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Abstract

Brain-computer  interface  (BCI)  has  recently  received  an  unprecedented  level  of
consideration and appreciation in medical  applications,  such as augmentation and
reparation  of  human  cognitive  or  sensorimotor  activities.  Brain  signals  such  as
electroencephalogram (EEG) or electrocorticography (ECoG) can be used to generate
stimuli or control device though decoding, translating, and actuating; this communi-
cation between the brain and computer is known as BCI. Moreover, signals from the
sensors can be transmitted to a person’s brain enabling them to see, hear, or feel from
sensory  inputs.  This  two-way  communication  is  referred  as  bidirectional  brain-
computer interface (BBCI). In this work, we propose a field-programmable gate array
(FPGA)-based on-chip implementation of  two important  data processing blocks in
BCI systems, namely, feature extraction and decoding. Experimental results showed
that  our  proposed architecture  can achieve high prediction accuracy for  decoding
volitional movement intentions from ECoG data.

Keywords: ECoG data decoding, brain-computer interface, volitional movement in-
tention prediction, FPGA implementation

1. Introduction

Brain-computer interface has developed immensely in recent times. It has reached a point
where a subject can use data collected from their brain to actually control external devices.
This process involves feature extraction, decoding, signal processing, and actuating [1]. In the
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last few years, BCIs have received a lot of recognition in various other fields apart from medical
industry. They have gained a lot of popularity in the entertainment such as gaming industry.
Electrical stimulations from the brain can be recorded either noninvasively which is called
electroencephalography (EEG) or invasively called the electrocorticography (ECoG) signals.
These electrical stimulations from the brain can be collected over time and decoded to know
more about brain signals and its activities. EEG signals are recorded by placing the electrodes
along the scalp of the brain. They can be used to diagnose multiple symptoms such as coma,
epilepsy, sleep disorders, etc. ECoG signals are recorded in the cerebral cortex of the brain. In
this case, the electrodes are implanted into the brain in order to record brain activities. Since
ECoG signals are recorded invasively using implanted electrodes, this type of recording data
has an advantage of higher spatial resolution and higher sampling rate than its counterpart.
However, since the electrodes in this case are implanted into the brain, this setup involves a
surgeon to operate on the subject and place the electrodes inside the skull. This unique feature
of  the  ECoG data  has  made it  more  suitable  for  BCI  applications  that  mainly  focus  on
restoration of sensorimotor functions. A suitable example of this scenario is shown in [2]. Here,
a subject with severe motor disabilities is able to control the prosthesis using the ECoG data
recorded from the subject’s brain activities. The ECoG data obtained from the electrodes have
to be processed in the first place in order to interpret the information contained in them and
to decode its volitional movements. Techniques such as time-frequency analysis, including
power-spectrum  analysis  and  fast  Fourier  transforms,  have  been  proposed  in  Ref.  [2].
Neuroscientists enjoy such off-line techniques of decoding ECoG cortical data as it enables
them to further go in deep, study the brain activities, and map them to the volitional move-
ments that were intended to perform. In Ref. [3], dynamic mode decomposition is proposed
which is also an off-line decoding technique. But such off-line techniques cannot be imple-
mented in applications that are focused on restoration of sensorimotor functions as they have
to be on the fly and real time. Retrieving one’s voluntary movements by sending the spinal
stimulations data to paraplegics or by enabling the actions of the prosthetic control requires
real-time signal decoding. Such real-time signal decoding circuits and data processing blocks
provide the right platform for the abovementioned applications. Any such system would have
(i) an analog front-end circuit, which is used to amplify the raw signals recorded and filter the
noise; (ii) an analog-to-digital converter (ADC), which as the name suggests, converts the
incoming raw analog signals to digital format; (iii) data processing block, which is the most
vital of them all as this block is used to decode the digitized brain signals into interpretable
format, for example, any movement intention; and (iv) stimulator back-end circuits which are
particularly placed to perform the actions or movements that are predicted by the previous
data processing block. These actions could be anything such as enabling prosthetic actuators
or delivering spinal stimulations for voluntary movements.

