
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

12

A Multiagent Method to Design Open
Embedded Complex Systems

Jamont Jean-Paul and Occello Michel
University of Grenoble, LCIS/INPG-UPMF Lab

France

1. Introduction

Open physical complex systems involve multiple interconnected software and hardwar
entities which enable logical/physical interactions between them and their shared
environment. They rise to many hierarchical level which exhibit common behaviours. These
entities have their own goals but participate to the accomplishment of the global system.
There are different classes of open physical complex systems like control systems processing
systems, communication systems and interactive systems. Because these systems take over
new wireless technologies, they are more and more distributed, decentralized and often not
completely described.
Through the use of multiagent system to model Open physical complex systems (OCPS) two
types of requirements emerge: requirements in methods and in specific system
architectures. Concerning the specific methods, our contribution is the DIAMOND method
(Decentralized Iterative Approach for Multiagent Open Networks Design (Jamont &
Occello, 2007)). Concerning the requirements in architecture, our contribution is the MWAC
model (Multi-Wireless-Agent Communication) based on our previous work on wireless
sensor networks (Jamont & Occello , 2006).
In this chapter, we focus on specificities of the methodological requirements. We try to
answer to some questions asked by this type of applications in lifecycle terms, about the
design step and the formalism.
A method consists in concepts, in an approach and in tools. So, in a first section, we focus on
the main concept of our works: the multiagent paradigm. In a second part, we present the
approach of the DIAMOND method. The third part describes the different steps and
activities of our method. Before concluding, we propose a discussion of the method in
comparison to other multiagent methods.

2. Multiagent systems

An agent is a software entity evolving in an environment that it can perceive and in which it
acts. It is endowed with autonomous behaviours and has objectives. Autonomy is the main
concept in the agent issue: it is the ability of agents to control their actions and their internal
states. The autonomy of agents implies no centralized control (Wooldridge, 1999).
A multiagent system is a set of agents situated in a common environment, which interact
and attempt to reach a set of goals. Through these interactions a global behaviour, more

www.intechopen.com

 Tools in Artificial Intelligence

206

intelligent than the sum of the local intelligence of multiagent system components, can
emerge.
The emergence paradigm deals with the unprogrammed and irreversible sudden
appearance of phenomena in a system confirming that "the whole is more than the sum of
each part". It is one of the expressions of collective intelligence (Deguet et al., 2006).
The emergence process is a way to obtain dynamic results from cooperation that cannot be
predicted in a deterministic way. There are three types of emerging features (Marcenac,
1996): emergence of structures at the origin of the self-organization process, behaviour and
emergence of properties.
It is difficult to qualify the emergent characteristics of a phenomenon. Some fundamental
elements have been settled by S. Forrest (Forrest, 1991),(Muller; 2004) proposes an
interesting specialization in the multiagent context that has been recently discussed and
completed in (Dessales & Phan, 2005).
It asserts that a phenomenon is emergent if:

• there is a set of agents interacting via an environment, whose state and dynamics
cannot be expressed in terms of the emerging phenomenon to produce in a vocabulary
or a theory D,

• the dynamic of the interacting agents produces a global phenomenon such as, for
example, an execution trace or an invariant,

• the global phenomenon is observable either by the agent (strong sense) or by an
external observer (weak sense) in different terms from the subjacent dynamics i.e.
another vocabulary or another theory D '.

To give a system of agents a particular global functionality, the traditional method consists

in carrying out a functional decomposition of the problem into a set of primitives which will

be embodied by the agents. The alternative suggested by L. Steels (Steels, 1990) aims at

making this functionality emerges from the interactions between the agents. The advantage

of the "emergent functionality" approach is first of all a reinforcement of the robustness of

the system becoming less sensitive to the changes of the environment.

The adaptation of the whole multiagent system is generally obtained through emergence. It
exist a lot of multiagent methods. We give here some references to these different works and
the result of an analysis of these methods through many criteria.

3. Approach

The lifecycle of traditional methods applied to design hardware/software hybrid systems

(see fig.1) starts with a requirements analysis followed by a portioning step. During this

partitioning step, the designer chooses the system parts which must become either hardware

or software parts %: the requirements analysis which is derived in a hardware one and a

software one. At this stage, the two different parts are designed in parallel. At the end of the

lifecycle, the two parts are integrated into a whole operational system. Through this

integration step (and the following tests) some problems can emerge. These problems can

question the software design, the hardware design or the both. Furthermore, it can be

necessary to modify the whole result of the partitioning!

This type of lifecycle doesn't allow to take into account some late modification of
requirements and is thus not well adapted to OPCS which cannot, by definition, be
completely a priori specified.

