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Abstract

In the recent years, perovskite materials have attracted great attention due to their excel‐
lent light‐harvesting properties. The organic materials of these hybrid inorganic organic 
light harvesters are used as sensitizers and the inorganic materials have been used as light 
absorbers. The exceptional properties of these materials such as long diffusion length, 
high carrier mobility, affordable device fabrication, and adjustable adsorption range have 
created a new era in optoelectronic technologies. The perovskites have become promis‐
ing materials due of their versatility in device architecture, flexibility in material growth, 
and ability to achieve the high efficiency through various processing techniques. The 
superior performance of silicon‐based tandems by achieving efficiency more than 40% 
has encouraged researchers to further expand the investigations to higher levels. The 
quest to transit the research curiosity to the market photovoltaic technology has given a 
new dimension to the remarkable ascension of perovskite solar cells. This chapter intro‐
duces the experimental and theoretical aspects, the electrical and optical properties, pit‐
falls, and a roadmap for the future prospects of perovskite materials.

Keywords: perovskite, power conversion efficiency, energy conversion and storage, 
toxicity, hysteresis

1. Introduction

The fast‐paced industrial development and population growth has increased the consump‐
tion of global energy to such an extent that it has become the ultimate necessity to use the 
renewable energy resources for long‐term sustainable development. Now it has become a 
challenge for both scientists and technologists to generate the cost‐effective and environmen‐
tally friendly renewable energy resources [1, 2].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Although solar cells based on the photovoltaic effect have attracted great attention due to 
the advantage of decentralization and sustainability, yet they suffer low cost effectiveness. 
Another emerging class of thin‐film energy devices based on amorphous silicon also tried to 
capture the market, making headway by processing of costs per unit area [3–5]. The manu‐

facturing of inorganic thin‐films solar cells needs high‐temperature and high vacuum‐based 
techniques [6]. In addition, these techniques are limited and due to the inclusion of toxic ele‐

ments, they are limited to large‐scale production and wide applications [7].

In 1991, a new breakthrough emerged in the form of dye‐sensitized solar cells (DSSCs) that 
have attracted considerable attention due to their potential application in low‐cost solar energy 
conversion [8–16]. A high efficiency exceeding 12% was obtained by using 10 μm mesoporous 
TiO2 film sensitized with a cobalt redox electrolyte and an organic dye [17]. Furthermore, 
solid‐state DSSCs were also investigated where the liquid electrolyte was replaced by a 
solid hole‐transporting material (HTM) [e.g., poly(3‐hexylth‐iophene)(P3HT),2,2′,7,7′‐tetra‐

kis‐(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′spirobifluorene (spiro‐MeOTAD)], polyaniline, 
and polypyrrole [8] to increase the open circuit voltage and stability of solar cells [18–22]. 
However, these ss‐DSSCs also suffer from faster electron recombination dynamics between 
electrons (TiO2) and holes (hole transporter), which results in the low efficiency of ss‐DSSCs 
[23]. So attempts were made to design various types of cells to increase the efficiency of solar 
cells [24].

This efficiency criterion was increased by the introduction of the perovskite sensitizer ABX3 

(A = CH3NH3, B = Pb, Sn, and X = Cl, Br, I), introduced by Prof. Grätzel and team, which 
has opened a new era in the field of DSSCs due to the excellent light‐harvesting capabilities 
[24–37]. These materials are composed of earth abundant materials, inexpensive, processable 
at low temperatures (printing techniques), generate charges freely (after absorption) in bulk 
materials, which qualify them as low energy‐loss charge generators and collectors [38–40]. 
Methylammonium lead trihalide (CH3NH3PbX3, where X is a halogen ion such as I−, Br−, and 
Cl−) have an optical bandgap between 2.3 and 1.6 eV depending on halide content, while 
formamidinum lead trihalide (H2NCHNH2PbX3) also have a bandgap between 2.2 and 1.5 
eV. The minimum bandgap is closer to optimum for a single‐junction cell than methylam‐

monium lead trihalide, which enhance to higher efficiencies [41]. The power conversion effi‐

ciency (PCE) of perovskite cells was improved from 7.2 to 15.9%, which is associated with 
the comparable optical absorption length and charge‐carrier diffusion lengths, making this 
device the most outperforming relative to the other third‐generation thin‐film solar cell tech‐

nologies. Although two different configurations using CH3NH3PbI3 perovskite in a classical 

solid‐state DSSC and in a thin‐film planar configuration with CH3NH3PbI3−xCl
x
, having effi‐

ciency exceeding 16%, have been reported [26, 42], provided few issues related to the stability 
and hysteresis are to be solved effectively [43].

Here, it is necessary to mention that the lack of hysteresis that was an obstacle for stable 
operation in perovskite was observed recently using thin films of organometallic perovskites 
with millimeter‐scale crystalline grains with efficiencies approximately equal to 18% [44].

The three recent reports have given high hopes in the field of solar cells as EPFL scientists 
have developed a new hole‐transporting material FDT that can reduce the cost and achieve 
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the power conversion efficiency of 20.2% [45]. Another study by Hong Kong University 
claims that they have achieved the highest efficiency of 25.5% by perovskite‐silicon tandem 
solar cells [46]. In the meantime, it has been claimed that the efficiency of more than 30% can 
be achieved by tandem solar cells based on silicon and perovskites [47].

2. Structure of perovskite materials

The basic structure of perovskite consists of a 3D network corner‐sharing BX6 octahedra, 
where A (e.g., A = Cs, CH3NH3, NH2CHNH2) cations are located in the larger 12‐fold coordi‐
nated holes between the octahedra [44]. It is composed of a metal cation (M = Sn, Pb, Ge, Cu) 
and its ligantanions (X = O2−, Cl−, Br−, I−, or S2−). In the case of inorganic perovskite compounds, 
the structures can be distorted as a result of the cation displacements, which give rise to some 
useful properties of ferroelectricity and antiferroelectricity due to the stereochemically active 
pairs of A cations [48]. The simple cubic structure of CH3NH3PbI3 is given in Figure 1.