2. On-chip computing in BCI applications

Decoding raw ECoG signals to restore sensorimotor function has been a great motivation. The
most advanced techniques comprise time-frequency analysis with power-spectrum analysis,
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fast Fourier transform [2], and dynamic mode decomposition [3] are used to decode unpro-
cessed ECoG signals. External computational sources that treat the data received either from
electrodes or the feedback from sensors can generate the signal for stimulus or can trigger the
prosthetic control efficiently. This type of analysis and decoding ECoG data in an off-line way
is very slow and not suitable for decoding in real time. Moreover, as these off-line-based
computational resources are very complex to implement in terms of area and power con-
sumption, they are impractical for portable applications. Hence, it is essential to design an on-
chip decoding system which is handy, power efficient, and also fast enough for real-time use.
Many different on-chip techniques are presented for decoding ECoG-recorded signals. An
interface between inserted chip and recording and stimulating electrodes was projected in [4],
which is portable as well as operates independently. In Refs. [5–8], various on-chip signal
recording and processing model can be seen. Such action potential of a basic computing unit
(a neuron) was detected that produces the electrical stimuli by the use of time-amplitude
discriminator. Mainly focuses on recording and processing (amplifying, filtering, etc.) corti-
cally recorded signals to trigger the action stimuli signals. Another on-chip implementation is
based on look-up table (LUT) that generates the corresponding stimulus action (such as eye
blinking) by classifying the extracted, amplified, and filtered brain signals [7]. Moreover, in
Ref. [9], discrete cosine transform and linear classifier are implemented on hardware to decode
the ECoG movement intentions. As explained in Ref. [4], the large number of neurons that
reside on the cortical surface controls the hand movements, and these hand movements usually
occur in high-dimensional space; hence, giving a typical motor behavior range is still a
challenge. Since the classification based on look-up tables and linear classifiers is narrow,
developing a better and versatile on-chip classification method is essential that can take care
of more complex task.

Figure 1. Overview of the BCI system in which the proposed framework is implemented.
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Designing of data processing block and implementation are the main focus of this work.
Proposed framework has been highlighted in Figure 1 showing an outline of typical BCI
system. The signals are the ECoG signals, recorded from the electrodes placed invasively on
the cerebral cortex. There are several parameters that have to be taken care of when designing
such circuits. Mainly, the area occupied on the chip should be really small with low power
consumption and should be resistant to temperature and voltage variations and of course the
limitation of the system on which this has been developed. Thus, it is not feasible to build such
off-line hardware-hungry decoding schemes for real-time BCI applications. Our work involves
a low-power and area-efficient hardware realization of principal component analysis (PCA)
and multilayer perceptron (MLP), implemented on FPGA to show the usefulness of on-chip
data decoding model for BCI applications. Openly accessible ECoG recordings and the
experimental results from FPGA show the accuracy of 80% for predicting single-finger
movement.

3. Feature extraction: principal component analysis

Feature extraction is a process whose aim is to reduce the dimensionality and decrease the
complexity of the dataset to a fewer dimensions with the largest amount of information
possible. For BCI applications, it is an important requirement that the computational com-
plexity of the system is very less. It must also be robust against noise influences and should
only depend on historical data samples. Brain signals depend on different thinking activities
that occur in the brain. BCI is considered to be a pattern recognition system that differentiates
between different patterns and classifies them into different classes based on the features. The
features extracted using BCI not only reflect the similarities to a certain class but also the
differences from the rest of the classes. The features are measured using the properties of the
signal that contain the information needed to distinguish between different classes.

Feature extraction or dimensionality reduction techniques such as PCA or independent
component analysis can be applied to reduce the dimensions of the original brain signal data
collected to help in removing irrelevant and redundant information. Such techniques will also
reduce the overall computation cost as well.