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

207

Fig. 1. Lifecycle of a traditional multiagent method

A few works deal with embedded multiagent systems, but new applications are strongl
concerned by this domain (Pervasive computing (Carabelea et al., 2003), Ambiant
computing (Maña & Rudolf, 2007)) and industrial applications of MAS (Parunak, 2000)).
Even if we are at the beginning of the expansion of embedded multiagent systems, we are
sure that embedded MAS methods will be the continuation of traditional embedded system
design lifecycle (see fig 1). Multiagent approaches focus on software parts and forget the
hardware aspects. Hardware aspects are generally taken into account only during the
deployment step (Cossentino03 et al.), and are limited to the choice of the platform where
the agents must be deployed.
We can thus say that the hardware/software hybrid systems design is very partially
covered by MAS methods. An alternative to this type of lifecycle is the codesign approach.
A codesign method unifies the development of both hardware and software parts by the use
of a unified formalism. The partitioning step is pushed back at the end of the life cycle. We
can thus settle at this point of our study that the choice of a specific lifecycle model which
supports a codesign approach is required.
Because of the complex features of our system, the lifecycle model must enable late
modification of specifications. Furthermore, it is necessary to come back on previous design
steps (refinement) and to explore the solution space of the hardware/software compromise.
The design process must accept genericity (incremental criteria are in favour of the
genericity). Finally, we must identify and keep a trace of all the parameters of the different
retained solutions. The evaluation of different lifecycle models in respect with these
previous criteria leads to adopt a spiral lifecycle (Boehm, 1988).
The lifecycle of traditional method applied to design an hardware/software hybrid system
(see fig.1) begin by a requirement analysis followed by, very early, by a portioning step.
During this partitioning step, the designer chooses the system part which must become
hardware part or software part: the requirement analysis which is declined in a hardware
one and a software one. After this step, these two different parts are designed in parallel. At
the end of lifecycle, these two parts are integrated to become operational system. Through
this integration step (and the following test) some problem can emerge. Theses problems
can call into question the software design, the hardware design or the twice. More deeply, it
can be necessary to modify the result of the partitioning!
The evaluation of the different lifecycle models in respect with these previous criteria carries
out the spiral lifecycle (Boehm, 1988) as the best choice in our context.
The DIAMOND method is built to design physical multiagent systems. Four main stages,

distributed on a spiral cycle (see fig.2), may be distinguished within our physical multiagent

design approach. The definition of requirements defines what the user requirements are and

characterizes the global functionalities. The second stage is a multiagent-oriented analysis

which consists in decomposing a problem in a multiagent solution. The third stage of our

www.intechopen.com

 Tools in Artificial Intelligence

208

method starts with a generic design which aims to build the multiagent system, once one

knows what agents have to do without distinguishing hardware/software parts. Finally, the

implementation stage consists in partitioning the system in a hardware part and a software

part to produce the code and the hardware synthesis.

Fig. 2. Lifecycle of a traditional multiagent method

4. The DIAMOND method

4.1 Case study

To illustrate the various phases and activities of our method, we will use the robocup case

study. To make the illustration easily understandable, we will adopt a simplified definition

of requirements.

The experimental conditions are inspired by (Huang et al., 2001). Robots evolve on a football

field (see fig. 3). A video recorder system makes possible to know the position of each robot

as well as of the ball. These positions are periodically broadcasted to all robots. If the ball

goes out of the limits of the field, a robot of the non faulty team recovers the ball and plays

(the order is given by the referee). If a robot has no more battery or is dysfunctioning, the

match is stopped (the order is given by the referee for human safety reasons) and the robot

is withdrawn from the field: all robots must be then motionless. At the beginning of a match

the robots must be located in their camp and the referee decides to give the guardian role to

one robot of each team. So, the game is open and the team, which scores the higher number

of goals in 90 minutes, wins.

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

209

Fig. 3. Our case study

4.2 Definition of requirements

This preliminary stage begins by analyzing the physical context of the system (identifying
workflow, main tasks, etc...). Then, we study the different actors and their participative user
cases (using UML use case diagrams), the services requirements (using UML sequence
diagram) of these actors. The UML sequence diagram can include physical interaction.
The second step consists in an original step: the study of the running mode and stop mode.
This activity is very significant because it enables to structure the global running of the
system. It is generally wishable that the system works in autonomy. But working with
physical systems requires to identify many others possible behaviours: how must the system
be before to stop it (robot in safety area...)? What must the system states be when it goes
under maintenance? How must the system components be calibrated? What must the state
of all the components be when an emergency stop occurs? Even if the problem is solved
with a decentralized intelligence, this organization of these modes is easily understandable
by the clients and the users. More of that, even if the system is approached with a
decentralized intelligence, the system must respect laws and norms. They are very strong
because the human safety can easily be altered.
This activity puts forward a restricted running of the system. It allows to specify the first
elements necessary for a minimal fault-tolerance. Moreover, it enables to identify
cooperative (or not) situations and to define recognition states in order to analyze, for
example, the self-organizational process of an application. This activity allows to take into
account the safety of the physical integrity of the users possibly plunged in the physical
system.
We have defined 15 different modes regrouped in three families. The stop modes are relate to
the different procedures for stopping the system. Moreover it allows to define the associate
recognition states. The running modes focus on the definition of the recognition states of
normal running, test procedures etc. The failing operations modes focus on the security

www.intechopen.com

 Tools in Artificial Intelligence

210

procedures (for example to allow a human maintenance team to work in the system) or to
specify rules for restricted running etc.
Application to our case study. We find the following actors. The referee (logical actor)
manages the match parameters: choose a goalkeeper and a camp for each team, verifies that
robots respect the rules. It authorizes the human to withdraw a robot when all robots are
motionless.
The manager (physical actor) withdraws robots when a problem occurs. The ball (physical actor)
moves under the robot actions. The opposing team (physical/logical actor) shares the field
with the studied one.
The camera system broadcasts the coordinates of each robot and of the ball.
There are two user cases. The configuration expresses that the referee chooses a field and a
goalkeeper for each team. This user case triggers another one: the games opens the game (see
fig.4).