These inorganic‐organic hybrid compounds have the advantages of inorganic components 
that include structural order and thermal stability with interesting characteristics of organic 
materials such as low cost, mechanical flexibility, and functional versatility [49–53]. Numerous 
compounds have been reported by the covalent bonding between the inorganic and organic 
bonds [54]. Although the degree of interactions in organic‐inorganic systems with the van 
der Waals interacting system is relatively small, the reason for the small van der Waals inter‐

action is the choice of organic cations, which is limited as the restricted dimension of the 
cuboctahedral hole formed by the 12 nearest‐neighbor X atoms. The synthesis of compounds 
CH3NH3 MX3 with M = Sn, Pb and X= Cl, Br, and I has been successfully carried out by some 
groups [55–57]. These organic cations show orientational disorder at high temperature, while 
at lower temperature the cubic phase results in a structural phase transition as the tolerance 
factor is smaller than unity. Upon cooling, the structure distorts to lower its symmetry as 
there are many restrictions to the motion of methylammonium cations [57].

Figure 1. The crystal structure of perovskites, ABX3, a large cation (A) at center together with metal cation (B) bonded to 
the surrounded halides (X). Color code: A (CH3NH3),blue; B (Pb), green; and X (I), pink.
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MA, FA, Pb, and Sn perovskite combinations to identify three distinct phase transitions that 
occur are classified as a high temperature α phase, an intermediate β temperature phase, and 
a low temperature γ phase [54]. These different phases are represented in Figure 2.

The perovskites were first investigated by Goldschmidt in the 1920s [58] in work related to 
tolerance factors. The tolerance factor, t, with respect to the ionic radius of the actual ions is 
given in Eq. (1), where r

A
, rB, and rC are the ionic radius of the A, B, and C ions, respectively.

( )
A C

B C2
r r

t

r r

+
=

+
 (1)

The tolerance factor of (0.9–1) is for an ideal cubic structure, for a cubic structure with the 
tolerance factor (0.7–0.9), the A ion is too small or the B ion is too large. This can be resulted 
in orthorhombic, rhombohedral, or tetragonal structure. For a large A cation, t becomes larger 
than one, which results in layered perovskite structures [59, 60]. The compiled results are given 
in Table 1 and the different forms of perovskite material CH3NH3PbI3 are given in Figure 3. 
The expected structure is also related to Pauling's rules (PRs) [61], given the expected coordi‐
nation around a two‐component radii (cation/anion) system which is summarized in Table 2.

The smaller tolerance factor is related to lower symmetry tetragonal or orthorhombic struc‐

tures, whereas larger t (t > 1) could destabilize the three‐dimensional (3D) B‐X network.

Figure 2. Graphical representation of phase transitions of MA(Pb, Sn)X3 perovskite materials (a) α‐phase, (b) β‐phase, 
(c) γ‐phase. Precision images are taken at the [006] view. (d) The structural transformation of Br included in MAPbI3. 
Adapted with permission from reference [37].
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The other important parameter is an octahedral factor that plays an important role in these 
materials, and is given by,

/
B A
R Rµ =  (2)

where RB is the ionic radii of the B cation and R
A
 is the ionic radii of A anion. If μ > 0.442, 

the formation of halide perovskite achieves, whereas below this value BX6 octahedron will 

Structure Tolerance factor Comment for cation/anion

Tetragonal/rhombohedral/
orthorhombic

0.7–0.9 Cation too large or anion too small

Cubic 0.9–1.0 Ideal perovskite

Layered structures >1.0 Cation too large

Table 1. Tolerance factors for the perovskite structures

Figure 3. The crystal structure of perovskites (CH3NH3PbI3) in different forms: (a) cubic, (b) tetragonal, (c) rhombohedral, 
and (d) orthorhombic. Color code: CH3NH3, pink; Pb, green and I, blue.

Coordination r
c
/r

a
Coordination number

0.15–0.22 Triangular 3

0.22–0.41 Tetrahedral 4

0.41–0.73 Octahedral 6

0.73–1.0 Cubic 8

Table 2. Coordination and ideal r
c
r
a
 (Pauling's rules). r

c
 and r

a
 represent the cationic and anionic radii
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become unstable and a perovskite structure will not form, although these factors provide 
a guidelines for the formation of halide perovskite, yet they are not sufficient to predict the 
structural formations within the perovskite family [62].

2.1. Experimental scenario

2.1.1. Origin of perovskite

Although these materials already possessed useful physical properties, organic‐like mobil‐
ity, nonlinear optical properties, enhanced exciton binding energies, electroluminescence, 
magnetic properties, and conductivity, they have emerged as DSSCs only in 2009 [63–68]. 
The performance of DSSCs is assessed by three major parameters: short‐circuit photocurrent 
(JSC), open‐circuit voltage (VOC), and fill factor (FF), which are further used to calculate the 
efficiency (PCE). VOC is proportional to the HOMO‐LUMO energy gap and JSC reflects the 
mobility, efficient light‐harvesting, and carrier generation. These values of different device 
structures are presented in Table 3.

