
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

11

Symbiotic Evolution of Rule Based Classifiers

Ramin Halavati1 and Saeed Bagheri Shouraki2
1Iranian Academic Centre for Education, Culture, & Research

2Sharif University of Technology
Iran

1. Introduction

Genetic Algorithm is a widely used approach in predictive data mining where data mining
output can be represented by If-Then rules and discovering the best rules is done by a
genetic algorithm. The main motivation for using genetic algorithms in discovery of high-
level prediction rules is that they perform a global search in the problem space and cope
better with attribute interaction in compare with greedy rule induction algorithms often
used in data mining (Freitas, 2001) and therefore, one can see the following papers for a
wide variety of representation techniques and evolution approaches in this field: (Teng et al,
2004), (Hasanzadeh et al, 2004), (Chen & Linkens, 2004), & (Cordon et al, 1998) for evolution
of weighted fuzzy rule base with simple linear genetic representation; (Golez & Dasgupta,
2002) for rule base evolution with binary tree representation; (Mendes et al, 2001) for a co-
evolutionary approach which evolves fuzzy rules in one process and fuzzy membership
functions in another process; (Ishibuchi & Yamamoto, 2004), (de la Iglesia et al, 2003), &
(Lopes et al, 1999) use multi objective optimization approaches for rule base evolution;
(Ishibuchi & Yamamoto, 2002) & (Tsang et al, 2005) for two stage evolution in which one
stage generates candidate rules and the other stage selects a combination of them as a final
rule base; (Riquelme et al, 2003) for hierarchical representation; and some other variations in
(Zhu & Guan, 2004), (Goplan et al, 2006), (Gundo et al, 2004), & (Eggermont et al, 2003).
There are two basic strategies for rule base evolution task and many hybrid methods that
combine the good features of these two methods. These basic approaches are Michigan
approach exemplified by Holland's classifier system (Holland, 1986), and the Pittsburgh
approach exemplified by Smith's LS-1 system (Smith, 1983). In this chapter, we will first
study these two schools with more details in section 2 and show why there is a need for a
third school, then introduce natural process of symbiogenesis in section 3 and symbiotic
evolution as a novel solution for this approach in section 4. Then section 5 will present the
experimental and comparison results, followed by the summary and concluding remarks in
section 6.

2. Michigan and Pittsburgh schools for rule-based classifier evolution

There are two basic strategies for rule base evolution task and many hybrid methods that
combine the good features of these two methods. These basic approaches are Michigan
approach, introduced by John Holland (Holland, 1986), and the Pittsburgh approach,
popularized by Ken De Jong and Steve Smith (Smith, 1983).

www.intechopen.com

 Tools in Artificial Intelligence

188

In Pittsburgh approach, a number of if-then rules are coded as a string and handled as an
individual. The performance of each rule-set (i.e., each individual) is used as its fitness
value. Thus the genetic search for finding rule-sets with high fitness values is equivalent to
the search for rule-based systems with high performance. Hence, the optimization of rule-
based systems is directly handled by genetic algorithms that try to maximize the fitness
function. Some good rule-sets in a current population are inherited to the next population
with no modification as elite individuals. The performance of each rule is not explicitly
evaluated in Pittsburgh approach. Thus even if good rules exist in the current population,
they are not always used for generating new rule-sets. Especially when good rules are
included in poor rule-sets, they easily disappear during the generation update. Since a
population consists of a number of rule-sets, long computation time and large memory
storage are required in Pittsburgh approach (Ishibuchi et al, 1999). Interested reader can see
(De Jong et al, 1993), (Janikow, 1993), (Sen et al, 1997), & (Smith 1983) as good examples of
this approach.
On the other hand, in Michigan approach where a single if-then rule is coded as a string and
handled as an individual, the performance of each rule is used as its fitness value. That is,
the performance of rule-sets (the entire population of current rules) is not utilized in the
genetic search for finding rule-based systems with high performance. Thus the optimization
of rule-based systems is indirectly performed by searching for good if-then rules.
Performance of the current rule-set is not explicitly evaluated in the genetic search of the
Michigan approach. Thus a good rule-set can be destroyed by the generation update (i.e. the
performance of the current population can be decreased). Since a population includes only a
single rule-set, computation time and memory storage in Michigan approach are much
smaller than those in Pittsburgh approach where a population consists of a number of rule-
sets. In Michigan approach, good if-then rules in the current population (i.e., in the current
rule-set) are inherited with no modification to the next population. The generation update in
Michigan approach can be viewed as a partial change of the current population where bad
rules are replaced with newly generated rules. Thus once good if-then rules are found, they
are not likely to disappear. (Ishibuchi et al, 1999). To see some good examples, one can check
(Holland, 1986) and (Wilson, 1987).
There are three main viewpoints from which Pittsburgh and Michigan approaches can be
compared: First, Pittsburgh approach seems to be better suited at batch-mode learning
(when all training instances are available before learning is initiate) and for static domains,
and Michigan approach is more flexible to handle incremental-mode learning (training
instances arrive over time) and dynamically changing domains (Corcoran & Sen, 1994).
Second, considering that many classifier systems need to cover a complex state space in a
small group of cooperative rules, one will see that this is in contrast to the nature of
Michigan approach in which the rules are intrinsically competitive and the Pittsburgh
approach is more suited to the provision of cooperation. This is because the lack of
competition between individual classifiers in the Pittsburgh method allows the algorithm to
find novel cooperative solutions that the population-level GA can maintain and proliferate.
Therefore, Pittsburgh approach is usually the method of choice to apply to problems that
require the development of cooperative populations (Barry et al, 2004).
The third item is very similar to the second: As evolving rules of a Michigan process are
rivals and the general fitness value of the population has no effect in evolution, two
problems occur: First, we usually need strategies for detection and prevention of redundant