Fig. 4. Our case study

For our application, the identified modes are:

• Stops modes: Two modes of stops must be characterized: other modes are not exploited.

• Idle: In a idle mode, the robots must be motionless.

• Stops requested on normal mode: when a robot dysfunction occurs, the referee can
decide to freeze the game.

• Running modes:

• Normal mode: in this mode all the robots must answer to requests of the referee,
there is no emergency stop.

• Mode of preparation: during the phase of preparation, robots are positioned on the
ground. Robots should neither then move nor use their actuators. This mode ends
when the parameters setting period starts.

• Mode of test: this mode will be used to calibrate the shooting power.

• Failure modes: only the management of the emergency stop is relevant in our
application.

• Mode of stop aiming to ensure the safety: If an emergency stop is activated, robots
do not have any more the right to move or use effectors.

In this application, where the life period is short, importance of the other modes is not
relevant.

4.3 Multiagent oriented analysis
The multiagent stage is handled in a concurrent manner at two different levels. At the
society level, the multiagent system is considered as a whole. At the individual level, the
system's agents are built. This integrated multiagent design procedure encompasses five
main phases discussed in the following.

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

211

Situation phase. The situation phase defines the overall settings, i.e., the environment, the
agents, their roles and their contexts. This stems from the analysis stage. We first examine
the environment boundaries, identify passive and active components and we proceed to the
agentification of the problem.
We insist here on some elements of reflexion about the characteristics of the environment
(Russel & Norvig, 1995),(Wooldridge, 2000). We must identify here what is relevant to take
into account from the environment, in the resulting application.
It's, first of all, necessary to determine the environment accessibility degree i.e. what can be
perceived from it. We will deduce from these characteristics which are the primitives of
perception needed by agents. Measurements make possible to measure parameters which
enable to recognize the state of the environment. They thus will condition the decisional
aspect of the agent. The environment can be qualified of determinist if it is predictable by an
agent, starting from the environment current state and from the agent actions. The physical
environment is seldom deterministic. Examining allowed actions can influence the agent
effectors definition. The environment is episodic if its next state does not depend on the
actions carried out by the agents. Some parts of a physical environment are generally
episodically. This characteristic has a direct influence on agent goals which aim to monitor
the environment. Real environment is almost always dynamic but the designer is the single
one able to appreciate the level of dynamicity of the part of the environment in which he is
interested. This dynamicity parameter has an impact on the agent architecture. Physical
environments may require reactive or hydride architectures. The environment is discrete if
the number of possible actions and states reached by the environment are finite. This
criterion is left to the designer appreciation according to the application it considers. A real
environment is almost always continuous.
It is then necessary to identify the active and passive entities which will compose the system.
These entities can be in interaction or be presented more simply as the constraints which
modulate these interactions. It is necessary to specify the role of each entity in the system. This
phase allows to identify the main entities that will be used and will become agents.
Application to our case study. The environment is not accessible. Each robot can know its
geographical position, the position of the ball and of the other robots. Dimensions of the
ground are known and the field of each team is communicated at the beginning of each part.
The positions of each robot can be memorized at different dates to estimate displacements,
directions of the robots and their trajectories. The trajectory of the ball obeys to physical
laws. Agents can estimate this trajectory and act on it. Environment is rather not
determinist. Even if agents cooperate and there is no dysfunction, an agent cannot know
actions of other agents. However elements of the environment are not fully predictible like
the trajectory of the ball. The possible actions on the environment are displacements (robots
and ball). Environment is not episodical because we suppose that no intervention of the
human is possible. The future evolutions depend only on the actions carried out by the
robots. Environment is dynamic and continuous although the feasible actions are finite.
The active entities are the robot-players. The ball is a passive entity which obeys to agent
actions (shootings) by a displacement according to the physical laws.
Individual phase. Decomposing the development process of an agent refers to the
distinction made between the agent's external and internal aspects. The external aspect deals
with the definition of the media linking the agent to the external world, i.e., what and how
the agent can perceive, what it can communicate and according to which type of
interactions, and how it can make use of them.

www.intechopen.com

 Tools in Artificial Intelligence

212

The agent's internal aspect consists in defining what is proper to the agent, i.e. what it can
do (a list of actions) and what it knows (its representation of the agents, the environment,
interaction and organization elements (Demazeau, 1995).
In most cases, the actions are carried out according to the available data about the agent's
representation of the environment. Such a representation based on expressed needs has to
be specified during specifications of actions. In order to guarantee that the data handled are
real data, it is necessary to define the required perception capabilities. We have defined four
types of actions. Primitive actions are tasks which are not physically decomposable. Composed
actions are temporal ordered lists of primitives. Situated actions need to have a world
representation to execute their tasks.
Application to our case study. The agent world representation consists in a collection of
triplets (id,x,y) and in the field dimension. In our application, robot players are modelled by
agents. Their individual capabilities can be specified using a tree to show the different
action levels (fig. 5).

Fig. 5. Actions scheme

We specify the agent context with a context diagram (see fig 6).
After one iteration to take into account the society phase, individual behaviours are
implemented using finite state machine. We can define an agent with the goalkeeper
behaviour. Other agents can alternate two different behaviours (shooter or defender). For
example, the goalkeeper behaviour defines that the agent must always be on a possible
trajectory of shooting.