The first perovskite‐sensitized TiO2 solar cell gave the efficiency of 3.8 and 3.1%, respectively 
[13]. Later on the titania's surface and CH3NH3PbI3‐based iodide liquid electrolyte solar cell 
have increased the efficiency to 6.5% [25]. In 2012, the liquid electrolyte was replaced with a 
solid electrolyte and a PCE of 9.7% was achieved [69]. A sequential deposition method for the 
formation of the perovskite pigment within the porous metal oxide film was developed with 
a PCE of 15% in 2013 (short‐circuit current density JSC = 21.5 mA/cm2, open‐circuit voltage  
VOC = 1.02 V, and fill factor FF = 0.71) [27]. An efficiency of 20% at low temperature was 
achieved in a processed solar cell, through the end of 2013 [70, 71]. Further, it is reported that 
the achieved efficiency has above 30% in 2016.

2.1.2. Photoanodes

Mesoporous metal oxide films act as a working electrode for perovskite cells. The charge 
extraction rates are relatively faster for the perovskite solar cells than the conventional DSSCs 
[39]. Again the mesoporous TiO2 was replaced by Al2O3 with similar mesomorphology and 
it was seen that the PCE unexpectedly reached to 10.9% giving hopes for the future increase 
in efficiency. Furthermore, the DSSC efficiency has improved to 15.9% [27], yet there is the 
difficulty in pore filling because of the labyrinthine maze structure [72], which was alterna‐

tively substituted by a vertically aligned nanowire (NW) and nanotube (NT) structure. These 
nanotubes and nanowires can be used in pore filling due to their open porous structures. 
Moreover, they are reported to be better in electron transportation and recombination behav‐

ior and hole conductors presenting faster recombination than nanoparticulate films in liquid‐
based DSSCs [73–75].

As the absorption properties of perovskite are excellent, a possible decrease in the total sur‐

face area of the NWs/NTs compared to the nanoparticles does not stimulate the significant 
reduction of photocurrent. Later it was concluded that perovskite semiconductors in their 
simple architecture can exhibit sufficiently good ambipolar charge transport and the principal 
roles of photovoltaic operation, including charge generation, light absorption, and transport 
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of both electrons and holes. Now the challenge is to determine whether mesostructure is 
essential or the thin‐film p‐i‐n can lead to a better performance [76].

2.1.3. Perovskite thin films

While using the methylammonium lead halide (CH3NH3PbX3, X‐halogen) and its mixed‐
halide crystals, corresponding to the 3D perovskite structures as light harvesters in solar cells, 

Perovskite Photo anode HTM J
SC

 (mA/cm) V
OC

 (v) FF PCE (%) References

CH3NH3PbI3 mp (TiO2) Spiro 17.6 0.88 0.62 9.7 [69]

CH3NH3PbI3 TiO2 NS Spiro 16.1 0.63 0.57 5.5 [30]

CH3NH3PbI3 mp (TiO2) Spiro 18.8 0.71 0.66 8 [70]

CH3NH3PbI3 mp (TiO2) Spiro 18.3 0.87 0.66 10.4 [71]

CH3NH3PbI2Cl mp (Al2O3) Spiro 17.8 0.98 0.63 10.9 [26]

CH3NH3PbI3 TiO2‐NWAs Spiro 10.67 0.74 0.54 4.29 [72]

CH3NH3PbI2Br TiO2‐NWAs Spiro 10.12 0.82 0.59 4.87 [72]

CH3NH3PbI3 mp (TiO2) Spiro 20.0 0.99 0.73 15.0 [73]

CH3NH3PbI3 Rutile (TiO2) Spiro 15.6 0.95 0.63 9.4 [74]

CH3NH3PbI3 mp‐ZrO2 Spiro 17.3 1.07 0.59 10.8 [75]

CH3NH3PbI3 (TiO2)crystal Spiro 12.86 0.79 0.70 7.29 [76]

CH3NH3PbI3 mp (Al2O3) Spiro 18.0 1.02 0.67 12.3 [37]

CH3NH3PbI3 CH3NH3PbI3 Spiro 21.5 1.07 0.67 15.4 [77]

CH3NH3PbI3 mp (TiO2) P3HT 12.6 0.73 0.73 6.7 [42]

CH3NH3PbI3 mp (TiO2) PCPDTBT 10.3 0.77 0.67 5.3 [42]

CH3NH3PbI3 mp (TiO2) PCPDTBT 10.5 0.92 0.43 4.2 [42]

CH3NH3PbI3 mp (TiO2) PTAA 16.4 0.90 0.61 9.0 [42]

CH3NH3PbI3 mp (TiO2) PTAA 19.3 0.91 0.70 12.3 [32]

CH3NH3Pb(I1‐xBr
x
)3 Mesoscopic and 

planar structures
Poly(triarylamine) 19.64 1.11 74.2 16.2 [79]

CH3NH3PbI3 Mesoscopic TiO2 Spiro 1.02 21.2 77.6 16.7 [80]

FAPbI3 Mesoscopic TiO2 Spiro 1.03 20.97 74 16 [78]

CH3NH3PbI3‐xCl
x

Planar 
heterojunction

Spiro 1.13 22.75 75.01 19.3 [81]

CH3NH3PbI3 FDT 1.148 22.7 0.76 20.2 [55]

Abbreviations: mp, mesoporous; spiro, spiro OMeTAD.

Table 3. comprehensive summary of the performance of perovskite solar cells, including the perovskite materials, 
photoanodes, hole‐transport materials (HTMs), JSC (mA/cm), VOC (v), FF and PCE (%)
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it is observed that substituting the I with Cl/Br ions, bandgap tuning of MAPbX3 is achieved, 
which occurred due to the strong dependence of electronic energies on the effective exci‐
ton mass [76]. The entire visible region was controlled by tuning the bandgap. Apart from 
that, the addition of Cl/Br into an iodide‐based structure shows a drastic improvement in the 
charge transport, relative stability, and separation kinetics within the perovskite layer [77]. 
It was also observed that the bandgap is reduced (1.48–2.23 eV), leading to high short‐circuit 
currents of >23 mA/cm2 and a PCE of up to 14.2%, when the cation size of perovskite materials 
is increased [42].