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

189

concept descriptions among population members (Liu & Kwok, 2000); Second, as a side
effect of the first problem, a portion of training examples may be left unclassified and
although the evolution would be at a stable position, there would be no rule for
classification of this portion.
The fact that Pittsburgh is more powerful or easier to use for evolution of rule-sets in
environments with complex concepts, where there is an urge for evolution of cooperative
rules, makes it more attractive for most practical problems. However, the Pittsburgh
approach presents its own limitation as well: In particular, because the evolution operates at
a rule-set level, GA receives only high-level feedback from the fitness function and therefore
cannot evaluate the role of individual rules in the success of a rule-set; hence, it requires a
large additional effort to generate optimal populations. This increased effort in addition to
the increased computational resource required to operate at the population level can present
new challenges when devising efficient implementations for a Pittsburgh classifier evolution
(Barry et al, 2004). This problem is a very important and known general problem of
traditional genetic algorithms, called the linkage problem (Watson & Pollack, 2000).
Linkage problem has two parts: The first problem is called the problem of garbage or hitch-
hiker genes (Forrest & Mitchel, 1993). In traditional GA, each chromosome may have a
combination of good and bad genes which affect the total fitness value of the chromosome
together. The effect of this problem in rule base evolution task is that a rule-set may have
some rules with very good classification accuracy and some rules that have no positive
effect or even have negative effects on the classification task. As evaluation is only done at
rule-set level, selection or removal of all rules inside a rule-set is done together and there is
no distinction between rules that have positive or negative effect on the classification. These
bad rules (genes) inside a chromosome are called garbage genes or hitch-hiker genes
because they gain their chance of survival by sticking to good genes as parastis.
The second part of Linkage problem is related to the recombination operator of genetic
algorithms. During the process of this operator, some parts of the two parent chromosomes
are extracted and merged with each other to create an offspring. Selection of appropriate
parts from either of the parents has a great effect on the performance of the entire process,
but there are many problem in which there is no way to identify the good sub-
chromosomes. Here in rule-set evolution, one of the interesting features of the Pittsburgh
approach is the evolution of cooperative rules inside a rule-set, but using a crossover
operator separates the rules of one rule-set from each other and then blindly combines them
with some from another rule-set, with no guarantee that these parts match each other or be
able to help each other in a common classification task.
Many different recombination operators or alternative evolution strategies are introduced to

cope with linkage problem in GA, such as designing more sophisticated recombination

operators for simple genetic algorithms such as the ones with more number of cut points,

random cut point positioning, uniform crossover, linear combination of genes, etc., see

(Mitchell, 1999) for an extensive list; use of chromosome reordering operators and

repositioning of genes inside the chromosome on the fly such as Inversion operator (Bagley,

1967) and Linkage Learning Genetic Algorithm (Harrik, 1997); and algorithms based on

partially specified chromosomes such as Messy Genetic Algorithms (mGA) (Deb, 1991),

(Goldberg et al, 1989), Cooperative Co-Evolutionary Algorithms (CCEA) (Potter & De Jong,

1994), Symbiotic Evolutionary Adaptation Model (SEAM) (Watson & Pollack, 2000), and

Incremental Commitment Genetic Algorithm (ICGA) (Watson & Pollack, 1999).

www.intechopen.com

 Tools in Artificial Intelligence

190

As far as the authors know, except CCEA approach which is partially used in some tasks
and some special purpose recombination operators, none of the other above approaches
have been used in rule base evolution and the major efforts in rule-based classifier evolution
to cope with linkage problem have been in hybridizations of Michigan and Pittsburgh
approaches to add the positive features of both methods together, such as (Ishibuchi et al,
1999) & (Tan et al, 2003). Not commenting on the applicability or generality of these hybrid
approaches, we present a novel pure approach based on Symbiotic evolution instead of
Genetic evolution to solve this problem in the rest of this chapter. It must be emphasized
that we introduce this algorithm as a basic approach comparable to pure Pittsburgh and
therefore, it is not compared with hybrid approaches or extensions of other algorithms as all
such hybridizations or extensions can be studied for this algorithm as well. Section 3 will
represent the natural bases of this approach and section 4 will have all the details.

3. The natural process of symbiogenesis

The natural process of symbiogenesis (Merezhkovsky, 1909) is the creation of new species
from the genetic integration of organisms, called symbionts. Symbiogenesis has enabled
some of the major transitions in evolution (Maynard Smith & Szathmary, 1995), including
the origin of eukaryotes which include all plants and animals. This kind of genetic
integration is quite different from the transfer of genetic information in sexual reproduction.
Sexual recombination occurs between similar organisms (i.e. of the same species) and
involves the exchange of parts of the genome in a mutually exclusive manner; that is, every
gene acquired from one parent is a gene that cannot be acquired from the other parent. In
contrast, symbiotic combination may also occur between genetically unrelated organisms
(i.e. different species) and involve the integration of whole genomes. The resultant
composite may have all the genes from one symbiont and at the same time acquire any
number of genes from the other symbiont (Watson & Pollack, 2000).
Based on this idea, symbiotic combination operator is introduced (Watson & Pollack, 1999)

& (Watson & Pollack, 2000) as an alternative for sexual recombination operator. Symbiotic

combination operator is applied to partially specified chromosomes, i.e., chromosomes

which have some positions with unspecified values. This operator takes two partially

specified chromosomes and makes an offspring with the aggregation of their characteristics

of both of them; see Fig. 1 as an example. Therefore, in contrast to the standard crossover

operator that receives two fully specified chromosomes and creates one/two individuals

that have received each of their genes from either parents, this operator runs over two/more

partially specified representations and creates an offspring with can have even all genes of

both/all parents.

Fig 1. An example of symbiotic combination. Chromosomes A and B, each, have some
unspecified locations, shown with ‘-‘ mark. Their combination has specified values for all
locations that are specified in at least one of the donors. If there would be a conflict between
the specified values, like the last gene of the above chromosomes, all conflicts are resolved
in favor of one donor, here A.

