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Abstract

The main objective of this chapter is to introduce a mathematical method for enhancing
the correctness of the output results of air pollution dispersion models via the calibration
of input background concentrations. For developing this method, an air pollution model
was set up in ADMS‐Roads for a study area in the City of Nottingham in the UK. The
method  was  applied  iteratively  to  the  input  background  concentrations,  which
effectively reduced the error between calculated and monitored air pollution concen‐
trations on both the annual mean and hourly levels. The inclusion of the traffic flow
profiles of the modeled road network reduced further the error between the hourly, but
not the annual mean, calculated and monitored concentrations. The application of the
calibration approach to the model in ADMS‐Roads was compared to the use of grid air
pollution sources for the same model in ADMS‐Urban. In terms of the accuracy of the
model results, the calibration approach was better than using grid sources on the annual
mean level and was much better on the hourly level. Compared to the use of grid sources
in ADMS‐Urban, the use of the calibration approach in either ADMS‐Roads or ADMS‐
Urban can significantly reduce the air pollution model runtime.

Keywords: calibration, validation, background concentrations, modeling, air pollu‐
tion

1. Introduction

Modeling the air quality is a powerful technique that can be used to assess the ambient air
quality against the mandatory air quality standards. In addition, it can be used to assess the
effectiveness of the proposed air quality action plans (AQAPs) in improving the air quality
within areas in which air pollution exceeds the national air quality standards. This technique
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can also be used as a tool to undertake a strategic air quality assessment for a wide range of
plans and programs, including local transport plans [1]. As the majority of national air quality
standards are in the form of annual mean and hourly objectives [2], this requires accurate
annual mean and hourly air quality predictions.

The results of air pollution dispersion modeling should be accurate enough to provide reliable
air quality predictions. Recent air pollution dispersion modeling research assesses the
validation of air pollution models by the determination of the error between calculated and
monitored air pollution concentrations. However, this recent research has not investigated
potential sources of this error so that it can be minimized [3–7].

Nottingham City Council compared the monitored annual mean NO2 concentrations at three
continuous monitoring stations to the calculated concentrations by ADMS‐Urban. The model
overestimated the annual mean of monitored concentrations at the three sites [8]. Therefore,
the model results were multiplied by an adjustment factor, the average ratio of monitored to
calculated annual mean concentrations at the three monitoring sites, to correct the annual mean
results of the model. This might help to improve the annual mean results; however, it did not
improve the hourly calculated results of the model.

Ref. [9] used the hourly predictions of ADMS‐Urban and the hourly observations for the first
half of 1993 to derive a multiplicative adjustment factor. The factor was applied to the air quality
predictions for the second half of 1993 and the adjusted predictions were compared to the
corresponding observations. This approach improved the long‐term results over the second
half of 1993; however, it did not show how much improvement was achieved on the short‐term
level. In addition, Cambridge Environmental Research Consultants (CERC), the developers of
ADMS software, have recommended that modelers should avoid the application of such an
adjustment factor to the model results [10]. Instead, CERC advised that various details of the
model set up, such as input data and modeling options, should be adjusted until the calculated
results fit the monitored concentrations.

Ref. [11] stated that the NOX (not NO2) concentrations should be verified and adjusted if NO2

results of the model disagree with the monitored concentrations. It also commented that “The
adjustment of NOX is often carried out on the component derived from local Road Traffic
Emissions – the Road Contribution.” This is because the source contribution is often small
compared with the background contribution. Therefore, Nottingham City Council used this
approach to verify the annual mean NO2 results of ADMS‐Urban [12].

ADMS‐Urban was used to predict the annual mean road contribution NOX concentrations. For
each monitoring site, the annual mean background NOXwas estimated from the national
background maps and subtracted from the monitored total NOX. This resulted in the moni‐
tored annual mean road contribution NOX which was compared to the results of ADMS‐Urban
for each monitoring site to derive an average adjustment factor. The results of ADMS‐Urban
were multiplied by this factor, and the adjusted results of NOX were used, along with the
background NO2 concentrations, to derive the adjusted calculated total annual mean NO2

concentrations by using the LAQM tools—NOX to NO2 spreadsheet [13].
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This approach did not eliminate the error between the calculated and monitored annual
mean NO2 concentrations. This is probably due to inaccuracy in the monitored annual mean
road contribution NOX, caused by inaccuracy in the estimation of the annual mean back‐
ground NOX from the national background maps. In addition, the simple NOX to NO2

spreadsheet is usually imprecise, and using a chemistry scheme to model the atmospheric
chemical reactions of NOX, and derive the oxidized NO2 proportion, is recommended [10].
Moreover, this verification approach is only suitable for the calculated annual mean concen‐
trations and is not applicable to the short‐term, e.g., hourly, concentrations [10].