There are a few solution‐based techniques that has been used for the fabrication of thin films, 
where a mixture of two precursors is used to form final absorber, but due to the lack of suit‐
able solvents and high‐reaction rate of the perovskite component, the process results in thin 
film with pinhole formation and incomplete surface coverage, which deteriorates the film 
quality and thus effect the device performance.

The two‐step deposition technique that was used previously to prepare the films of organic‐
inorganic systems has incompatible solubility characteristics where the organic component 
is difficult to evaporate. Devices based on the planar CH3NH3PbI3 thin film via the modified 
two‐step deposition technique have also achieved the efficiency of 12.1% [78].

Another technique that was developed was dual‐source vapor‐deposited organometallic 
trihalide perovskite solar cells based on a p‐i‐n thin‐film architecture with high efficiency. 
However, the deposition with the vacuum evaporation method will make it cost effective [26].

2.1.4. Hole‐transporting materials (HTMs)

The conductivity of perovskite is high, which requires a thick layer of HTM to avoid pin‐

holes. Spiro‐OMeTAD, due to being less conductive, offers high resistance because of thick 
capping layers. A wide variety of polymer hole conductors are also used, which is shown 
in Figure 4. Protic ionic liquids (PILs) are used as effective p dopants in hybrid solar cells 
[78] based on triarylamine hole‐transporting materials. Further, the efficiency is improved 
by replacing the lithium salts, p‐dopants for spiro‐OMeTAD with PILs [79]. While using 
other HTMs as P3HT and DEH HTM, the efficiency of spiro‐OMeTAD is much slower than 
P3HT and DEH HTM, respectively. However, a recent synthesis based on the pyrene‐based 
derivative Py‐C also exhibited an overall PCE of 12.7% [76]. As the hole conductors, spiro‐
OMeTAD and P3HT are costly, so an inexpensive, stable, solution‐processable inorganic 
CuI as the hole conductor has been demonstrated [80]. A solution‐processed p‐type direct 
bandgap semiconductor CsSnI3 with a perovskite structure can also be used for hole con‐

duction replacing a liquid electrolyte [34]. Overall we can say that perovskite materials 
play both the role of light harvesters and hole conductors. Recently, a hole‐conductor‐free 
mesoscopic CH3NH3PbI3 perovskite/TiO2 heterojunction solar cell has reported with a PCE 
of 5.5% [30], yet the photovoltaic performance was inferior to that of HTM. The tuning 
of bandgap of perovskite materials plays an important role in photophysical properties. 
The energy bandgaps of different hybrid materials and the hole‐transporting materials are 
given in Figures 5 and 6.
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Figure 4. Structural representation of hole‐transporting materials (HTMs).

Figure 5. Energy bandgap diagram of hybrid perovskite materials.
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2.1.5. Measurement of charge‐carrier mobility, lifetime and diffusion lengths

Regarding the exciton or the electron and hole diffusion length, it was observed that 100‐nm 
long range diffusion length was obtained in solution‐processed CH3NH3PbI3 by  applying 
 femtosecond transient optical spectroscopy to bilayers that interface this perovskite with 
either selective‐electron or selective‐hole extraction materials [38]. The higher efficiency 
of these materials is only due to the comparable optical absorption length and charge‐car‐
rier diffusion lengths. Photoluminescence quenching measurements were performed to 
extract the electron‐hole diffusion lengths in triiodide (CH3NH3PbI3) and mixed‐halide 
(CH3NH3PbI3−xCl

x
) perovskite thin films [39]. In mixed‐halide perovskite cells, the larger dif‐

fusion length is due to the much longer recombination time, requires both low recombination 
rates and high charge‐carrier mobility; however, the mechanism causing the extended diffu‐
sion length is still unclear. Few other things that remain unclear is the relative fraction of free 
and bound charge pairs at room temperature, the nature of the excited state, and the role of 
the two species [81, 82].

2.2. Theoretical scenario

There are reports that prove that Density functional theory (DFT) calculations have already 
carried out before the first perovskite solar cell was reported experimentally [4, 13]. Various 
theoretical methods were adopted using exchange‐correlation functionals such as Local 
 density approximation (LDA) [83], Generalized gradient approximation (GGA) [51], hybrid 
functional methods (HSE), quasiparticle GW methods, spin‐orbit‐coupling (SOC), and van 
der Waals interactions. LDA underestimates and GGA overestimates the lattice parameters. 

Figure 6. Energy level diagram of hole transporting materials (HTMs).
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It is observed that when dispersion interactions are included, the calculated results match 
well with the experimental results. It is found that adding dispersion corrections increases the 
binding and corrects the GGA errors.

However, the defects does not affect much as they do not create a detrimental deep level within 
the bandgap [84, 85] that could be carrier traps and recombination centers for electron‐hole  
in solar cells. Ringwood [86] has included that the contribution of charges depends on the 
differences in electronegativity. Since lead is considered as a provider of the charge and size, 
it holds the perovskite crystals all together.

2.2.1. Ambipolar activities

The ambipolar activities of these materials can be defined by taking effective mass into con‐

sideration which is defined by formula:

12
* 2

2

( )
  

( )
km
k

δ ε
δ ε

−
 

=  
 

ħ  (3)

where ε(k) is the energy dispersion relation functions, described by the band structures. If the 
band is more dispersive (flat), near the band edges, the effective mass is lighter (heavier). In 
perovskite materials, the lone‐pair Pb s electrons play a vital role. The electronic structure of 
CH3NH3PbI3 is inverted. The conduction band matrix is derived from Pb p orbitals, and the 
valence band matrix is a mixture of Pb s and I p (s‐p semiconductor) orbitals. A cation Pb p 
orbital has a much higher energy level than anion p orbitals, although the CBM is derived 
from Pb p orbitals, Therefore, the lower conduction band of CH3NH3PbI3 is more dispersive 
than the upper valence band, similarly the upper valence band of CH3NH3PbI3 is dispersive 
due to the strong s‐p coupling around the Valence band maximum (VBM). Due to the balance 
between the hole effective mass and the electron effective mass, CH3NH3PbI3 leads to higher 
ambipolar activities. It might be possible that many‐body effect plays a role for small carrier 
effective mass, as the effective mass calculated by the GW + SOC method [87] is even lower. 
The effective hole and electron masses are given in Table 4.