 Chromosome A: 1--1---0

 Chromosome B: --00-111

 A + B: 1-01-110

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

191

This can be very beneficent for evolution of rule based classifiers in Pittsburg approach
because each individual (chromosome) is a complete classifier. Therefore, its rules are a
collection and they have proved to work good together. Separating them for a
recombination and combining some parts of them with parts of another classifier may
disrupt the functionality of both classifiers. On the other hand, adding them, assuming that
each of them is a relatively good classifier, just adds up their classification powers.

4. Symbiotic evolutionary algorithm

The basic idea of Symbiotic Evolutionary Algorithm (SEA) is to replace the crossover
operator of Pittsburgh genetic algorithm (PGA) with symbiotic combination operator. To do
so, the evolution starts with rule-sets (individuals) which have just one rule (gene). During
the process, similar to traditional PGA, evaluation and selection is done at rule-set level.
Mutation operator is also quite similar to conventional PGA, but instead of crossover
operator, sometimes two rule-sets combine using symbiotic combination and create an
individual with more rules. If this combination shows a higher accuracy in compare to its
parents, the parents are removed from the population and the offspring remains, otherwise,
the offspring is neglected.
In this section, we first present our rule-set model which is used both in SEA and the PGA
that is used in next section for comparisons. Then will move on the details of the Symbiotic
Evolutionary Algorithm.

4.1 Rule-set model and fitness values

To emphasize on the algorithm, we have a chosen a very simplistic representation for our
fuzzy rules, taken from (Hasanzadeh et al, 2004), but we still insist that SEA is not
dependent to this model or the fuzzy nature of the rules. In this model, each rule is a horn
clause, with If-part consisting of fuzzy membership functions for different features of the
problem data base, and Then-part stating the class to which this rule belongs. A rule-set is
composed of one or more rules, with each rule having a weight value stating its role in final
decision. To classify an input by a rule-set, each of the rules computes the degree of
similarity between the input and its own If-part and based on that, it states a degree of belief
to its Then-part. Then, a weighted sum of the degree of beliefs for each class is computed
and the class which gets the highest value is chosen. Fig. 2 specifies the structure of the rule-
set.

Fig .2. Formal structure of the rule set (chromosome)

The fitness of each rule-set is defined as the accuracy of the rule-set in classification of all
training data. Accuracy is a measure combining the classification soundness with 99.9

 <RULE-SET> å a set of <RULE>s
<RULE> å <WEIGHT> + a set of <CONDITION>s + <RESULT>
<WEIGHT> å a real value
<RESULT> å a Class Name
<CONDITION> å a <FEATURE> [IS / ISNOT] a <MEMBERSHIP FUCNTION>
<FEATURE> å one of the features of dataset.
<MEMBERSHIP FUCNTION> å one of the possible fuzzy values for the

respective feature.

www.intechopen.com

 Tools in Artificial Intelligence

192

percent effect and the simplicity of the rules with 0.1 percent effect. The simplicity measure
is used to break the tie between two rule-sets with different complexities and similar
classification rate, in favor of the simpler rule-set. Simplicity of a rule-set is computed as
stated in equation 1.

rulesallinconditionsofnumberTotal

conditiononejustwithrulesofNumber1
Simplicity

+
=

(1)

4.2 The algorithm
The Symbiotic Evolutionary Algorithm starts by generating a population of random rule-
sets, each having just one rule. In each iteration of the algorithm, a set of rule-sets with high
fitness values are selected using a tournament selection algorithm; they will be called the
Selected Set hence forth. After selection, each of these individuals undergoes a mutation and
all mutants are added to the population. The mutation operator is presented in Figure 3.

Fig. 3. Pseudo Code of the Mutation Operator

After mutation, instead of the conventional cross over operator, symbiotic combination
operator is applied over the selected set. The operator takes two members of the selected
rule-sets and merges them, so that the combination includes all rules of both sets. If the child
strictly outperforms both of its parents, the combination will be added to the population;
otherwise, it will be discarded. To control the growth speed of the number of rules in each
rule-set, there is another control mechanism that limits the size of the largest rule-set that
can be added to the population at a time. This parameter, which will be called SizeLimit, is 1
at the beginning and limits the size of rule-sets to just one rule. During the process, SizeLimit
is increased with a selected strategy, and allows emergence of rule-sets with more number
of rules. In all of our implementations, we have set the control strategy to a simple linear
function of iterations count, but one may use a more complicated function, if it looks fit.

 Function Name: MUTATATION

 Summary: Takes a rule set and mutates it.

 Input: Rule Set R.
 Assume R ={R1,R2,...,Rn} and each Ri as

[Weight+ (F1,C1,MF1) ∧(F2,C2,MF3)∧...∧(Fm,Cm,MFm), Class] where each

Fj is feature, Oj is a condition(Is/Is Not), and MFj is a
membership function from the domain of Fj.

 Function Detail:

1. Randomly choose Ri from R1 to Rn. Set m to the number of rules in

Ri.
2. Randomly select one of the next steps and apply it on Ri:

a. Increase or decrease Weight.
b. Choose j from 1..m, remove (Fj,Cj,MFj) from Ri.
c. Randomly generate a new (F,C,MF) and concatanate it to Ri.
d. Choose j from 1..m, reverse Cj so that Is becomes IsNot,

and IsNot becomes Is.
e. Choose j from 1..m, change MFj to a random new membership

function from the domain of Fj.

3. Return.

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

193

Fig. 4 presents the pseudo code of Symbiotic Evolutionary Algorithm.

Fig. 4. Pseudo Code of Symbiotic Evolutionary Algorithm

5. Experimental results

5.1 Test conditions

There are too many classification approaches and also many extensions to basic genetic
based classifiers. But as we are introducing SEA as a basic new approach, we have just

 Algorith Name: Symbiotic Evolutionary Algorithm

 Summery: Takes a database of training examples and generates a

rule-set to classify them, using symbiotic combination

operator and Mutation function.