Fig. 6. Context diagram

Society phase. Interactions among agents are achieved via messages passing. Such exchange
modes are formalized by means of interaction protocols. Although these interaction
protocols are common to all the agents, they are rather external to them. Conflict resolution
is efficiently handled by taking into account the relationships between the agents, that is, by
building an explicit organizational structure. Such an organization is naturally modelled
through subordination relations that express the priority of one agent on another.

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

213

Application to our case study.
Representation of others: The positions of other players can be known by the capture of
information from the video system (WIFI module). Their directions can be estimated if
agents can memorize the previous positions. Friend's intentions can be announced.
Interactions: between the agents they are carried out by exchange of messages. An agent
must be able to communicate with its team to diffuse its intention. It can use a peer-to-peer
communication to solve a conflict or to choose a trajectory with a friend.
Collaborative actions can be instantiated: a player can request the ball when it has an occasion
for shooting. It can ask somebody to change position to attract an opponent elsewhere.
Organization: A TEAM according to the requirement is composed of a goalkeeper and three
other agents which can be SHOOTER or DEFENDER.
Collective behaviour can be implemented by finite state machines.
Integration phase. We need to analyse the possible influences upon the previous levels.
Those influences are integrated within the agents by means of their communication and
perception assessment capabilities (given in each agent's model through guard and trigger
rules). The decomposition masks the notion of agent's control, i.e., how it handles its focus
of attention, its decisions, and how it links its actions. This dual aspect is based on the two
previous one. Through the integration of social influences within the agents, one will
endow the multiagent system with some dynamics. According to the social analysis we
must give to the agent the possibility to interact in order to choose its role.
Application to our case study. We illustrate this phase with two examples.
Influence: If an agent wants to move to a given point, somebody (a friend or not) can be on
its trajectory. Correction: If the agent on the trajectory is a friend, the agent owning the ball
has the priority.
Influence: Two agents request the ball for shooting. Correction: Agents use an election
protocol (they exchange an estimation of their success probabilities).

4.4 The generic design

This stage is based on component decomposition. We can define a component as an

elementary object, which performs a specific function that allows developers to define

reusable segments of code. It is designed in such a way to easily operate with other

components to create an application. So, a component is a reusable program building block,

which is an identifiable part of a larger program. Components can be combined with others

to build more complex functions. This phase offers an efficient process leading to

component decomposition by starting from the informal description of the multiagent

system built during the previous stage.

The Problem Description Phase. This phase consists in identifying and delimiting the
domain of the general problem, as well as identifying some specific aspects that should be
taken into account. Although this phase is informal, it allows designers to clearly separate
the various aspects embedded within the application. We must choose here the architecture
of the different agents.
The agents are built following hybrid architectures, i.e. a composition of some pure types of

architecture. Indeed, the agents will be of a cognitive type in case of a configuration

alteration, it will be necessary for them to communicate and to manipulate their knowledge

in order to have an efficient collaboration. On the other hand, in a normal mode use it will

be necessary for them to be reactive using a stimuli/response paradigm to be most efficient.

www.intechopen.com

 Tools in Artificial Intelligence

214

Application to our case study At this level, the designer chooses technical solutions for each

sensors/effectors. The context diagram (fig. 6) is detailed (see the table 1).

Using a hybrid architecture for the agents enables to combine the strong features of each of

reactive and cognitive capabilities seen before. We use our ASTRO hybrid architecture

(Occello et al., 1998), especially adapted to a real time context.

Information Specification

Reset Active on high logical level (1bit)

Angle Relative angle in [- 180, +180] coded whole signed on 10 bits

Speed
Two speeds are possible. Entirety coded on 2 bits. (00: stop / 01:
slow speed / 10: fast speed)

Strengh
Two levels of possible forces. Level coded on 1 bit (0: pass/1:
shooting)

Eject_ball Transition to high level

Date_heure Number of milliseconds run out since the powering (32 bits)

Send_msg
Specific protocol bit field (sender 1octet, receiver 1byte, data_lenght
1octet, data 1-25octets)

Receive_msg Specific protocol bit field (same than Send_msg)

Table 1. Details of the context diagram

Agent applicative tasks design phase. We must build the external shell of the agent i.e.

elaborating the interface with the external world for each sensors and effectors. It is time,

here, to choose technological solution for them and to complete the context diagram to

specify all information about the signal. The next step is to design the internal shell of the

agent. We begin by the elaborated actions according to the task tree.

It is necessary at this stage to arrange the components to build the application: the

architecture of the agent will be used as a pattern, at a very high level, for the components

decomposition.

The components have an external and an internal description. The internal description can

be an assembly of components, or a formatted description of a decisional algorithm.

4.5 Implementation stage

Partitioning Phase. The main use of codesign techniques appears in the software/hardware

partitioning of the components defined in the third level. Also it is essential to study the

different partitioning criteria.

A first level relates to agent parts for which the partitioning question doesn't exist. Indeed

some elements must be hardware as input/output periphericals such as for example the

sensors and the actuators.

The second level relates to features for which there are several choices of implementation.

We present below, those which can be considered to be relevant for the agents according to

previous works we have made in this field (Occello et al., 1998),(Jamont et al., 2002),(Luo et

al., 2007) and codesigns work like (Adams & Thomas, 1996):

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

215

• The cost is present at all the stages of a system design life cycle. On very small series, we

must decrease, as much as possible, the price of the software/hardware development

and the hardware material. In the case of great series, we must reduce manufacturing

costs.