Materials m
e

*/m
0

m
h

*/m
0

Bandgap (eV)

Silicon 0.26 0.29 1.11

GaAs 0.07 0.34 1.43

CsSnI3 0.19 0.09 (0.15) 1.14

CsSnI3 (SOC) 0.16 0.07

CH3NH3PbI3 0.35 (0.32) 0.31 (0.36) 1.5–2.0

CH3NH3PbI3 (SOC) 0.18 (0.23) 0.21 (0.29)

Table 4. Calculated effective masses (electron and holes) and bandgap (eV) for different materials. Experimental values 
are in parenthesis
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2.2.2. Optical absorption spectra

The optical absorption spectra of perovskite materials are determined by the energy band‐
gaps and partial density of states (pdos). The pdos graph for different materials is depicted in 
Figure 7. The energy bandgap measures the probability of each photoelectric transition and 
the density of states measures the total number of possible photoelectric transitions. Thus, we 
can easily conclude that the optical absorption coefficient of a material is closely related to its 
electronic structure. However, the effect of optical absorption spectra is not considered in the 
Shockley‐Queisser limit [42]. The theoretical maximum efficiency depends on the thickness 
of the absorber layer. Recently, a method has been developed by Yu et al. [88], in which they 
calculated the maximum efficiency based on the absorber thickness by taking absorption coef‐
ficient and absorber layer thickness both into consideration. So theoretical calculations were 
carried out on this basis and it was found that halide perovskites (CH3NH3PbI3 and CsPbI3) 
exhibit much higher conversion efficiencies for any given thickness. These materials are also 
capable of achieving high efficiencies with very thin absorber layers. On the basis of experi‐
mental calculations, it is proved that CH3NH3PbI3 perovskite has the capability of achieving 
a high fill factor. Improved interfaces and contact layers also improve the performance of a 
solar cell, while Pb chalcogenides exhibit abnormal bandgap changes with lattice constant 
and strain [89].

Figure 7. (a) The periodic structural model of Σ5 (310) GB for CH3NH3PbI3. (b) Comparison of DOS of bulk 
CH3NH3PbI3calculated from unit cell. (c–f) pdos of selected atoms highlighted in the above structure. Adapted with 
permission from reference [137].
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2.2.3. Ferroelectricity

One more theoretical aspect is the dipole moment of the noncentrosymmetric organic cation 
in perovskite materials. It was shown from electric dipole calculations of the organic cation 
that hybrid perovskites exhibit spontaneous electric polarization, which might be due to the 
two reasons: the alignment of the dipole moments of organic cations and the intrinsic lat‐
tice distortion breaking the crystal centrosymmetry. On the basis of this concept, it was pro‐
posed in the studies that the presence of ferroelectric domains will result in internal junctions 
might support electron‐hole separation and transportation. However, the calculated value of 
CH3NH3PbI3 bulk polarization is 38 mC/cm2, which is comparable to the value of ferroelec‐
tric oxide perovskites such as KNbO3 (30 mC/cm2) [90]. Frost and coworkers [91] suggested 
that it may be possible that the boundaries of ferroelectric domains may form “ferroelectric 
highways” that facilitate the transportation of electrons and holes. Furthermore, it was pro‐
posed that the favorable highways are energetically chosen in such a way that the holes and 
electrons avoid any collision with the opposite charges. It is directly seen in the recent experi‐
ment by direct observation of ferroelectric domains in the β phase of CH3NH3PbI3. Another 
important factor is that VOC can be larger than the bandgap, and charge separation and carrier 
lifetime can be enhanced due to the internal electric field [92].

2.2.4. Interface and surface

The surface and interface between the absorber, carrier transport layers, and electrode contact 
layers are also important for efficient carrier transportation. However, the two‐step method, 
vacuum deposition and vapor‐assisted solution processing methods [85], have improved the 
quality much better by the one‐step method. The vacuum deposition method is used in small 
molecule‐based devices, which makes the use of insoluble materials more stable than their 
soluble analogues. There are at least three aspects worth consideration.

2.2.4.1. Band alignment

The bandgaps and band alignments of perovskites can also be tuned by the chemical manage‐
ment of compositional elements, including organic cations [93, 94], Pb [95–97], and halogen 
elements [98, 99]. This is another way to optimize band alignment at interfaces.

2.2.4.2. Interface structure and passivation

The unusual hysteresis of the I–V curve of perovskite solar cells, which would reduce the 
working cell efficiency, was suspected to be related to the interface properties [99, 100].

2.2.4.3. Surface

Abate et al. [79] reported the existence of trap states at the perovskite surface, which gener‐
ated charge accumulation and consequent recombination losses in working solar cells. They 
identified under coordinated iodine ions as responsible and used supramolecular halogen 
bond complexation for passivation.
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2.2.5. Point defects

The p‐ or n‐type absorbers were made from materials with intrinsic defects, or using inten‐
tional doping intrinsic defects that create deep energy levels in the absorber usually act as 
Shockley‐Read‐Hall nonradiative recombination centers and carrier traps, reducing the carrier 
lifetime and thus V

oc
. A good solar cell absorber must exhibit proper doping and defect prop‐

erties. There are many types of defects as a donor and acceptor which lies in the semiconduc‐
tors. The formation energy of a defect depends on the chemical potential and  environmental 
factors such as precursors, partial pressure, and temperature. So we can conclude that these 
experimental conditions play a vital role to determine the formation energies of all the pos‐
sible defects and further impact the polar conductivity in these materials. Defect formation 
energies determine the polar conductivity of a semiconductor, whereas defect transition lev‐
els determine the electrical effect of any particular defect [101].