 Parameters: SR: Selection Rate
TS: Tournament Size

RC: Random Rule Creation Rate

MP: Maximum Population

 Algorithm Detail:

1. INITIALIZATION:

a. Generate a population of random rule-sets, each having

just one rule.

2. PROCESS CONTROL:

a. Update SizeLimit (Initialized to 1).

b. If Best generated rule set is satisfactory, return it

and exit.

3. SELECTION PHASE:

a. Create an empty set called SelectedSet.

b. For SR x PopulationSize times,
i. Randomly pick TS rule-sets from the pool, add the

best one to SelectedSet.

4. MUTATION PHASE:

a. For each memer of SelectedSet such as rs,
i. Create a mutated copy of rs using Mutation

function, call it rs'.
ii. Add rs' to the pool.

5. SYMBIOTIC COMBINATION PHASE:

a. For each two members of the SelectedSet such as rs1 and
rs2,

i. Create the symbiotic combination of rs1 and rs2
and call it rs3.

ii. If SizeOf(rs3) < SizeLimit and fitness value of
rs3 exceeds that of rs1 and rs2,

Add rs3 to the pool.

6. DIVERSITY MAINTANANCE:

a. Create RC random new rule-sets and add them to the pool.

7. POPULATION CONTROL:

a. While PopulationSize is above MP limit, randomly select

and remove some random rule-sets from the poool.

8. Goto Step 2.

www.intechopen.com

 Tools in Artificial Intelligence

194

compared it with pure Pittsburgh GA in detail. More comparisons can be done in future
works.
To compare the performance of SEA algorithm with Pittsburgh GA, we used six frequently
used benchmarks: The first one is a 10% selection of KDDCUP99 dataset (MIT Lincoln Labs,
2007) and others are selected from University of California Irvine, Machine Learning
Repository (Blake & Merz, 1998); these datasets are gathered from real experiments, so they
can show efficiency of the algorithm in some real circumstances. Credit Approval (CRX),
Glass Identification (Glass), Iris Plant (Iris), 1984 United States Congressional Voting
Records Database (Vote), and Wine Recognition (Wine) datasets are selected as the most
frequently used datasets so as to compare the results to some other related works. The
extensive information about these datasets is mentioned in Table 1. Although KDDCUP99
data set has many classes of intrusion types, we consider their classes as Normal and Attack
cases, similar to (Esposito et al, 2005), (Toosi & Kahani 2007), and (Mill & Inoue, 2004).
General specifications of benchmarks are expressed in Table 1. The GA algorithm is
implemented as described in (Hasanzadeh et al, 2004) with exactly the same parameters
(expressed in Table 2).
Likewise (Hasanzadeh et al, 2004) & (Hasanzadeh & Bagheri, 2003), Fuzzy C-Mean
clustering (Zimmermann, 1996) was used to define the fuzzy membership function for
continuous attributes, and fuzzy singletons were defined for none-parametric attributes. The
number of fuzzy sets for KDD99 features is 5 and for other problems, 3 fuzzy sets are
created. The exact parameters of SEA algorithm are presented in Table 3.
The tests are done four-fold (Blake & Merz, 1998), i.e. the data was randomly divided into 4
sets and in each trial, one set was taken as test set, and the other 3 were used as training set.
Each test is repeated for 20 times, and the average, minimum and maximum classification
rates for training and tests results are depicted in subsection 5.2 tables. The stopping
criterion of each run is an unchanging best fitness value during 5000 fitness function calls.
Also, the average number of fitness function calls to reach the highest classification accuracy
and the average ratio between time and fitness function calls for each benchmark/algorithm
is reported in subsection 5.3 as a measure of algorithms speed.

Dataset
Features

count
Numeric
Features

Nominal
Features

Classes Instances

KDD99 41 34 7 2 494021

CRX 15 6 9 2 690

Glass 10 9 1 6 214

Iris 4 4 0 3 150

Vote 16 0 16 2 435

Wine 13 13 0 3 178

Table 1. Datasets Specification

Parameter Value

Maximum Population 200

Mutation Rate 0.7

Elitism Rate 0.2

Tournament Size 4

Table 2. Pittsburgh GA Parameters, as in (Hasanzdeh, 2003)

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

195

Parameter Value

Population Size 1000

Selection Rate 6

Tournament Size 8

Random Creation Rate 4

Table 3. SEA Parameters

5.2 Accuracy comparison results

Tables 4 and 5 represent the classification rates of Pittsburgh Genetic Algorithm (PGA) and
SEA training and test data, respectively. As presented there, SEA has found better rule-sets
in compare with PGA in all cases on training sets and 4 of 5 on test sets.

PGA SEA
Data
Sets Min Max Average Min Max Average

Average
SEA to PGA

Improvement1

CRX 87.433 88.937 88.07 85.199 90.042 88.85 6.54 %

Glass 63.921 72.023 69.42 66.923 74.812 71.43 6.57 %

Iris 98.139 99.082 98.63 97.237 99.91 99.35 52.55 %

Vote 96.528 98.003 97.32 96.474 97.976 97.56 8.96 %

Wine 96.189 99.156 97.68 99.153 99.910 99.44 75.86 %

KDD99 87.433 88.937 88.07 85.199 90.042 88.85 6.54 %

Table 4. Average Classification Rate of PGA and SEA, Different Data Sets, on Training Data

PGA SEA
Data
Sets Min Max Average Min Max Average

Average
SEA to PGA

Improvement

CRX 83.746 87.654 85.27 84.888 86.476 85.58 2.1 %

Glass 63.377 71.370 68.62 67.878 74.008 70.68 6.56 %

Iris 91.85 99.923 94.95 91.805 99.909 95.57 12.28 %

Vote 91.789 98.661 95.31 92.611 97.972 95.04 -5.76 %

Wine 86.293 99.902 92.9 90.821 97.683 94.59 23.8 %

KDD99 84.263 87.654 94.36 85.156 85.16 99.31 87.77 %

Table 5. Average Classification Rate of PGA and SEA, Different Data Sets, on Test Data