• The performance depends on the considered problem. A real-time application for which

the robustness is a function of the occupation processor time is an example of system

where this criterion is very important. A hardware partitioning is often privileged.

• The flexibility plays in favour of the software. Software modifications have generally a

less significant impact on the whole system than a hardware change. However, the

flexibility of the EPLD (Electrical Programmable Logic Device) and other FPGA (Field

Programmable Gate Array) increases quickly. For example, these architectures are

reprogrammable in-situ : it is possible to modify their specifications without extracting

them from the electronic chart.

• From their nature, software systems are fewer faults tolerant than hardware components

like EPLD. Indeed, microcontrollers use memories, stack structures with possible

overflow etc. The internal fault tolerance will be thus a criterion which will play in favour

of a hardware partitioning.

• The ergonomic constraints gather all the system physical characteristics like weight,

volume, power consumption, thermal release etc. Depending on the application, this

criterion can be highly critical (case of the aeronautics embedded applications). One

more time, the designer must appreciate correctly this criterion.

• The algorithmic complexity has a great importance for some applications. The software

part will be more important if tasks are very complex. In fact, it is very difficult to make

hardware synthesis of highly cognitive features.

Co-simulation and co-validation Phases. This activity allows to simulate the collaboration

between software part, hardware part and their interface.

Implementation Phase. At this level, each component is completely specified with common

graphic specification formalism for the hardware part and the software part. For each

component, the designer has already selected if he wishes a hardware or a software

implementation.

This level must ensure the automatic generation of the code for the components for which

implementation software has been selected. The code is made in a portable language like

Java or C++.

We use a Hardware Description Language which provides a formal or symbolic description

of a component or of a hardware circuit and it interconnections. In our method the

hardware components are specified in VHDL (Breuer et al. , 1999). The compilation of the

code and the hardware synthesis of different specifications in VHDL are carried out like

illustrated on figure 7.

Application to our case study. Today, the agents are embedded on autonomous processor

cards. These cards are equipped with communication modules and with measuring

modules to carry out agent tasks relative to the instrumentation. These cards supply a real

time kernel. The KR-51(the kernel's name) allows multi-task software engineering for C515C

microcontroller. We can produce one task for one capability. We can then quite easily

implement the parallelism inherent to agents and satisfy the real-time constraints.

www.intechopen.com

 Tools in Artificial Intelligence

216

Fig. 7. Software component synthesis and hardware component synthesis

5. Discussion about the DIAMOND method

5.1 Lifecycle and phases

Most existing multiagent methods usually distinguish only analysis and design phases
(Deloach et al., 2001). Very few methods deal with other phases. We can find for example a
deployment phase in MASSIVE or Vowels. This deployment phase takes in our particular
field a great importance since it includes the hardware/software partitioning. A last and
major difference between DIAMOND and other multiagent approach is, as said previously,
that DIAMOND unifies the development of the hardware part and the software part. In a
traditional system design, the partitioning step stands at the beginning. In fact, a hardware
requirement and a software requirement are created from the system requirements.
The software part of the system is built using a multiagent method and its associated
lifecycle.
To cover the whole lifecycle, different formalisms are required to express different things at
different levels (Herlea et al., 1999), for this reason we adopt a lifecycle using four stages
mixing different expressions using more or less formal paradigms and languages (agents,
components, Finite State Machines, Hardware Definition Languages). The most current
lifecycle used in multiagent methods is the classical cascade lifecycle. Even if some works
attempt to introduce iterative cycles as Cassiopeia (W) or Gaia, the proposal of a spiral
lifecycle is very original.
In the definition of requirements phase, we introduce a study of the modes of running and
stops to structure the global running of the system. In the generic design phase, the design
allows an abstraction of the software design and the hardware design. We use components
to build the agents as few multiagent methods introducing an actual componential

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

217

dimension (Lind, 2001),(Brazier et al., 2002). These components are used to simplify the
work of the designer through visual programming, to manage the complexity through a
functional decomposition, to increase the genericity through reusability, to simplify the
partitioning because the analogy between soft components and chips enables the hardware
tools and the software tools to share a unified vision.
Table 2 comes from the work of G. Picard (Picard, 2004). It gives an insight of the different
methods and the qualitative results of the comparison between them.

M
o

d
el

 o
f

li
fe

cy
cl

e

R
eq

u
ie

re
m

en
ts

A
n

al
y

si
s

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

T
es

t

D
ep

lo
ie

m
en

t

M
ai

n
te

n
an

ce

D
él

iv
ra

b
le

s

Q
u

al
it

y
 m

an
ag

m
en

t

P
ro

je
ct

 m
an

ag
m

en
t

ADELFE
(Bernon et al., 2002)

V + ++ ++ + + + + ++ + ++

AAII
(Kinny et al., 1996)

Waterfall - ++ + -- -- -- -- + -- --

Aalaadin
(Ferber & Gutknecht, 1998)

Waterfall - ++ + ++ - + - - -- --

Cassiopée
(Drogoul & Collinot, 1998)

Iterative -- ++ + -- -- -- -- + -- --

DESIRE
(Brazier et al., 2002)

Waterfall - + ++ + ++ -- -- - -- --

Gaia
(Wooldridge et al., 2000)