Besides point defects, Kim et al. [102] used DFT‐GGA to calculate the DOS and partial 
charge densities of two types of neutral defects in β phase CH3NH3PbI3: (a) Schottky defects 
(equal numbers of positive and negative vacancies) and (b) Frenkel defects (equal numbers 
of vacancies and interstitials of the same ion). The tunable polar conductivity and shallow 
defect properties may help to explain why high‐performance perovskite solar cells, with 
extremely long carrier lifetimes [40, 103] can be produced by a diverse range of growth 
approaches and a wide variety of solar cell architectures. These point defects would suggest 
new methods for perovskite solar cell architecture. It was observed that deep point defect 
levels could exist through large atomic relaxations, which is attributed to the strong cova‐
lency of the system [104].

2.2.6. Structural disorder

In a recent investigation, Choi et al. [105] found that most of CH3NH3PbI3 (70%) is highly 
disordered with a local perovskite structure extending over a range of only 1.4 nm, which is 
about 2 lattice constants of the α phase [106].

The mesoporous scaffold confined need the perovskite within the pores and reshaped the 
structures of perovskites. On the other hand, the low‐temperature growth process inevita‐
bly leads to polycrystalline perovskites with grain boundaries (GBs). Experimentally, it is 
very difficult to investigate the structural and electronic properties directly, as it requires a 
high resolution transmission spectroscopy (HRTEM). So, we have to rely on the theoretical 
calculations that can give direct insights into the electrical properties of structural disorders 
and topological defects in hybrid perovskites. Recent combined theoretical and experimental 
studies [106] have demonstrated that Cl segregated into the GB part of polycrystalline CdTe 
solar cells effectively taming the detrimental effects at GBs.

Due to the structural complicity of CH3NH3PbI3, the GB structures were constructed based on 
CsPbI3. It was observed that the DOS of the supercells with GBs are very similar to those of 
single‐crystal phases. None of these GBs introduce defect states within the bandgap region. 
The GW band structure diagram is given in Figure 8.
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3. Properties

3.1. Electrical properties

Hybrid perovskites exhibit unprecedented carrier transport properties that enable their stel‐
lar performance in photovoltaics. So more attention is needed to develop understanding the 
material properties and ways to improve these properties in all key directions for research. 
The electrical properties of perovskite materials are seen in the ambipolar carrier transport 
behavior and long carrier lifetime. These electrical properties are further investigated on the 
basis of corresponding device structure.

3.1.1. Intrinsic electrical properties

The electrical characteristics of the materials are determined by the carrier type, concentra‐
tion, and mobility, which is dependent on the method of preparation. It is necessary to use 
smooth and uniform films to perform measurements. The carrier type is determined by Hall 
measurements of the conductivity's response to an applied magnetic field, thin‐film tran‐
sistor's response to a gating electric field, and thermoelectric measurements of the Seebeck 
coefficient. For example, CH3NH3PbI3 indicated n‐type conductivity, a carrier concentration 
of ~109 cm−3, and an electron mobility of 66 cm2/V/s [24]. Carrier concentration can also be 
adjusted by tuning the stoichiometry of the precursors during solution‐phase synthesis and 
even switch the carrier type to the p‐type when excess CH3NH3I is used in two‐step synthesis. 

Figure 8. DOS graph of MASnI3 and MAPbI3materials. Adapted with permission from reference [116].
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The electron concentration was measured to be ~1017–1018 cm−3, and it was proposed that the 
iodide vacancies are responsible for the n‐type conductivity [107]. The electron mobility for 
n‐type films deposited from stoichiometric precursors was determined to be 3.9 cm2/V/s from 
the Hall measurements, although CH3NH3SnI3 prepared by a solid‐state reaction in a vac‐

uum‐sealed tube showed an electron mobility of 2320 cm2/V/s [24], while solution processed 
material measured mobility of 200 cm2/V/s. It was observed that the electron mobility of poly‐

crystalline CH3NH3PbI3 films is larger than the thin‐film mobility of polymers [107, 108] and 
colloidal quantum dots (10−3–1 cm2/V/s) [109] comparable to CdTe (10 cm2/V/s) [110] CIGS, 
Cu2ZnSnS4 (CZTS) (10–102

 cm
2/V/s) [111, 112], and polycrystalline Si (40 cm2/V/s) [101]. Film 

morphology plays an important role as the dark and light conductivities of CH3NH3PbI3−xCl
x
 

deposited on a planar scaffold on mesostructured aluminum oxide are quite different [113]. 
To further increase the photovoltaic performance and radiative lifetime, solvent annealing 
has been applied to increase the grain size of the films to ~1 μm [114].

3.1.2. Extrinsic electrical properties:

The techniques used to measure the electrical parameters are given in subsections.

3.1.2.1. Impedance spectroscopy (IS) [115, 116]

This technique is used to identify the frequency dependence of capacitance, to measure 
charge diffusion lengths and lifetimes and to investigate carrier trapping and recombina‐

tion. The carrier diffusion length was derived and has been estimated to be about ~1 μm for 
CH3NH3PbI3−xCl

x
 [83].

