.9474 94.14 3.62 1.99 2.28 17.25

(6) AB 0.9774 23.47 2.28 1.47 6.10 23.66

BB 0.8342 15.50 7.64 −0.88 9.87 41.43

SV 0.9931 34.10 1.31 0.50 5.21 11.30

Pm (5) AB 0.9542 48.45 3.21 0.91 0.25 17.29

BB 0.8509 20.85 7.64 1.55 −2.12 39.21

SV 0.9503 90.62 3.40 0.17 0.34 20.87

(6) AB 0.9572 46.89 3.10 0.41 3.76 16.30

BB 0.8546 20.69 7.59 −0.63 1.44 39.73

SV 0.9846 50.59 1.90 0.64 1.13 12.51

AB—aboveground biomass, BB—belowground biomass, SV—stem volume, R2
—coefficient of determination, SEE—

standard error of estimate, MPE—mean prediction error, TRE—total relative error, ASE—average systematic error, and

MPSE—mean percent standard error.

Units of SEE: dm3 for volume and kg for biomass.

Table 4. The fitting statistics of two integrated systems (Eqs. (5) and (6)).
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Picea, Larix and Abies were 88%, 51%, 47%, 46%, 34%, 30% and 25% larger, respectively, than

that for C. lanceolata (see Figure 1).

Similarly, for one-variable belowground biomass models, it was found that the estimates of

parameter b1 for eight species were not significantly different. To analyze the difference of

belowground biomass estimation among various tree species, we fitted the following dummy

model:

Species Systems BCF models RSR models

Pi (5) BCF = 1.1401 D
−0.2278

RSR = 0.2786 D
−0.0316

(6) BCF = 1.4183 D
0.3611

H
−0.7507

RSR = 0.2983 D
0.2147

H
−0.3142

Ab (5) BCF = 0.7858 D
−0.1430

RSR = 0.2818 D
−0.1224

(6) BCF = 0.9046 D
0.2086

H
−0.4533

RSR = 0.3589 D
0.5753

H
−0.9041

Be (5) BCF = 0.7821 D
−0.0252

RSR = 0.4307 D
−0.1362

(6) BCF = 0.9928 D
0.2504

H
−0.4121

RSR = 0.5445 D
0.0880

H
−0.3443

Qu (5) BCF = 1.1456 D
−0.0942

RSR = 0.6400 D
−0.3036

(6) BCF = 1.3494 D
0.1201

H
−0.3177

RSR = 0.8877 D
0.1887

H
−0.7030

Po (5) BCF = 0.6522 D
−0.0212

RSR = 0.3216 D
−0.1290

(6) BCF = 0.8283 D
0.2958

H
−0.4339

RSR = 0.5102 D
0.2853

H
−0.6285

La (5) BCF = 0.8522 D
−0.1547

RSR = 0.2528 D
0.0165

(6) BCF = 0.9773 D
0.1936

H
−0.4389

RSR = 0.2951 D
0.2351

H
−0.3068

Cl (5) BCF = 0.8554 D
−0.2321

RSR = 0.2917 D
−0.0599

(6) BCF = 0.9087 D
0.1303

H
−0.4356

RSR = 0.3341 D
0.5828

H
−0.7836

Pm (5) BCF = 0.9096 D
−0.1412

RSR = 0.1422 D
0.1157

(6) BCF = 1.1138 D
0.2894

H
−0.5593

RSR = 0.1667 D
0.4106

H
−0.3885

Table 5. The simultaneously estimated BCF and RSR models.

Species Global parameter (a) Species-specific parameters (va)

Pi 0.13485 −0.01084

Ab −0.01959

Be 0.00443

Qu 0.03908

Po 0.00106

La −0.01441

Cl −0.04254

Pm 0.00000

Table 6. The parameter estimates of dummy aboveground biomass model (Eq. (8)).
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Mb ¼ b0 þ vbzð ÞDb1 þ ε (15)

where b0 and b1 are global parameters and vb is species-specific parameter vector. The param-

eter estimates of dummy model (Eq. (15)) are listed in Table 7.