Iterative - ++ ++ -- - -- -- ++ -- --

MaSE
(DeLoach et al., 2001)

Waterfall -- ++ ++ + + -- -- ++ -- --

MASSIVE
(Lind, 2004)

Incremental + ++ ++ + + ++ + + - -

MESSAGE
(Lind, 2001)

Iterative + ++ ++ + + + + ++ + +

PASSI
(Chella et al., 2006)

Incremental + ++ ++ + + ++ + ++ -- --

Prométheus
(Padgham et al., 2007)

Waterfall - ++ ++ + - -- -- + -- --

Tropos
(Castor et al., 2004)

Incremental ++ ++ + + + -- -- - -- --

Voyelles
(Ricordel & Demazeau, 2000)

Waterfall - ++ ++ + + + -- -- -- --

DIAMOND Spiral + ++ ++ ++ (+) ++ + + (?) (?)
++ : Properties are fully and explicitly supported --: Properties are not explicitly taken into charges
+ : Properties are taken care of in an indirect way - : Properties are not supported
+ : Properties are potentially Supported

Table 2. Comparison synthesis of the multiagent methods

www.intechopen.com

 Tools in Artificial Intelligence

218

The criteria used in table 2 are:

• Requirements: Is the requirements gathering taken into account?

• Analysis: Is the analysis stage taken into account?

• Design: Is the design stage taken into account?

• Implementation: Is the implementation stage taken into account?

• Test: Is the testing process taken into account?

• Deployment: Is the deployment stage taken into account?

• Maintenance: Is the maintenance stage taken into account?

• Deliverables:

• Do the deliverables are clearly identified and associated with specific steps?

• Quality Management: Is the quality management taken into account?

• Project Management: Are the guidelines of conduct project are clear?

5.2 Models and notations

Multiagent method generally use notations and models from only one origin (Bernon et al.,
2002) like UML (Mase , AAII, MESSAGE, PASSI). Other methods use many notation like
TROPOS (notation i* coming from the knowledge engineering, A-UML (Koning et al., 2001)
for interaction protocols and plan) or DESIRE (graph-based notation for knowledge
modelling and specific hierarchical notation for tasks description). To cover all the phases of
a lifecycle, we think like in (Herlea et al., 1999) that several formalisms are necessary for the
different levels of abstraction.
DIAMOND begins by using UML use cases because they proved reliable for the definition
of requirements. The interpretation of our use case diagrams is slightly different than their
common use (as in (Bernon et al., 2002)) because actors are necessarily outdoor to the system
or its entities. Moreover, an actor can not be in the interaction diagram (this would be
amazing in a traditional use of UML use cases) in the case of physical interactions. These
differences come from the usual software nature of applications.
In the analysis phase, we use context diagrams. These diagrams enable to see easily all the
possible perception and the possible action of the agents. Another advantage is that they
allow to see control flow between the physical part of an agent and its decisional part. In a
word, context diagram allow to specify the external shell of the agents.
In the generic design phase, DIAMOND uses component as operational units as seen
previously. In these components, we use finite state machines or a components set to
describe the internal running. These formalisms enable to generate software code or
hardware specifications in VHDL.
In this section, we compare our method with other multiagent methods (ADELPH, PASSI,
MASE, GAIA, DESIRE, MASSIVE, MAMOSACCO etc.) In a first subsection we talk about
lifecycle and stages. In the second subsection we focus on models and notations.
The methods multi-agents operating adopt mostly notations and models of a single origin
(see table 3).

6. Conclusion

We work currently on the tool associated with the method that we propose. It is created
using the Java language. The part which relates to the creation of agents with components,
manual partitioning and automatic generation of code are operationnal.

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

219

 Requierement Analysis Design

ADELFE
UML diagrams (use

case, sequence,
collaboration)

UML diagrams
(sequence, class), A-

UML protocols

UML diagrams (class,
paquetage, stéréotypes)

AAII
UML diagrams

(collaboration, class)
UML object diagrams

Aalaadin
AGR organization

diagram
A-UML diagrams

Cassiopée FSM/dependency

DESIRE
entity relationship

diagram, FSM
Components

Gaia Array, logic langage

MaSE
UML sequence

diagram
UML class diagrams

MAMOSACO Arrays

UML class diagram,
parametred Petri
network, SADT

actigram, OSSAD
processing model

UML class diagrams,
parametreed Petri

networks

MASSIVE
UML use case

diagrams
UML activity diagram UML class diagrams

MESSAGE
UML use case

diagrams

UML diagrams (class
and activity), A-UML

diagrams
(collaboration)

UML class diagrams

PASSI
UML diagrams (use

case, sequence), UML
like packetage diagram

UML diagrams
(sequence, class)

UML deployment
diagrams

Prométheus
UML diagrams and A-

UML diagrams
UML and A-UML

diagrams

Tropos i*
State diagram, A-UML

protocols

DIAMOND

UML diagrams (use
case, sequence), textual

specifications for the
modes study, glossary

UML diagrams
(sequence), A-UML
protocols, context

diagram (SART), entity
relationship diagram

(organisation)

FSM, components
VHDL

Table 3. Notation used by these different methods

Our future work will be to improve the MASC tool (MultiAgent System Codesign)
associated with the DIAMOND method. The agent design with components and the code
generation in Java and C languages are operational. The VDHL specification generation is
partially developed.

www.intechopen.com

 Tools in Artificial Intelligence

220

Very few works are addressing the problem of the analysis of self-organized embedded
systems. This work proposes some innovative contributions in term of hybrid
software/hardware multiagent lifecycle. It integrates in particular all the phases of the
development from the analysis to the implementation. It introduces a multi-paradigm
spiral lifecycle. It proposes components used as tools for integration, allowing software or
hardware derivation. They enable a unified approach for all kinds of hybrid
hardware/software multiagent systems.