3.1.2.2. Electron beam‐induced current (EBIC) [117]

Another method to obtain the electrical parameters is EBIC from which the calculated carrier 
diffusion length forCH3NH3PbI3−xCl

x
 is 1.5–1.9 μm [40]. The carrier diffusion length is compa‐

rable or longer than that of other polycrystalline semiconductors with direct bandgaps used 
in solar cells [76, 77, 118–120]

3.2. Optical properties

It is very important to understand the optical response of the materials, as optical properties 
are the most important feature of perovskite materials and they provide insights into the 
electronic and chemical structures. The ability to tune the optoelectronic properties with ease 
presents a major attraction among researchers. Few important parameters that are used to 
define these properties are discussed herein:

3.2.1. Optical constants

A lot of research has been conducted on tuning the bandgap of perovskite, but a more detail 
understanding of these materials awaits further research. The major problem that occurs in 
perovskite materials is the difficulty of producing continuous films of sufficient smoothness 
[121] to avoid measurement artifacts from spectroscopic measurements of transmittance, 
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reflectance, and ellipsometry. The absorption coefficients determined from the absorption of 
CH3NH3PbI3 films on quartz [122] and glass [123] yield values of ~104 cm−1 near the band edge 
without providing any corrections for the surface's inhomogeneity, so for accurate measure‐

ments is important to calculate the absorption coefficients based on the optical constants of 
CH3NH3PbI3 [124]. It is observed that the absorption spectrum for CH3NH3PbI3 differs, when 
deposited within a mesoscopic template and planar substrates, which might be due to the 
changes in the crystallite morphology that affects the optical transitions [125, 126].

3.2.2. Excitons

Exitons play an important role in perovskites. The studies indicate, however, that there is 
not significant population of excitons in photovoltaics made from CH3NH3PbI3, whose exci‐
ton‐binding energy has been reported between 20 and 50 meV, comparable to the thermal 
energy at room temperature [127, 128]. These values have been obtained by fitting temper‐

ature‐dependent absorption spectra using the measured [88] reduced mass of the exciton. 
Excitonic radius from the binding energy and an appropriate dielectric constant study is still 
a subject of debate [129]. The excitonic transition significantly enhances the absorption of 
hybrid perovskites near the band edge [130, 131].

3.2.3. Photoluminescence

The photoluminescence (PL) efficiency depends on the pump fluence. The trapping of pho‐

togenerated charges competes effectively with direct radiative recombination of electrons 
while holes reduce luminescence at low excitation energies. The PL efficiency ofCH3NH3PbI3is 

~17–30%. The PL efficiency falls at higher pumping and high charge carrier densities. The PL 
lifetime measurements reported shorter lifetime (between 3 and 18 ns) at low pump fluen‐

cies [127, 132–134]. These longer lifetimes have been found in a semiconductor in doped and 
undoped GaAs films. This might be due to the photon recycling and the PL lifetime depen‐

dency on surface recombination than radiative recombination. So we can conclude that photon 
cycling plays a major role in their excited state dynamics, when nonradiative decay pathways 
are suppressed. The absorption spectra and photoluminescence for perovskite materials are 
shown in Figure 9.

3.2.4. Vibrational spectroscopy

IR spectroscopy also plays an important role in determining the chemical composition. If 
we look into the chemical structure of CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbCl3, the 

first one is tetragonal, while the other two are cubic. Raman‐active modes are precluded in 
the symmetry of the lattice for cubic structures [135], though a weak broadband at 66 cm−1 

is observed in CH3NH3PbCl3. For CH3NH3PbI3, the resonant Raman spectrum (DFT calcu‐

lations) has been observed with nodes below 100 cm−1 (approximately) related to the inor‐

ganic octahedron. The higher energy modes indicate the disorder of CH3NH3
+ cations. A lot 

of work in this field is still required to investigate how the modes shift occurs with the struc‐

tural changes. Raman nodes can provide better tool in understanding the in homogeneity of 
perovskite films with submicron spatial resolution.

Perovskite as Light Harvester: Prospects, Efficiency, Pitfalls and Roadmap
http://dx.doi.org/10.5772/65052

261



Figure 9. (a) Absorption spectra, (b) photoluminescence spectra of FAPbI
x
Br3−x (varying I:Br ratio), (c) XRD spectra of the 

phase transition Br‐rich cubic phase to the I‐rich tetragonal phase. Adapted with permission from reference [37].

4. Pitfalls

4.1. Hysteresis

Perovskite solar cells exhibit an anomalous hysteresis in the current‐voltage and resistiv‐
ity‐temperature dependence curves [136]. Though it was predicted that the hysteresis on 
resistivity verses temperature curves is associated with the structural phase transition while 
the reason for current‐voltage curves are still unknown. In an extensive [E‐CE6] studies car‐
ried out by Prof. Erik Christian Garnett et al. [136], several explanations have been proposed 
as ion migration, filling of interface, or surface trap states, accumulation of charges at grain 
boundaries and ferroelectricity, yet no convinced conclusion has been drawn. In structural 
perception, the cubic phases of the chloride and bromide perovskites do not allow a polar 
ferroelectric distortion. Various hypotheses have been suggested and it was further predicted 
that hysteresis should depend on the magnitude of the dipole moment of the organic cationic 
species and the connecting halide cage. Though the origin of this phenomenon is not yet 
understood properly, a number of possible causes have been proposed in which the noted 
causes are ferroelectricity or the presence of mobile ionic species [136]. The illustration for the 
hysteresis in the electrical transport in hybrid perovskites is given in Figure 10.

Here, it is necessary to mention that reporting results from single J–V sweeps, even in the 
absence of hysteresis, or choosing scan rates to report the highest efficiencies, will lead to 
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 misleading results. As it might be possible that the certified efficiencies for perovskite solar 
cells are deemed “not stabilized” though they were measured with negligible hysteresis.