Table 6 presents the best classification results of some other approaches ((Gomez et al, 2002),
(Mendes et al, 2001), (Liu & Kwok, 2000), & (Rouwhorst & Engelbrecht, 2000)) which are
reimplemented and tested by (Hasanzadeh, 2003) with similar settings as ours. As stated
there, in cases that we had sufficient comparison data, SEA is better than other algorithms in
all data sets.
Also Table 7 presents some other results from other papers that have used almost similar
test specifications with that of ours. It must be emphasized that the test condition of these
results does not fully comply that of ours, in some cases not exactly specified and in other
slightly easier or harder. As depicted there, SEA is among the top 2 best results for all
benchmarks.

1 (SEA – PGA) / (100 – PGA)

www.intechopen.com

 Tools in Artificial Intelligence

196

Algorithm CRX Glass Iris Vote Wine KDD'99

Fuzzy Classifier with Expression Tree
Representation (Gomez et al, 2002)

 94.84 85.42 92.22

Fuzzy Classifier with Co-Evolution
(Mendes et al, 2001)

84.7 95.3

Extended Genetic Rule Induction
(Liu & Kwok, 2000)

77.39 72.43 95.3

Evolution of Decision Trees
(Rouwhorst & Engelbrecht, 2000)

 94.1

SEA 85.58 70.68 95.57 95.04 94.59 99.31

Table 6. Classification rate of some other algorithms with exactly similar settings in compare
to SEA, from (Hasanzadeh, 2003).

Algorithm CRX Glass Iris Vote Wine KDD99

Fuzzy Kohonen Network (Lorenz et al, 1997) 91.33

Fuzzy Classifier System (Lorenz et al, 1997) 96.00

ID3 (Dong & Kothari, 2003) 81.16

Naive Bayes (Dong & Kothari, 2003) 77.68

Bayesian Network (Ezawa &
Schuermann,1995)

86.5

C 4.5 (Ezawa & Schuermann,1995) 85.5

Discrimination Analysis
(Ezawa & Schuermann,1995)

83.4

Fuzzy Classifier System
(Ishibuchi & Yamamoto, 2005)

 68.22

k-means (Guo et al, 2006) 63.08 92.67 68.54

MLP Neural Network (Ueda, 2000) 70.3

Hyper Sphere SVM (Liu et al, 2007) 62.15 95.68

MLP Neural Network (Deodhare et al, 2007) 95.8

Rule Extraction based on Grey Lattice
Classification
(Yamaguchi et al, 2005)

 86.7

Tree Support Vector Machine (Mill & Iune,
2004)

 70.75

Array Support Vector Machine (Milll & Iune,
2004)

 91.30

Fuzzy Rule Base with Linear Tree Genetic
Representation (Dasgupta & Gonzalez, 2001)

 94.5 94.7 93.9

Average of above approaches 82.84 65.93 94.03 94.7 86.23 81.02

Best of above approaches 86.5 70.3 96.00 94.7 95.8 91.30

SEA 85.58 70.68 95.57 95.04 94.59 99.31

Table 7. Average Classification Rate of some other algorithms with almost similar test
settings in compare to SEA.

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

197

5.2 Speed comparison results

Figures 5-10 depict the best fitness values over time for SEA and GA on the six stated

datasets, averaged in all runs. As it is presented in the diagrams, SEA has found a better

solution much faster than GA in all cases. Table 8 summarizes these results, and presents the

average time taken to find the best result by each algorithm on each benchmark. As stated

there, SEA has reached its best result notably faster than GA in all cases.

Also Figure 11 depicts the relation between number of fitness function calls and time for the

two algorithms. Four curves show GA and SEA algorithms for CRX and Iris datasets which

are, respectively, the largest and the smallest UCI ML Repository datasets used in this

paper. The curves are almost linear with a slight trend toward taking more time for each

fitness function call while the algorithms are proceeding. Thus, the progress of elite fitness

can be considered through either time or fitness function calls in diagrams 5 to 10. Number

of fitness function calls can be considered as a rough measure of the speed complexity of the

algorithm as it removes the effects of programming details on algorithm speed.

Dataset SEA PGA
SEA to PGA

Improvement

CRX 357 4650 92.32 %

Glass 164 280 41.42 %

Iris 40 633 93.68 %

Vote 89 1490 94.02 %

Wine 98 1710 94.26 %

KDD99 7012 54306 87.08 %

Table 8. Average time taken by SEA and Pittsburgh GA to find the best classifier on
different benchmarks, in seconds.

Fig. 5. CRX benchmark, average fitness of best rule set found by Pittsburgh GA and SEA
over time.

www.intechopen.com

 Tools in Artificial Intelligence

198

Fig. 6. Glass benchmark, average fitness of best rule set found by GA and SEA over time.

Fig. 7. Iris benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Fig. 8. Vote benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

199

Fig. 9. Wine benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Fig. 10. KDD benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Fig 11. Time versus Fitness Function Calls, GA and SEA algorithms, CRX and Iris datasets.