Ref. [14] adjusted the air pollution model set‐up by the calibration of emission rate inputs to
the model through the application of a genetic algorithm. This was helpful to reduce the
uncertainties existing in air pollution emission inventories such as those relevant to traffic
emission factors [15]. The calibration of input emission rates slightly reduced the error (by
6.46%) between daily calculated and monitored PM10 concentrations over 8 days. This implies
a nonsignificant reduction in the error between hourly calculated and monitored concentra‐
tions over a large time period such as a full meteorological year. Furthermore, no validation
was undertaken for the output results of the model, calculated using the calibrated emission
rates, against monitored concentrations at monitoring sites independent of the calibration
process. This process also required a very expensive computing time, due to the use of a genetic
algorithm, which may extend to several weeks on a single PC before the actual running of the
air pollution model, which may extend to several days to model the air pollution dispersion
in a study area [16, 17].

Therefore, this chapter introduces a mathematical approach for adjusting the model set‐up by
the calibration of input background concentrations, in order to improve significantly the
accuracy of the model results and reduce the computing time. This includes the introduction
of four new concepts to the science of air pollution dispersion modeling; namely, macrocali‐
bration, macrovalidation, microcalibration, and microvalidation. The background concentra‐
tions are some of the most important input data to the broad variety of air pollution dispersion
models [18]. They account for all emission sources that may affect the air quality in a model
application area, and are not defined explicitly in the air pollution model. Therefore, a great
uncertainty exists in input background concentrations, which may vary for the same model
according to the number of explicitly defined air pollution sources. Consequently, the calibra‐
tion of input background concentrations is necessary to provide the appropriate background
concentrations for a certain model set‐up. It may also account for the uncertainties existing in
input air pollution emission rates.

In the following sections of this chapter, the set‐up of the air pollution model of the Dunkirk
area in Nottingham is described and the error between calculated and monitored air pollution
concentrations is illustrated. Then, the different development stages of the calibration process
are discussed, along with the reduction in the error after each stage. The impact of including
the traffic profiles of the modeled road network on the error between calculated and monitored
concentrations is explained. Finally, the calibration of background concentrations in ADMS‐
Roads is compared to the use of grid air pollution sources in ADMS‐Urban.
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2. Set-up of the air pollution model

As a study area, Dunkirk Air Quality Management Area (AQMA) was used to set up an air
pollution model in ADMS‐Roads version 2.3 for the initial development of the calibration
approach. ADMS‐Roads was developed by CERC [19]. Dunkirk AQMA is an urban study area
in the city of Nottingham, as shown in Figure 1, with NO2 levels exceeding the permissible
levels [20]. Therefore, NO2 was selected as the modeled air pollutant as the majority of the
available air pollution monitoring data, required to calibrate and validate the air pollution
model, in and around the Dunkirk AQMA was NO2 data.

Figure 1. The Dunkirk AQMA.

Note that 2006 was selected as the modeling year of the air pollution model due to data
availability for this year. The significant industrial air pollution sources relevant to the Dunkirk
AQMA were identified and their emission rates were obtained from Nottingham City Council,
which also provided the traffic speed data of the main roads in the Dunkirk AQMA. The
emission sources defined explicitly in the air pollution model were the traffic on the main roads
within, and close to, the Dunkirk AQMA, as shown in Figure 1, and the relevant significant
industrial air pollution sources. The Nottingham Watnall Weather Station [21] provided the
2006 hourly sequential meteorological data which included surface temperature, wind speed
at 10‐m height above the ground surface, wind direction, precipitation, cloud cover, and degree
of humidity. The 2006 annual mean and hourly monitored NOX, NO2, and O3 concentrations
by the air quality monitoring station (AQMS), located in the Dunkirk AQMA as shown in
Figure 1, were provided by Nottingham City Council.