3.1. Principal component analysis (PCA)

PCA is an effective and powerful tool for analyzing data and finding patterns in it. It is used
for data compression, and it is a form of unsupervised learning. Dimensionality reduction
methods can significantly simplify and progress process monitoring procedures by projecting
the data from a higher dimensional space to a lower dimensional space that exactly charac-
terizes the state of the process. PCA is a dimensionality reduction technique which produces
a lower dimensional representation of a given data in such a way that the correlation between
the process variables is conserved and is also good in terms of covering the maximum possible
variance in the given data. The projection of higher dimensional data to a lower dimensional
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data as explained before happens in a least square sense; small inconsistencies in the data are
ignored, and only large inconsistencies are considered.

3.2. Characteristics of principal components

1. The first principal component accounts for a maximum amount of variance in the observed
variables which means that this component is correlated with most of the observed
variables.

2. The second component extracted will have two characteristics:

a. This component covers most of the variance that was unaccounted for in the first
principal component, which means that the second component will be correlated with
most of the variables that did not display strong correlation with the first component.

b. The second characteristic is that it is completely uncorrelated with the first compo-
nent. The correlation between the two will be zero when it is matched.

3. All the remaining components extracted during the analysis will exhibit the same two
characteristics:

a. Each component calculated will account for a maximum variance of the variables that
were not covered by the preceding component.

b. Each component will be uncorrelated with all the preceding components calculated.

From all the above characteristics, it is clear that with each new component calculated, it
accounts for progressively smaller and smaller amounts of variance which clearly explains
why only the first few components are generally considered for any data analysis and
interpretation. When the analysis is complete and all the principal components are obtained,
each of these components will display varying amounts of correlation with the input variables
but are all completely uncorrelated from each other.

4. Feature decoding: artificial neural networks

The ECoG-recorded data need to be decoded to be able to detect the intended movement. Once
the dimensionality of data is reduced by PCA, we can further decode the data to trigger external
devices. Artificial neural network (ANN) is a very good choice for decoding such signals.

4.1. Artificial neural networks (ANNs)

Artificial neural networks are designed to model the data processing abilities of a biological
nervous system, which are the major paradigm for data mining applications. The human brain
is estimated to have around 10 billion neurons each connected with an average of 10,000 other
neurons. The basic cell of artificial neural network is a mathematical model of a neuron
represented in Figure 2. There are three basic components in an artificial neuron:
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1. The connecting links possessing weights to the inputs (analogous to synapses in biological
neuron).

2. The weighted input values are summed in an adder with a bias, w0,
∑ = x1 * w1 + x2 * w2 + x3 * w3 + w0.

3. An activation function that maps the output on a neuron.

Figure 2. Mathematical model of a basic cell of artificial neural networks.

4.1.1. Multilayer perceptron

The feedforward networks with more than one layer are called multilayer perceptron (MLP).
This is a very popular multilayer feedforward architecture. The neurons in each layer of MLP
(minimum two layers, one hidden layer, and one output layer) are connected to the neurons
of the next layer. The input layer accepts input values and forwards them to the successive
layers. The last layer is called the output layer. Layers between input and output layers are
called hidden layers. In this work, we adopt the sigmoid (or the logistic) function for imple-
menting activation function. Figure 3 shows an example of MLP architecture. There is no
universal approach to systematically obtain the optimal number of neurons and number of
layers. Cross validation is a common practice to obtain the optimal MLP structure, although
some other practical constraints such as area and power overhead should also be taken into
account when on-chip implementation is considered.
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Figure 3. Example of MLP architecture.

Training of MLP consists of tuning the weight values associated with each neuron in an iterative
manner such that the outputs of MLP gradually change toward the desired outputs, also
known as target values. The most commonly used training algorithm is backpropagation.
Backpropagation is an expression for the partial derivative of the cost function with respect to
any weight or bias in the network, which tells us how quickly the cost changes when we change
the weights and biases. The algorithm requires a desired output (target) for each input to train
the neural network. This type of training is known as supervised learning. When no target
values are specified during the training, the procedure is then refer to as unsupervised learning.

4.2. Training of artificial neural networks

Training artificial neural networks using backpropagation is an iterative process, which uses
chain rule to compute the gradient for each layer having two distinct passes for each iteration,
a forward pass and a backward pass layer by layer.