According to the parameter estimates in Table 7, we could rank the eight tree species by below-

ground biomass estimates in descending order as Quercus, Betula, Larix, Picea, Populus, P.

Figure 1. Comparison of aboveground biomass models for eight tree species.

Species

Global parameters

Species-specific parameters (vb)b0 b1

Pi 0.03551 2.2544 0.00424

Ab −0.00792

Be 0.01437

Qu 0.01835

Po 0.00091

La 0.00583

Cl −0.00761

Pm 0.00000

Table 7. The parameter estimates of dummy belowground biomass model (Eq. (15)).
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massoniana, C. lanceolata and Abies. That is, Quercus had the largest belowground biomass, while

Abies had the smallest one for the same diameter trees. The belowground biomass estimates of the

dummy model (Eq. (15)) for Quercus, Betula, Larix, Picea, Populus, P. massoniana and C. lanceolata

were 95%, 81%, 50%, 44%, 32%, 29% and 1% larger, respectively, than that for Abies (see Figure 2).

4. Discussion and conclusion

In this study, data on above- and belowground biomass from 4818 to 1626 sample trees,

respectively, for eight major tree species in China were used to develop compatible individual

tree biomass models. The models included aboveground biomass equations and BCF equa-

tions compatible with stem volume equations and belowground biomass equations and RSR

models compatible with aboveground biomass equations. To solve compatibility of the bio-

mass models, the nonlinear error-in-variable simultaneous equations were applied and to

solve the issue of unequal sample sizes for above- and belowground biomass, the dummy-

variable model approach was used. In the technical regulation on methodology for tree bio-

mass modeling [55], the segmented modeling approach was recommended when the biomass

estimate of small trees was obviously biased [43, 46]. Furthermore, for the tree species distrib-

uted in various regions, it was generally needed to develop biomass models for different

regions. For example, according to the population classification on modeling of single-tree

biomass equations [39], it was necessary to establish five sets of biomass models for both Abies

and Picea. But in this study, the segmented modeling approach was not used to develop

biomass models for large and small trees, respectively and the differences among various

Figure 2. Comparison of belowground biomass models for eight tree species.
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regions were not taken into account, only one set of biomass models, including one- and two-

variable models, was developed for each tree species.

The data of three tree species, i.e., C. lanceolata, P. massoniana and Larix spp., were used or partly

used to develop biomass models, which were published as original papers [40–51] or ministerial

standards [56, 57]. Comparing with the study results by Zeng et al. [47], the parameter estimates

and fitness indices of aboveground biomass and volume models are very close to those for C.

lanceolata in this study. From the achievements by Zeng and Tang [45], we can find that the

parameter estimates of aboveground biomass and volume models are not significantly different

from those for P. massoniana in this chapter, but this study provided better models considering

the statistical indices of goodness-of-fit. Comparing with the biomass models published as

ministerial standards [56, 57], the developed models in this study are more generalized and

simpler for application in national and regional biomass estimation. There are four sets of

biomass models in total for trees (dbh ≥ 5 cm) and saplings (dbh < 5 cm) for two modelling

populations of each tree species in the ministerial standards [56, 57] and here we have only one

set of biomass models which are suitable for both trees and saplings and for the whole country.

The results indicated that two-variable models were almost better than one-variable models for

aboveground biomass estimation, while the two model systems were not significantly differ-

ent for belowground biomass estimation. The mean prediction errors (MPEs) of aboveground

biomass models for the eight species were less than 5%, whereas MPEs of belowground

biomass equations were less than 10%, except for Abies. The models developed in this study

can provide a basis for estimating biomass for the eight major tree species in China and will fill

in the lack for China on the web platform GlobAllomeTree [74]. Also, they will have the

potential to support the implementation of policies and mechanisms designed to mitigate

climate change (e.g., CDM and REDD+) and to calculate costs and benefits associated with

forest carbon projects. In addition, the overall modeling methodology presented in this study

can be taken into consideration in any case that involves individual tree biomass modeling.
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