www.intechopen.com

 Tools in Artificial Intelligence

200

6. Summary and concluding remarks

While the suitability of evolutionary approaches for generation of rule based classifier
systems is shown in many different contributions, the structure and elements of this process
are an important issue in design of a system that works efficiently. As stated in section 2,
Michigan algorithm is faster and requires less memory in compare to Pittsburgh algorithm,
but it has two very important problems that makes Pittsburgh the favorite one in many
cases: First, the cooperation of single rules that are all evolved for better classification,
regardless of other rule's behavior, will not necessarily result in a general good classifier;
Second, some parts of the problem space might be neglected.
Pittsburgh evolutionary algorithm also has three problems that must be dealt with during
an efficient implementation: First, how to recombine two rule-sets? While traditional sexual
recombination operators splits the two parents and merges their parts, how should one
know which rules of either rule-set (parents) must be extracted to be recombined to make a
good combination. Second, what to do with the parasite rules? And the third question is
how many rules must a rule-set have to get a small, but accurate classifier?
SEA algorithm uses symbiotic combination operator instead of common sexual
recombination operator of GA, and provides a solution for the three above questions; it
creates an offspring from two parents by combining all of their rules (genes), and adds the
offspring to the gene pool only if it outperforms both its parents. Using this strategy, SEA
avoids grouping separate rules before it makes sure that the group works better than the
isolated ones, so it avoids garbage rules. It doesn't break any generated rule-set; therefore, it
doesn't require a method to identify good working sub sets of two rule-sets. Also, as it
grows the rule-sets only if growing results in better performance, the designer does not need
to make a decision about chromosome sizes in advance.
Experimental results clearly comply with this hypothesis where SEA had 6 to 75 percent
classification error reduction on training data in compare with Pittsburg GA and 2 to 87
percent on test data, except in one case which resulted in 6 percent more classification error.
Moreover, this significant better accuracy was reached by 41 to 92 percent less computation
time, in similar operating conditions.
As SEA is introduced as a basic algorithm to resolve the problems of Pittsburgh algorithm,
we have just compared it in details with Pittsburgh GA, but some accuracy comparisons
with algorithms from other families were also presented in section 6 and 7. Although some
of these comparisons are not very fair as they were taken from different sources with
slightly different test conditions, SEA presented very good comparison results to all of them
as well.
Table 9 presents a features summary of SEA, Michigan, & Pittsburgh algorithms. As it is
noted there, SEA stands between Michigan and Pittsburgh approaches from many
viewpoints, collecting the positive points of both of them. SEA starts with light weight
single rule individuals, as in Michigan, and gradually evolves them towards complete rule-
set individuals, as in Pittsburgh. Due its growing size of individuals, it stands between
Michigan and Pittsburgh in speed and memory complexity measures. Similar to Pittsburgh,
it allows cooperation inside rule-sets but unlike Pittsburgh and similar to Michigan, this
does not result in parasite rules, keeping rule-sets neat and accurate. Inheritance is done
both on rule level and rule-set level as there is no distinction between rule and rule-sets. As
the fitness of a rule-set is defined over all of its rules, a single rule that correctly covers a
small uncovered portion of training samples can increase the credit of a rule-set and
therefore is accepted and added to the rule-set, so, unlike Michigan approach there is no
need to set specific credit to less frequently used training samples. And at last, in contrast to

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

201

Pittsburgh that blindly recombines two rule-sets, SEA combines two rule-sets only if this
increases the overall recognition performance.
As next stages of this task, we can recommend an extra function that recognises rules that
have redundant effects after symbiotic combinations. Also more specific representations and
local optimization of rule-sets may result in better classification rates.

 Michigan Pittsburgh SEA

Individual A single rule A rule-set
Starts with single rules
and reaches rule-sets

Selection and
Evaluation

On each rule On each rule-set On each rule-sets

Rules Cooperation
None, Rules are

rivals
Cooperative inside rule-

sets, rival among rule-sets
Cooperative inside rule-

sets, rival among rule-sets

Garbage Rules Not Existing Severely Existing Not Existing

Computation Time Least Most Between others

Memory Size Least Most Between Others

Rule Optimization Direct Indirect Both direct and indirect

Inheritance Good Rules Good Rule-Sets
Both good rules and rule-

sets

Requires class
credit assignments

Yes No No

Requires rule-set
size specification

Yes
Yes / Controlled by a

score function
No, controlled by

accuracy.

Rule-Set
recombination

None
Yes, but may result in

lower accuracy
Yes, always results in

higher accuracy.

Table 9. Feature Comparison of Michigan, Pittsburgh and SEA.

7. Acknowledgements

Authors wish to thank Mr. Pooya Esfandiar and Ms. Sima Lotfi for their help during
implementation and testing of this task and Ms. Maryam Hasanzadeh for sharing the details
of her implementation, test, and data sets.

8. References

Bagley, J.D. (1967). The Behaviour of Adaptive Systems Which Employ Genetic and Correlation
Algorithms, PhD Dissertation, University of Michigan.

Barry, A., Holmes, J., & Llor, X. (2004). Data Mining using Learning Classifier Systems, In:
Applications of Learning Classifier Systems, Bull, L. (Ed.), 15-67, Springer,
ISBN:3540211098.

Blake C.L., Merz C.J. (1998). UCI Repository of machine learning databases, Irvine, CA:
University of California, Department of Information and Computer Science.
http://www.ics.uci.edu/~mlearn.

Chen, M.Y., Linkens, D.A., (2004). Rule-base self-generation and simplification for data-driven fuzzy
models, Fuzzy Sets and Systems, Volume 142, Issue 2, 1 March 2004, Pages 243-265.

Chi-Ho Tsang; Sam Kwong; Hanli Wang, (2005). Anomaly intrusion detection using multi-
objective genetic fuzzy system and agent-based evolutionary computation
framework, in Proceedings of Fifth IEEE International Conference on Data Mining.

www.intechopen.com

 Tools in Artificial Intelligence

202

Corcoran, A.L., & Sen, S. (1994). Using real-valued genetic algorithms to evolve rule sets for
classification. In Proceedings of the IEEE Conference on Evolutionary Computation,
pages 120--124, 1994.

Cordon O., del Jesus M.J., Herrera F., (1998). Genetic learning of fuzzy rule-based classification
systems cooperating with fuzzy reasoning methods, International Journal of Intelligent
Systems 13 (10–11) 1025–1053.