7. References

Adams, J.; Thomas, D. (1996) The design of mixed hardware/software systems, Proceedings
of the 33st Conference on Design Automation, pp 515-520, ISBN 0-89791-779-0, USA,
June 1996, ACM Press.

Bernon, C.; Gleizes, M.-P.; Peyruqueou, S. & Picard, G. (2003), ADELPH: A methodology for
adaptive multi-agent systems engineering., In: Engineering Societies in the Agents
World III, page numbers 156-169, Springer Verlag, ISBN 3-540-14009-3, 2002,Spain.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,
21(5):61–72, 1988, IEEE Computer Society.

Brazier, F. M. T. ; Jonker, C. M. & Treur, J. (2002). Principles of component-based design of
intelligent agents. Data Knowledge Engineering, Vol. 41, No. 1, April 2002, Elsevier,
page numbers 1-27, ISSN 0169-023X.

Breuer, P. T.; Madrid, N.M.; Bowen, J. P.; France, R. B.; Larrondo-Petrie, M.M. & Kloos, C.
D. (1999) Reasoning about vhdl and vhdl-ams using denotational semantics,
Proceedings of the Design, Automation and Test in Europe, pp 346–352, ISBN 0-7695-
0078-1, Germany, March 1999, IEEE Computer Society, Munich.

Carabelea, C.; Boissier, O. & Ramparany, F. (2003) Benefits and requirements of using multi-
agent systems on smart devices, Proocedings of 9th International Euro-Par Conference,
pp 1091-1098, ISBN 3-540-40788-X, Austria, August 2003, Springer Verlag,
Klagenfurt.

Castor, A.; Pinto, R.; Silva, C. T. L. L. & Castro, J. (2004). Towards requirement traceability
in tropos, Proceedings of the Workshop em Engenharia de Requisitos, pp 189–200, ISBN
950-658-147-9, Argentina, Dec. 2004, WER, Tandil.

Chella, A.; Cossentino, M., Sabatucci, L. & Seidita, V. (2006). Agile PASSI: An agile process
for designing agents. Computer Systems: Science & Engineering, Vol. 21, No. 2, March
2006, In press, ISSN 0267-6192.

Antonio Chella, Massimo Cossentino, Luca Sabatucci, Valeria Seidita: Agile PASSI: An agile

process for designing agents. Comput. Syst. Sci. Eng. 21(2): (2006)
Cossentino, M.; Sabatucci, L. & Chella, A. (2003). A possible approach to the development of

robotic multi-agent systems, Proceedings of the IEEE/ACM/WIC Conference on
Intelligent Agent Technology, pp 539–544, ISBN ISBN 0-7695-1931-8, Canada, 2003,
Halifax.

Deguet, J.; Demazeau, Y. & Magnin, L. (2006). Elements about the emergence issue: A
survey of emergence definitions, Complexus, Vol. 3, No. 1-3, 2006, pp. 24-31, ISSN
1424-8492.

www.intechopen.com

A Multiagent Method to Design Open Embedded Complex Systems

221

DeLoach, S. A.; Wood, M. F. & Sparkman, C. H. (2001). Multiagent systems engineering.
International Journal of Software engineering and Knowledge Engineering, Vol. 11, No. 3,
June 2001, page numbers 231-258, ISSN 0218-1940

Dessalles, J.L.; Phan, D. (2005). Emergence in multi-agent systems: cognitive hierarchy,
detection, and complexity reduction, Proceedings of the 11th annual meeting of the
Society of Computational Economics, June 2005, Society of Computational Economics,
University of Washington.

Demazeau, Y. (1995). From interactions to collective behavior in agent-based systems,
Proceedings of European Conference on Cognitive Science, pp. 14-17, ISBN, France, Avril
1995, Saint-Malo

Drogoul, A & Collinot, A. (1998). Applying an agent oriented methodology to the design of
artificial organizations: A case study in robotic soccer. Journal on Agents and Multi-
Agent Systems, Vol. 1, No. 1, 1998, Kluwer Academic Press, page numbers 113-129,
ISSN 1387-2532

Ferber, J. & Gutknecht, O. (1998). A Meta-Model for the analysis and design of organizations
in multi-agent systems, Proceedings of the 1998 International Conference on Multi-
Agent Systems, pp. 128-135, ISBN 0-8186-8500-X, France, July 1998, IEEE Computer
Society, Paris.

Forrest, S. (1991). Emergent computation, The MIT Press, ISBN 978-0262560573, England.
Herlea, D. E.; Jonker, C. M.; Treur, J. & Wijngaards, N. J. E. (1999) Specification of

Bahavioural Requirements within Compositional Multi-agent System Design,
Proceedings of 9th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, pp 8–27, ISBN 3-540-66281-2, Spain, June 1999, Springer, Valencia.