Air Quality - Measurement and Modeling6



The traffic flow data of the main roads in the Dunkirk AQMA were obtained from Nottingham
City Council in the form of the traffic count every 5 min collected automatically using detector
loops embedded in the main roads. A visual basic for applications (VBA) computer program
was written in MS‐Excel in order to calculate automatically the 2006 Annual Average Daily
Traffic (AADT) flow and the 2006 hourly and monthly traffic flow profiles from the 5‐min
traffic counts, using the following mathematics:

For each day, the 5‐min flow data was automatically aggregated to yield hourly flow data.
Let ���� be the total traffic flow in both directions in hour i of day j of month k, and let �� be

the number of days in month k, such that i = 0,...,23, j = 1,...,�� (where ��= 28, 29, 30 or 31 as

appropriate), and k = 1,...,12.

Therefore,
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Hence,there are 3 × 24 = 72 different day‐related hourly average traffic flows; so, correspond‐
ingly, there are 72 hourly factors, such that:

Hourly averageHourly factor   ,   0, ,23
AADT

i
i i i= " = ¼ (7)

Therefore, the full traffic flow data processing output for each main road was:

• 24 hourly factors for weekdays, in order, from hour 0 to hour 23.

• 24 hourly factors for Saturdays, in order, from hour 0 to hour 23.

• 24 hourly factors for Sundays, in order, from hour 0 to hour 23.

• 12 monthly factors for the 12 months, in order, from January to December.

Lack of data from some detectors for some time periods during the year 2006 had to be
addressed. If the corresponding traffic data was available for another year, then that was
used, factored using traffic data from the nearest detectors, for that other year and 2006.
Steps were taken in the code to avoid zero division in factoring the traffic data of that other
year. If the corresponding traffic data from another year was not available, then 2006 traffic
data from the nearest available detectors were used.The traffic flow profiles were compiled
to a special text file, a FAC file, which was used in ADMS‐Roads to reflect the hourly and
monthly variations in the AADT flow on traffic air pollution emissions, so that for each
hour, the traffic flow, used in the model to derive the traffic emissions, was the AADT flow
× monthly factor × hourly factor. The 2003 DMRB traffic emission factors [22], built‐in in
ADMS‐Roads, were used to derive the traffic emission rates from the traffic flow and speed
data.

The chemical reaction scheme (CRS) was used to model the atmospheric conversion of
NOX to NO2 due to a number of chemical reactions with background O3 [19]. Modeling
these atmospheric reactions was necessary to get accurate NO2 results, so NOX and O3

were modeled in addition to NO2. However, using this chemical scheme requires inputs
for NO2, NOX, and O3 background concentrations. Therefore, Nottingham City Council
provided the 2006 hourly sequential NO2, NOX, and O3 concentrations monitored by the
Rochester air quality monitoring station. This is a rural monitoring station remote from
the Dunkirk AQMA and far from urban air pollution, and hence it was recommended to
use its monitoring data as the input background concentrations to avoid double counting
[10].

3. Calibration and validation of the background concentrations

An output receptor was defined in the air pollution model at the geographical location of the
AQMS. With reference to Run 1 in Table 1, the calculated 2006 annual mean NOX and NO2

concentrations underestimated the monitored ones by 37.6% and 25.6%, respectively, at the
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AQMS. In addition, the calculated 2006 annual mean of O3 concentrations overestimated the
monitored one by 42.7% at the AQMS. This necessitated developing the set‐up of the air
pollution model by performing two operations. The first operation was the iterative calibration
of the rural background concentrations so as to account for the urban background emissions,
e.g., residual, poorlydefined, or diffused emissions, from domestic heating sources and minor
roads, in the Dunkirk AQMA. The second operation was the validation of the calculated air
pollution concentrations after each iteration of the calibration process, in order to decide the
final acceptable iteration of this process.

Δ background Calculated
concentrations

Target
concentrations

Run 1 
NO2 0 26.25 35.29
NOX 0 42.19 67.60
O3 0 44.23 31.00
Run 9 
NO2 +7.70 37.27 35.29
NOX +25.42 67.61 67.60
O3 ‐12.60 28.99 31.00
Run 23 
NO2 +1.48 35.45 35.29
NOX +25.42 67.60 67.60
O3 ‐5.40 31.01 31.00
Run A 
NO2 +7.02 36.89 35.29
NOX +25.42 67.61 67.60
O3 ‐12.40 28.86 31.00
Run B 
NO2 +10.12 38.73 35.29
NOX +25.42 67.61 67.60
O3 ‐13.20 29.46 31.00
Run C 
NO2 +14.55 41.64 35.29
NOX +25.42 67.61 67.60
O3 ‐15.30 29.18 31.00
Run D 
NO2 +17.18 43.56 35.29
NOX +25.42 67.61 67.60
O3 ‐16.71 28.69 31.00

Table 1. Macrocalibration development stages of the rural background concentrations.