4.2. Thermal and operational stability

There are so many reports that claim that perovskite solar cells have been shown to be stable 
for many hundreds of hours without any encapsulation. However, the solar cells were stored 
in the dark and only measured occasionally. So we can conclude that the sealing from envi‐
ronmental ageing is necessary because of operation at elevated temperature and humidity. 
Stability has become a bigger problem for tin (II) perovskites due to the decrease in stability 
of the oxidation state of tin (II) compare to lead (II).

4.3. Toxicity

Due to the toxic nature of lead, concerns have been raised on the possible environment and legal‐
ization problems from perovskite solar cells based on water soluble lead compounds. So efforts 
have been made to replace lead with other metal ions without degrading the photophysical proper‐
ties with quantum mechanical calculations. As lead halogen perovskites are water soluble, the most 
pessimistic view is the consequences of damaged solar cells and  panels with potential exposure to 
water followed by dissolution and distribution of lead ions into buildings, soil, air, and water.

Figure 10. Hysteresis representation in hybrid perovskites. (a) I‐V graph of CH3NH3PbI3 (single crystal) at room temperature, 
(b) schematic I‐V curve, (c) proposed phenomena for its origin. Adapted with permission from reference [104].
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Lead is known to damage the nervous system and cause brain disorders. In this direction, a 
theoretical study carried out by De Angelis and group [137] has replaced Pb by Sn (Figure 11) 
with effective development of the GW method with spin‐orbit coupling to accurately model 
the properties of CH3NH3SnI3 and then compared it to the CH3NH3PbI3. They predicted that 
MASnI3 is a better electron transporter than MAPbI3 by the SR‐DFT method. Another study 
carried out by Jesper Jacobsson and group [138] has provided deep physical insights into the 
photophysical nature of a metal‐halogen perovskite by removing lead with strontium, which 
is relatively nontoxic and inexpensive. CCSD calculations and DFT study were performed on 
the two basic structures of CH3NH3SrI3 and CH3NH3PbI3 to extract and compare the electronic 
structures and the optical properties. This is based on the fact that the ionic radii of Sr2+ and 
Pb2+ are almost identical, so the exchange could be made as it will not affect the crystal struc‐
ture. CH3NH3SrI3 gives a bandgap of 1.6 eV, which is fairly close to the experimental value 
reported to be around 1.55 eV [5, 42]. The second effect that was caused by shifting Sr for Pb 
is that the shape of the pdos graphs for both the halogen and the organic ion is shifted and 
slightly distorted. The lower electronegativity of Sr compared to Pb shifts the electronic cloud 
closer to the iodine atoms in the lattice, which perturb the local dipole moment as well as the 
bonding angles between the iodine octahedra and consequently their columbic interaction 
with the methylammonium dipoles. The charge distribution is similar to the two structures, 
with higher charge density around lead compared to strontium due to the higher atomic 
number of lead.

5. Roadmap

The Perovskite solar cell (PSC) field has now become an emerging field and reports on fur‐
ther improvement in performance are expected in the near future, achieving PCE of more 
than 30% efficiency has now become a realistic goal. Furthermore, PSC can be used as top 
cells in two‐level tandem configurations using crystalline silicon or copper indium gallium 

Figure 11. Pictorial representation of replacement of lead by strontium in perovskite solar cells [138].
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selenide‐based photovoltaic devices as bottom cells. It is expected that by using silicon‐
based tandems, PCEs of 28–30% can be achieved. Yet there are issues related to the stability 
and toxicity, hysteresis in perovskite solar cells, which has to be solved. Experimental and 
theoretical investigations have demonstrated that that halide perovskites exhibit a series of 
superior electronic and optical properties for solar cell applications, such as proper band‐
gap and band alignment, high optical absorption, bipolar carrier conductivity, tunable 
doping ability, and benign defect properties. A lot of studies are required to optimize the 
material properties and to find new perovskite candidates for high‐efficiency, stable solar 
cells. Band structure engineering of CH3NH3PbI3 needs to be extensively investigated by 
replacing organic cations, Pb or I, with other choices. Furthermore, the mechanisms of per‐
formance degradations have to be resolved in a more prominent manner. Water‐corroded 
perovskites as rapid degradation occur in moist environments. So the reaction mechanism 
between H2O and the perovskite surface could be carefully studied, leading to the develop‐
ment of new methods for stabilizing perovskites. Although some groups have fabricated 
the long‐term stable perovskites in the laboratory through chemical composition engineer‐
ing [32, 88], the fundamental reason for alloy stabilization of the structures requires more 
study. However, it is predicted that the study should converge to the p‐i‐n planar hetero‐
junction perovskite solar cell to understand the device structure and properties from single 
crystal.

6. Conclusions

The intense appeal of hybrid organic‐inorganic perovskite materials such as solar cells is 
exceptionally promising. Their enhance optoelectronic properties, deposition techniques, and 
device structure have led to the higher power conversion efficiencies. Due to the high absorp‐
tion coefficients and panchromatic absorptions of perovskite, they have become ideal materi‐
als for thin film solar cells. However, some complexities as the poor stability in humid air and 
the toxicity of lead used are a matter of concern. In some perovskite materials, the hysteresis 
is also pronounced due to the strong dependence of photocurrent to the voltage scan condi‐
tions. Still the exceptional performance of hybrid perovskite materials has created revolution 
in the field of renewable energy with cheap solar cells. Highly efficient solar cells with record 
performance are still an important milestone to be achieved. The highly innovative and new 
elegant designs, deep insights into the photophysics and mechanisms of cell operation should 
now be the main focus of future research.

Finally, we can conclude that the recent advances with perovskite materials will motivate the 
researchers to expand their horizons to other inorganic or organic pigments, for which the power 
of mesoscopic solar‐cell architectures will emerge to offers more promising opportunities.
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