Huang, H.-P.; Liang, C.-C & Lin C.-W. (2001) Construction and soccer dynamics analysis for
an integrated multi-agent soccer robot system, Natl. Sci. Counc. ROC(A), Vol. 25,
No. 2, 2001, pp. 84-93.

Jamont, J.-P; Occello, M. (2007), Designing Embedded Collective Systems: The DIAMOND
Multiagent Method, Proceedings of the 19th IEEE International Conference on Tools with
Artificial Intelligence, pp. 91-94, ISBN 0-7605-3015-X, Greece, October 2007, IEEE
Computer Society.

Jamont, J.-P; Occello, M. (2006), A Self-organized Energetic Constraints Based Approach for
Modelling Communication in Wireless Systems, In: Advances in Applied Artificial
Intelligence, page numbers 101-110, Springer Verlag, ISBN 3-540-35453-0, 2006,
France.

Jamont, J.-P.; Occello, M. & Lagreze A. (2002). A multiagent system for the instrumentation
of an underground hydrographic system, Proceedings of IEEE International
Symposium on Virtual and Intelligent Measurement Systems, pp. 20-25, ISBN 0-7803-
7344-8, USA, May 2002, IEEE Measurement and Instrumentation Society, Mt
Alyeska Resort

Kinny, D.; Georgeff, M. & Rao, A. (1996). A methodology and modelling technique for
systems of BDI agents, Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-AgentWorld, pp. 56-71, ISBN 3-
540-60852-4, The Netherlands, January 1996, Springer-Verlag

Koning, J.-L.; Huget, M.-P.; Wie, J. & Wang, X. (2001). Extended Modeling Languages for
Interaction Protocol Design, Proceedings of the Second International Workshop on

www.intechopen.com

 Tools in Artificial Intelligence

222

Agent-Oriented Software Engineering, pp. 68-83, ISBN 3-540-43282-5, Canada, May
2001, Springer, Montreal

Lind, J. (2004). Interative Software Engineering for multiagent systems: The MASSIVE Method,
Springer Verlag, ISBN 3-540-42166-1, Berlin

Luo, J.; Xu, L.; Jamont, J.-P.; Zeng, L. & Shi Z. (2007). Flood decision support system on
agent grid: method and implementation. Enterprise Information Systems, Vol. 1, No.
1, (November 2007) , Taylor and Francis, page numbers (1751-1757), ISSN 1751-
1757.

Maña, A. & Rudolf, C.(2007). Developing Ambient Intelligence, Springer, ISBN 978-2-287-
78543-6, Paris

Marcenac, P. (1996). Emergence of behaviors in natural phenomena agent-simulation.
Complexity International, Vol. 3, 1996, ISSN 1320-0682.

Muller, J.-P. (2003), Emergence of collective behaviour and problem solving, In: Engineering
Societies in the Agents World IV, page numbers 1-21, Springer, ISBN SBN 3-540-
22231-6, 2003, England.

Occello, M. ; Demazeau, Y. & Baeijs C. (1998). Designing organized agents for cooperation in
a real time context, Proceedings of the first International Workshop of Collective Robotics,
pp. 25-73, ISBN 3-540-64768-6, France, March 1998, Springer-Verlag, Paris

Padgham, L.; Thangarajah, J. & WinikoffParunak, M., (2007). AUML protocols and code
generation in the Prometheus design tool, Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp.270-271, ISBN 978-81-
904262-7-5, Hawaii, May 2007, IFAAMAS.

Parunak, H. V. D. (2000). A practitioners? review of industrial agent applications.
Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 4, (2000) page numbers
389-407, ISSN 1387-2532

Picard, G. (2004). Methodology for developping adaptive multi-agent systems and designing
software with emergent functionality (PHD thesis), Institut de Recherche en
Informatique de Toulouse, France.

Ricordel, P.-M. & Demazeau, Y. (2000). From analysis to deployment: A multi-agent
platform survey, Proceedings of 1st International Workshop on Engineering Societies in
the Agent World, pp. 93-105, ISBN 3-540-41477-0, Germany, 2000, Springer-Verlag,
Berlin

Russel, S. & Norvig P. (2002) Artificial Intelligence : a Modern Approach – 2nd edition. Prantice-
Hall, ISBN 978-0137903955.

Steels, L. (1990). Cooperation between distributed agents through self-organisation,
Proceedings of IEEE Workshop on Intelligent Robots and Systems, pp 8-14, ISBN 0-7803-
8464-4, Japan, Jul. 1990, IEEE Robotics and Automation Society.

Wooldridge, M.; Jennings, N. R. & Kinny, D. (2000). The GAIA methodology for agent
oriented analysis and design. Journal on Agents and Multi-Agent Systems, Kluwer
Academic Publishers, Vol. 3, No. 3, September 2000, page numbers 285-312, ISSN
1387-2532

Wooldridge, M.-J. (1999). Intelligent agents. In: Multiagent systems: A modern approach to
Distributed Artificial Intelligence, G. Weiss (Ed.), page numbers 27-79, MIT Press, ISBN 0-262-

73131-2, 1999, England.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jamont Jean-Paul and Occello Michel (2008). A Multiagent Method to Design Open Embedded Complex

Systems, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-953-7619-03-9, InTech, Available

from:

http://www.intechopen.com/books/tools_in_artificial_intelligence/a_multiagent_method_to_design_open_embe

dded_complex_systems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