Dasgupta, D. & Gonzalez, F., (2001). Evolving Complex Fuzzy Classifier Rules Using a Linear
Tree Genetic Representation, In L. Spector, D. Whitley, D. Goldberg, E. Cantu-Paz, I.
Parmee, and H. Beyer, editors, Proc. of the Int. Conf. on Genetic and Evolutionary
Computation (GECCO-2001), pages 299-305. Morgan- Kaufmann, San Francisco, CA.

De Jong, K.A. , Spears, W., & Gordon, D.F. (1993). Using genetic algorithms for concept
learning. Machine Learning, 13(2-3):155–188.

de la Iglesia B., Philpott M.S., Bagnall A.J., Rayward-Smith V.J., (2003), Data Mining Rules
Using Multi-Objective Evolutionary Algorithms, in Proceedings of IEEE Congress on
Evolutionary Computations, Vol. 3, pp 1552-1559.

Deb, K. (1991). Binary and floating point function optimization using messy genetic algorithms
(IlliGAL Report No. 91004). Urbana: University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory.

Deodhare, D., Murty, M. N., and Vidyasagar, M., (2007). A Unified Approach to Encoding and
Classification using Bimodal Projection-based Features, in Proceedings of the International
Conference on Computing: Theory and Applications (ICCTA'07) pp. 348-354.

Dong, M. & Kothari, R., (2003). Feature subset selection using a new definition of classifiability,
Pattern Recognition Letters 24 (2003) 1215–1225.

Eggermont J., Kok J.N., Koster W.A., (2003) Genetic Programming for Data Classification:
Refining the Search Space, in Proceedings of the Fifteenth Belgium/Netherlands
Conference on Artificial Intelligence, pp 123-130.

Esposito M., Mazzariello C., Oliviero F., Romano S. P., Sansone C., (2005). Evaluating Pattern
Recognition Techniques in Intrusion Detection Systems, in Proceedings of the 7th
International Workshop on Pattern Recognition in Information Systems (PRIS 2005)
- 24-25 May 2005, Miami, FL (USA) pp. 144-153.

Ezawa, K. J., & Schuermann, T., (1995). A Bayesian network Based Learning System: Architecture
and Performance Comparison with Other Models, in Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pp 197 – 206.

Forrest S., Mitchell M. (1993). Relative Building-block fitness and the Building-block Hypothesis.
In Whitley, D, ed. FOGA 2, Morgan Kaufmann, San Mateo, CA.

Freitas, A., A survey of evolutionary algorithms for data mining and knowledge discovery. In
Advances in Evolutionary Computation. Springer- Verlag, 2001.

Goldberg, D.E.; Korb, B. & Deb, K. (1989) Messy Genetic Algorithms: Motivation, analysis,
and first results. Computer Systems, 3, 5, 493-530.

Gomez, J., Dasgupta, D., (2002) Evolving Fuzzy Classifiers for Intrusion Detection, in
Proceedings of the 2002 IEEE Workshop on Information Assurance.

Gomez, J., Gonzalez, F., Dasgupta, D., (2002). Complete Expression Trees for Evolving Fuzzy
Classifier Systems with Genetic Algorithms, in Proceedings of the Evolutionary
Computation Conference GECCO'02, 2002.

Gopalan J., Alhajj R., Barker J., (2006). Discovering Accurate and Interesting Classification Rules
Using Genetic Algorithm, in Proceedings of the 2006 International Conference on
Data Mining, pp. 389-395. June 26-29, 2006.

www.intechopen.com

Symbiotic Evolution of Rule Based Classifiers

203

Gundo K.K., Alatas B., Karci A., (2004). Mining Classification Rules by Using Genetic
Algorithms with Non-random Initial Population and Uniform Operator, Turkish Journal
of Electrical Engineering and Computer Science, Vol.12, No. 1, 2004.

Guo, H.X., Zhu, K.J., Gao, S.W., & Liu, T., (2006). An Improved Genetic k-means Algorithm for
Optimal Clustering, in Proceedings of Sixth IEEE International Conference on Data
Mining - Workshops (ICDMW'06) pp. 793-797.

Harik, G.R. (1997). Learning Gene Linkage to Efficiently Solve Problems of Bounded Difficulty
Using Genetic Algorithm, PhD Dissertation, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

Hasanzade M., (2003). Fuzzy Intrusion Detection, MS. Dissertation, Computer Engineering
Department, Sharif University of Technology, Tehran, Iran, 2003.

Hasanzade, M., Bagheri, S., Lucas, C., (2004). Discovering Fuzzy Classifiers by Genetic
Algorithms, in Proceedings of 4th international ICSC Symposium on Engineering of
Intelligent Systems (EIS2004), 2004, Island of Madeira, Portugal.

Holland, John H. (1986). Escaping Brittleness: The Possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In R. Michalski, J. Carbonell,
and T. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach (Vol.
2). Morgan Kaufmann Publishers, Los Altos, CA.

Ishibuchi H., Nakashima T., and Murata (1999). T., A hybrid fuzzy genetics-based machine
learning algorithm: Hybridization of Michigan approach and Pittsburgh approach, in
proceedings of IEEE, fuzzy IEEE.

Ishibuchi H., Yamamoto T., (2002). Fuzzy rule selection by data mining criteria and genetic
algorithms, in Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 399-406, New York, July 9-13.

Ishibuchi H., Yamamoto T., (2004). Fuzzy Rule Selection by Multi-Objective Genetic Local Search
Algorithms and Rule Evaluation Measures in Data Mining, Fuzzy Sets and Systems,
Vol. 141, no. 1, pp. 59-88, January 2004.

Ishibuchi, H. &, Yamamoto, T., (2004). Rule Weight Specification in Fuzzy Rule-Based Classification
Systems , IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, August 2005.

Janikow, C.Z. (1993) A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning, 13(2-3):180–228.

Liu J.J., & Kwok J.T. (2000). An Extended Genetic Rule Induction Algorithm, in Proceedings of IEEE
Congress on Evolutionary Computation (CEC-2000). La Jolla, CA, USA. July 2000.