Carrying the forward pass, the outputs of each layer are calculated by first considering
arbitrary weights and inputs until the last layer is reached. This output is a prediction of neural
nets that are compared to the targets. Based on this, weights are updated in the backward pass,
which starts with calculating the error for each neuron in the output layer and then updating
weights of the connections between the current and previous layer. This continues until the
first hidden layer and one iteration is completed. A new matrix of weights is then generated,
and the output is calculated in the forward pass. The input to neural networks is the data that
need to be decoded. In the context of BCI data decoding, ECoG signals are recorded from an
array of implantable electrodes, which are then processed, and volitional movement intentions
are predicted.

5. Proposed framework

Till now, we have shown the theory behind the data processing blocks. Here, detailed explan-
ation of the real-time on-chip ECoG signal extraction and decoding is given. The discussion
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includes the overview of proposed design and in-depth description of principal component
analysis and multilayer perceptron implementation.

5.1. Overview of the proposed framework

In Figure 4, we have shown the overview of different blocks in BCI system, and as mentioned
before, our work mainly focuses on the design of data processing block—PCA and MLP. To
record the electrical activity from the brain, an array of implantable electrodes is placed
invasively on the cerebral cortex, and raw ECoG signals are recorded. The interpretable actions
for prosthesis control or simulation by the spinal cord are produced by various preprocessing
on-chip blocks after recording of ECoG signals. This includes:

a. Raw signal amplifiers and noise filters combine an analog front-end circuit.

b. An analog-to-digital converter (ADC) that converts analog ECoG signals into its digital
version.

c. Feature extraction and feature decoding blocks—data processing block.

d. A stimulator that sends the spinal stimulations or triggers the prosthetic actuators.

Figure 4. Overview of the BCI system in which the proposed framework is implemented.

Designing the data processing blocks to decode the volitional movement intentions is main
focus of this work. More accurate ECoG signals are obtained by intracranial depth electrode
technology, which also gives good spatial resolution and high sampling rate. For example,
ECoG signals can be recorded using electrodes placed in an array manner. In Ref. [10], each
array consists of 62 electrodes. Hence, in real time, it is challenging to decode high-dimensional
ECoG data. As shown in Figure 4, the two main parts of data processing blocks are feature
extraction and ECoG signal decoding. The following sections will explain in detail the
hardware friendly implementation of these components.
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5.2. Hardware friendly PCA

Principal component analysis (PCA) is a classical data processing technique that retains a
minimum set of data from the original set with a maximum amount of variance. It is a popular
algorithm that is used in the feature extraction methods. In PCA, the most challenging part is
the calculation of the eigenvectors. These eigenvectors can be calculated using the covariance
matrix, and this is very challenging [11]. Furthermore, we need to come up with a hardware-
implementable algorithm, as our ultimate goal is to implement it onto the FPGA platform. In
order to achieve this, we are using a hardware friendly PCA algorithm, which is not only very
efficient in terms of implementation but also helps in extracting those features that are very
significant for classification. These features are extracted from the recorded ECoG data [11, 12].

Figure 5. Functional blocks of the hardware friendly version of the PCA.

Figure 5 briefly comprises the functions of the hardware friendly PCA that is used in this
system. The input to this algorithm is a covariance matrix and random variables to generate
the eigenvectors. These inputs to the algorithm are stored in a look-up table (LUT). The
covariance matrix Σcov is calculated from the input data, which is the recorded ECoG data. This
input data is of the order of × n, where n is the number of features and k is the number of
samples collected for each feature. The algorithm is designed such that two parameters, viz.,
the total number of eigenvectors required p (p ≤ n) and the iteration number to calculate each
of the eigenvectors r, have to be declared initially. Once the input to the algorithm is stored
and the initial values are declared, the declared random variables are constantly multiplied
with the covariance matrix till the iteration number is reached and the first principal compo-
nent PC is obtained. This technique is called eigenvector distilling process [11]. Subsequently,
to compute the remaining eigenvectors, they require r iterations as it was declared at the
beginning. To compute all the other PCs apart from the first PC, an additional step other than
the eigenvector distilling process is required which is the orthogonal process. We use Gram-
Schmidt orthogonalization in this orthogonal process. This process is used to do away with all
the previously measured p − 1 PCs from the current eigenvector and its intermediary values.
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All four basic math operations were used to compute these eigenvectors in the original
algorithm which is the fast PCA algorithm [12]. They made use of addition, multiplication,
and norm operators which include division and square root operations. In Ref. [11], flipped
structure is proposed to achieve a minimum power and lesser area requirements. Here the
equation ϕp = ϕp/∥ϕp ∥ which is a norm operation is eliminated and substituted with�� = �� − ����� ∥ �� ∥ �� ∥ �� ∥ . This equation is then multiplied with ∥ ϕj ∥ 2. By doing