Liu, S., Liu, Y., Wang, B., and Feng, X., (2007). An Improved Hyper-sphere Support Vector
Machine, in Proceedings of the Third International Conference on Natural
Computation (ICNC 2007) pp. 497-500.

Lopes C., Pacheco M, Vellasco M, Passos E, (1999). Rule-Evolver: An Evolutionary Approach
For Data Mining, in Proceedings of the 7th International Workshop on Rough Sets,
Fuzzy Sets, Data Mining, and Granular-Soft Computing, RSFDGrC'99, pp 458-462.

Lorenz, A., Blum, M., Ermert, H., & Senge, T., (1997). Comparison of Different Neuro-Fuzzy
Classification Systems for the Detection of Prostate Cancer in Ultrasonic Images, in
Proceedings of the IEEE Ultrasonics Symposium, 1997, Volume: 2, pp 1201-1204.

Maynard Smith, J., Szathmary, E. The Major Transitions in Evolution, WH Freeman: Oxford
UK, 1995.

Merezhkovsky, K. S. (1909), The Theory of Two Plasms as the Basis of Symbiogenesis, a New
Study or the Origins of Organisms. In Proceedings of the Studies of the Imperial
Kazan University, Publishing Office of the Imperial University, (In Russian).

Mendes, R., R., F., Voznika, F., de B., Freitas, A., A., Nievola, J. C., (2001). Discovering Fuzzy
Classification Rules with Genetic Programming and Co-Evolution, In Principles of Data

www.intechopen.com

 Tools in Artificial Intelligence

204

Mining and Knowledge Discovery (Proc. 5th European Conference PKDD 2001) –
Lecture Notes in Artificial Intelligence, Springer-Verlag.

Mill J., Inoue A. (2004). Support Vector Classifiers and Network Intrusion Detection, in
Proceedings of IEEE Conference on Fuzzy Systems 2004, Vol 1. pp 407-410.

MIT Lincoln Labs, (2007). KDD CUP 99 DARPA Intrusion Detection Dataset,
http://kdd.ics.uci.edu/databases/kddcup99.

Mitchell, M. (1999). An Introduction to Genetic Algorithms, MIT Press, 0−262−13316−4,
London, England.

Potter, M.A., De Jong, K.A. (1994). A Cooperative Coevolutionary Approach to Function
Optimization. In: Parallel Problem Solving from Nature (PPSN III), Y. Davidor, H.-P.
Schwefel and R. Manner (Eds.). Berlin: Springer-Verlag, 249-257.

Riquelme J.S., Toro J.C., Aguilar-Ruiz M., (2003), Evolutionary Learning of Hierarchical Decision Rules,
in IEEE Transactions on Systems, Man, and Cybernetics, Vol. 33, Issue 2, pp 324-334.

Rouwhorst, S.E., Engelbrecht A.P., (2000). Searching the Forest: Using Decision Tree as Building
Blocks for Evolutionary Search in Classification. In Proceedings of IEEE Congress on
Evolutionary Computation (CEC-2000), 633-638. La Jolla, CA, USA. July 2000.

Sen, S., Knight, L., & Legg, K. (1997). Prototype based supervised concept learning using
genetic algorithms. In D. Dasgupta and Z. Michalewicz, editors, Evolutionary
Algorithms in Engineering Applications, pages 223–239. Springer.

Smith, S. F. (1980). A Learning System Based on Genetic Adaptive Algorithms, PhD Thesis,
University of Pittsburgh.

Smith, S. F. (1983). Flexible Learning of Problem Solving Heuristics Through Adaptive
Search, Proc. 8th IJCAI, August 1983.

Tan K.C., Yu Q., Heng C.M., Lee T.H., (2003). Evolutionary computing for knowledge discovery
in medical diagnosis, Artificial Intelligence in Medicine 27, pp.129-154.

Teng M., Xiong F., Wang R., Wu Z., Using genetic algorithm for weighted fuzzy rule-based
system, in Proceedings of Fifth World Congress on Intelligent Control and
Automation, 2004.

Toosi A.N., Kahani M. (2007). A New Approach to Intrusion Detection Based on an Evolutionary
Soft Computing Model Using Neuro-Fuzzy Classifiers, Computer Communications,
Vol 30, 2201-2212.

Ueda, N., (2000). Optimal Linear Combination of Neural Networks for Improving Classification
Performance, IEEE Transactions on Pattern Analysis and Machine Learning, vol. 22,
no. 2, February 2000.

Watson, R.A. & Pollack, J.B. (1999), Incremental Commitment in Genetic Algorithms,
Proceedings of GECCO'99., Morgan Kaufmann, 710-717.

Watson, R.A., Pollack, J.B. (2000). Symbiotic Combination as an Alternative to Sexual
Recombination in Genetic Algorithms, in Proceedings of Parallel Problem Solving
from Nature (PPSN VI).

Wilson, S. (1987). Classifier systems and the Animat problem. Machine Learning, 2:199–228.
Yamaguchi, D., Li, G.D., Mizutani, K., and Akabane, T., (2005). Decision Rule Extraction and

Reduction Based on Grey Lattice Classification, in Proceedings of the Fourth
International Conference on Machine Learning and Applications, 2005, 15-17 Dec.
2005.

Zimmermann, H., J., (1995). Fuzzy Set Theory and Its Application, Kluwer Academic
Publishers.

Zhu F., Guan S.U., (2004). Ordered Incremental Training with Genetic Algorithms, International
Journal of Intelligent Systems, Volume 19, Issue 12 , pp 1239-1256.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ramin Halavati and Saeed Bagheri Shouraki (2008). Symbiotic Evolution of Rule Based Classifiers, Tools in

Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-953-7619-03-9, InTech, Available from:

http://www.intechopen.com/books/tools_in_artificial_intelligence/symbiotic_evolution_of_rule_based_classifiers

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