so, the orthogonal process turns into �� = ����� ��− ����� ��. This equation can now be

implemented only using adders and multipliers which are much more efficient in terms of
hardware implementation than the division and square root operations. However, this
implementation drastically escalates the dynamic range of all the values. In Ref. [11], an
adaptive level-shifting scheme was proposed to keep the dynamic range within a limit, but
since we are implementing this algorithm using fixed-point mathematical operators, these
operators automatically keep a check on the dynamic range and hence we have eliminated this
adaptive level shifting scheme in our implementation. The algorithm described so far is shown
in Algorithm 1 in Figure 6. This algorithm is designed to pick p eigenvectors which gives a
k × p feature matrix of M′.

Figure 6. Eigenvector distilling algorithm.

Advances in Statistical Methodologies and Their Application to Real Problems248



5.3. MLP design

For the classification of data particularly for volitional movement intentions, the design of MLP
is the next step once the dimensionality is reduced using on-chip PCA algorithm described
above. The structure of MLP contains multiple layers of nodes with each layer fully connected
to the next one. The basic computing unit is called an artificial neuron, which is designed using
fixed-point multiplication and addition operators. The inputs to these neurons are first
multiplied with preferred weights and added. The output of this combination is summed
together and is given to a nonlinear differentiable activation function, log-sigmoid here. LUT
is used to implement the transfer function. The number of neurons in each layer and total
number of layers are reconfigurable. Training the MLP is done off-line manner, and learned
weights are updated using random access memory (RAM) to embed on FPGA board.

5.3.1. Fixed-point multiplier

A parameterized fixed-point-signed multiplier is designed for the multiplication operation
taking place inside a neuron. The parameters that can be altered based on the design require-
ments and available bit widths are the bit widths of two operands (WI1 + WF1; WI2 + WF2)
and that of the output (WIO + WFO), where WIx is the integral part bit width and WFx is for
fractional part. In a normal multiplier operation, the integral and fractional bit widths (WIO
and WFO) of output are obtained by adding the operand’s integral and fractional bit widths:
WIO = WI1 + WI2 and WFO = WF1 + WF2. However, as we see, the bit width is doubled after
every operation. To make it hardware efficient, truncation and rounding are done to reduce
the bit width according to the needs. In this experiment, integer and fraction bit widths are
kept equal for the two operands. Truncation is done in integral part by removing all the extra
bits (WI1 + WI2−WIO) and keeping the signed bit. In the fractional part, only required bits
(WFO) are kept and truncate all extra lower significant bits. Overflow flag, which represents
the incorrect result, is set to 1 if the signed bits are not similar to the truncated bits.

5.3.2. Fixed-point adder

Similar to the multiplier, in case of normal addition operation, the bit width of integer part is
equal to one plus the integral bit width of operand having more bits than the other (if WI1 >
WI2, WIO = WI1 + 1 else WIO = WI2 + 1), and for the addition of fractional part, bit width is
equal to the greater fractional bit-width operand (if WF1 > WF2, WFO = WF1 else WFO = WF2).
Similarly, as in the multiplier, we perform truncation and rounding with the overflow flag.

5.3.3. Activation function

As mentioned before, a nonlinear differentiable transfer function is used at the final stage of
a neuron. Activation function accepts the addition of product of all inputs with their
weights as an input to generate a nonlinear output. The most used activation function is
logistic function (log-sigmoid or tan-sigmoid) for multilayer perceptron for pattern recogni-
tion. The output of log-sigmoid function generates outputs in range of 0 and 1 as the input
of the neuron’s net goes from negative infinity to positive infinity, while tan-sigmoid func-
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tion ranges between −1 and +1. Log-sigmoid function is an exceptional case of logistic func-
tion. The equation and the curve of log-sigmoid function are shown in Figure 7:

( ) 1
1 xf x

e-
=

+
(1)

Figure 7. Equation and curve of log-sigmoid function.

The value of x (input to activation function) is considered between −5 and +5 for this work at
a 5-bit precision. This will give 32 (25) values for every two integers that totals 320 values. These
fixed-point binary values of f(x) are stored in LUT, whose address can be represented by 9 bits.

5.3.4. Implementing LUT on hardware

The LUT in our case is used in an efficient manner as compared to LUT usage in general. One
way was to use separate LUTs, for input x and for output f(x) with 320 values each, but only
one LUT for f(x) is used. By doing this, the area utilization is reduced by half for every neuron,
and speed is doubled. The input for the sigmoid function is a 12-bit binary number (six for
integer part and six for fractional part) coming from the output of an adder. The consideration
of 5-bit precision is to get the address of LUT from the fractional part, ranging from 00,000 to
11,111. The output should be 0 or 1 if the input is less than −5 or more than +5, respectively.
Hence, 0 is stored at the first address of LUT for mapping any value less than or equal to −5.
So for −2.96875 (111,101:00,001) as input, the 65th address of LUT is the output value, which is
(−3 + 5) *32 + 1, where (111,101) or −3 is the input integer part and (111,100) or 1 is the input
fractional part. Equation 2 is used to calculate the address, specifically when the input lies in
the range −5 and +5:

( )9 5 *32bit integer fractionaddress input input= + + (2)
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A number of multipliers and adders (i.e., number of inputs) required to form a neuron depend
on the number of neurons in the previous layer.

5.3.5. Implementing MLP on hardware

After designing a neuron, the next task is to form neural networks, which have hidden layers
and output layer with a number of neurons interconnected in the defined manner. There is no
thumb rule to decide the number of layers and neurons in each layer. A single increase of
neuron in hidden layer will increase at least one multiplier and one adder for every neuron in
the next layer, which increase the hardware utilization.

These parameters can also be selected based on a criterion called Akaike information criterion
(AIC). For better generalization, this statistical approach can be used to determine the optimum
number of hidden units in a neural network, as it is complex because of strong nonlinearity.
AIC can be represented by the following equation:

n*ln 2*RSSAIC K
n

æ ö= +ç ÷
è ø

(3)

where n is the number of observations , RSS is the residual sum of square errors, and k is the
number of parameters (total number of weights). The lower the value of AIC, the better is the
architecture of neural network. On increasing the number of neurons in the hidden layer, AIC
may improve up to an extent. After certain number of neurons in hidden layer, AIC starts
increasing and changes very less with change of architecture [13].

As shown in Figure 8, our architecture has one hidden layer and an output layer with five and
three neurons (3 bit output), respectively. The use of delay elements (boxes) is explained later
in this chapter.

Figure 8. Architecture of the implemented MLP.
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The neural networks are pipelined to fully utilize the hardware and give a better frequency of
operation. The boxes seen in Figure 8 are the delay elements (registers) that store temporary
values of the previous outputs. Since two stages of pipeline are implemented to increase the
throughput with exchange of latency, the frequency of operation is achieved up to 83 MHz.

6. Experimental setup and results

To show the on-chip implementation of the proposed work, we are using openly accessible
ECoG data collected for studies related to sensorimotor restoration [10]. We will demonstrate
that using our approach, voluntary movements can be decoded efficiently in real time from a
high-dimensional ECoG data. This will strongly serve as a strong basement for a completely
automated BCI system.

6.1. Experimental setup

In Ref. [10], an off-chip analog front-end amplifier/filter and an ADC were used to amplify and
digitize the amplified ECoG signals that were collected using electrode grids. The electrodes
were arranged in an array where each array had 62 platinum electrodes. Each of these
electrodes was organized in an 8 × 8 manner. Therefore, 62 channels of ECoG data were
collected at once, and each of these measurements was measured with respect to scalp reference
and ground.

Figure 9. FPGA board used for the experimental study.

A computer display monitor is placed alongside the subject, and the finger to be moved is
displayed in this monitor. The subject is asked to move that particular finger, and the ECoG
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signals are collected during this movement. There is a 2-second gap between each movement,
and during this time, the screen displayed nothing. Each of these movements was also recorded
for a 2-second time period. Along with the recording of the ECoG signals, the position of the
finger was also recorded. The data collection is explained in detail in [10]. The data set we used
is a 400,000 62 matrix, where 400,000 is the number of observations collected for study purpose
and each of these observations were collected across 62 channels. Here, our main focus is on
the movement and non-movement of the finger. Thus, if a finger is moved, it is classified as 1
and 0 otherwise. The predictor model outputs one class for each of the five finger movements,
and the sixth class is when all the fingers are at rest. The output of our model is a 400,000 × 1
matrix. We used a Xilinx ARTIX-7 FPGA kit for demonstrating the proposed model. As
explained earlier, we are using the embedded RAM in the FPGA board to store our input
values. An RS-232 serial port is used to read back the values from the FPGA after all the
computations are finished. We achieved a 83.33 MHz frequency which is a maximum possible
frequency we could achieve along with a +0.5 ns of worst negative slack. This can further be
optimized to obtain 86 MHz frequency of operation. A snap of the Xilinx Artix-7 FPGA kit
used for this work is showed in Figure 9.

6.2. Feature extraction based on on-chip PCA

The original dataset is divided into training Str and validation Svat. Str is a 240 × 62 matrix where
240 is the samples across 62 channels. Out of 240 samples, we choose 40 samples in random
for all the six classes as explained above. Thus, the validation matrix now becomes (400,000
− 240) × 62 for the equivalent classes. The finger positions of the six different classes are shown
in Figure 10 which is plotted as a function of 240 samples recoding time. With the aim of
decreasing the size of the input data matrix, the hardware friendly PCA is used to extract
features from the input matrix. A total of 240 samples are projected on the first and second
principal components obtained after performing PCA. Figure 11(a) shows this setup as a
scatter plot.

Figure 10. Merged recorded finger positions of the six classes as a function of recording time.
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Figure 11. Projection of the 240 training samples onto the first two principle components using (a) the proposed on-
chip PCA and (b) MATLAB PCA function based on singular value decomposition (SVD) algorithm.

Each color denotes a different class, and it is clearly evident from this figure that the training
samples are all distinguished in this space. The hardware friendly PCA algorithm used in this
work is compared with the singular value decomposition (SVD)-based MATLAB PCA function
which is shown in Figure 11(b). It is clear that the samples calculated from the proposed PCA
algorithm closely match with that obtained from the traditional SVD-based MATLAB function.
This goes on to prove the accuracy and the effectiveness of the proposed on-chip PCA
algorithm. The number of principal components required to represent the reduced dataset is
determined by the sum of the amount of variance covered by each of the principal components.
In our case, the first three principal components add up to 80% of the total variance in the
dataset. Considering more than three principal components would not increase the variance
significantly but rather increase the computational capability of the algorithm in multiple folds
in terms of hardware utilization.

Furthermore, Figure 12 displays the mean squared error (MSE) for the first three principal
components with different iterations by comparing the principal components obtained from
the MATLAB function (which is used as a reference) and the algorithm used in this work. We
obtained MSE values lesser than 0.2 for the three principal components computed with a
maximum of 12 iterations to show the efficiency of the proposed framework.

Figure 12. Mean square error of the first three principle components as a function of iterations by taking the principle
component values computed using MATLAB SVD algorithm as the baseline.
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6.3. Classification based on on-chip MLP

In this work, we have tested different structures of neural networks with different numbers of
neurons in hidden layer and then calculating error of classification. For the output layer, three
neurons are chosen corresponding to the three outputs of 1 bit each. For the hidden layer, 2–
10 neurons work good for most applications. Testing for 3–8 neurons, three neurons give AIC
equal to −929, and for four neurons, the value is −1082. This value is decreased up to −1286 for
five and six neurons. But the total number of weights increased to 30 ((3*5) + (5*3)) for five
neurons and 36 ((3*6) + (6*3)) for six neurons. Further increase in neurons will not show much
improvement in AIC, though will increase the hardware utilization as the number of weights
increases by 6 for each neuron and hence the computing elements (adders and multipliers) in
the next stage.

Resources Utilization Available Utilization %
LUT 525 133,800 0.39

FF 6 267,600 0.01

DSP 22 740 2.97

IO 63 400 15.75

BUFG 1 21 3.12

Table 1. Summary of area utilization of the proposed architecture.

The neural network is trained by giving the first three principal components from the total of
62 as inputs, 40 samples for each class, and a data matrix of size 240 × 3. The implemented
design with one hidden layer having five neurons and an output layer having three neurons
has two-stage pipelining. The clock period is 12 ns so as the throughput; two stages will
increase the latency to 24 ns. One hundred percent accuracy is reached for the training set (240
samples). The remaining validation set of 399,760 (400,000 − 240) samples are given to the
trained neural network. This data gives the correct classification accuracy, which is 82.4%. Since
we have considered all the noise and perturbations during recording, this is reasonable.

Bit-widths Hidden layer neurons Frequency (MHz) Power (mW) Classification accuracy
1  12 (6.6) 5 83 199 82.485%

2 12 (6.6) 5 20 158 82.485%

3 12 (6.6) 4 20 156 65.87%

4 12 (6.6) 3 20 155 76.42%

5 16 (11.5) 5 33 171 80%

Table 2. Summary of difference performances for five different bit-width values.

The power consumption in this architecture is 152 mW. The area utilization is summarized in
Table 1. As seen in the table, the area utilization of the proposed architecture is lesser than 25%
of the available resources; this can be a good lead for future application-specific integrated
circuit (ASIC) design development which can lead to even less power consumption.
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We have also tried for various MLP architectures with different bit widths that give different
accuracy, power, speed, and area. Table 2 summarizes difference performances for five
different bit-width values. The bit-widths column represents the number of bit widths used to
represent data including the covariance matrix, intermediate results from the algorithm, and
also the final principal components that are computed. They are represented in “integer length
and fractional length” form.

6.4. Discussions

The bit width that we choose has a direct impact on the accuracy of the algorithm and also its
power consumption. The bit width of the input covariance matrix, the intermediate results of
bit width and also the bit width of the output of the algorithm need to be considered primarily
in order to determine the accuracy of the algorithm for our applications. Second, the number
of principal components needs to be carefully selected to improve computational efficiency.
Third, the number of iterations required to compute each of the principal components should
also be optimally chosen.

For a given operating frequency, the silicon area utilization and the power consumption mainly
depend on the first parameter, whereas the processing capability of the algorithm is influenced
by the second and third parameters. Processing capability is mainly determined by the number
of channels that can be trained using the PCA algorithm under a given amount of time. Power
consumption for different bit widths can be kept constant with reduced frequency or reduced
speed of execution. When higher bit widths are chosen for the sake of accuracy, the area
required for covariance matrix memory, register files, and processing units increases drasti-
cally in order to store more numbers of bits and process more data. It can be also observed that
the power consumption increases with higher frequencies.

7. Conclusion

This chapter presents a structure of on-chip computation that decodes ECoG brain signals in
a BCI system, serving a pathway to developing a real-time BCI system. The two main blocks
of our proposed decoding model are a hardware friendly PCA model and an artificial neural
network (ANN). Openly accessible ECoG recordings and the experimental results from FPGA
show the accuracy of over 80% for predicting single-finger movement.
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