3.1. Macrocalibration and macrovalidation

The term macrocalibration in this chapter refers to the adjustment of input background
concentrations, so that the error between the annual means of calculated and monitored air
pollution concentrations can be effectively reduced. The macrovalidation was undertaken by
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the direct comparison between the calculated and monitored annual means of NOX, NO2, and
O3 concentrations at the AQMS.

As calculated NO2 concentrations were linked to calculated NOX and O3 concentrations
through the atmospheric chemical reactions discussed in Section 2, it was decided to cali‐
brate NOX and O3, in addition to NO2, background concentrations. A trial and error approach
was adopted to macrocalibrate the hourly sequential rural background concentrations until
the above‐mentioned macrocalibration criterion was achieved. This approach comprised 22
runs of the model, and involved changing the background concentrations manually every
time. In Table 1, the results of an intermediate run (run 9), and the final macro‐calibration run
(run 23), are shown in order to illustrate the progress of this approach.

For each macrocalibration iteration, the values in the “∆ background” field of Table 1 were
added to every hour of the 2006 NO2, NOX, and O3 rural background concentrations. However,
adding these values to the original background concentrations file resulted in having many
consecutive hours with a negative O3 background concentration which raised an error and
interrupted the model run. This technical problem was overcome by replacing the negative,
invalid, O3 background concentrations with zero in the macrocalibrated background concen‐
trations file. Another computer logic was applied to this file in order to preserve the fact that
NOX is NO + NO2. Hence, for every hour in the macrocalibrated background concentrations
file, if NO2> NOX, then NO2 = NOX.

After each iteration of the macrocalibration, the macrovalidation was undertaken by compar‐
ing the calculated concentrations and the target concentrations in Table 1. The calculated
concentrations were the 2006 annual means of calculated NO2, NOX, and O3 concentrations
and the target concentrations were the 2006 annual means of monitored NO2, NOX, and O3

concentrations at the AQMS. Run 23 in Table 1 gave the least error between the calculated and
target concentrations. Therefore, the background concentrations corresponding to this run
were considered the final macrocalibrated background concentrations.

The results of the final macrocalibration run were used to derive Eqs. (8), (9), and (10), which
could be used to evaluate directly the background concentration adjustment values, required
to macrocalibrate the Dunkirk AQMA air pollution model, without the trial and error ap‐
proach:

( )2 monitored 2 uncalibrated

2 background    1.48,
9.2

NO NO
NO

-
D = ´ (8)

where ��2 monitored is the annual mean of monitored NO2 concentrations and ��2 uncalibrated
is the annual mean of calculated NO2 concentrations using the rural background concentra‐
tions.

 monitored  uncalibrated background    ,x xxNO NO NOD = - (9)
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where ��� monitored is the annual mean of monitored NOX concentrations and��� uncalibrated is the annual mean of calculated NOX concentrations using the rural back‐

ground concentrations.

( )
( ) ( )3 monitored 3 uncalibrated

3 background   5.40 ,
13.22

O O
O

-
D = ´ -

-
(10)

where �3 monitored is the annual mean of monitored O3 concentrations and �3 uncalibrated is

the annual mean of calculated O3 concentrations using the rural background concentrations.

3.2. Microcalibration and microvalidation

The term microcalibration in this chapter refers to the adjustment of input background
concentrations so that the error between not only the annual means of, but also the hourly,
calculated and monitored air pollution concentrations can be effectively reduced. The micro‐
calibration extends the macrocalibration as shown in Figure 2. The microvalidation was

Figure 2. Calibration and validation process for rural background concentrations.
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undertaken by comparing statistically two one‐dimensional arrays of the 2006 calculated and
monitored hourly sequential NO2 concentrations at the AQMS. The statistical approach to
compare these two arrays depended on the definition of them. If these two arrays were to be
defined as two samples of two bigger populations, statistical tests would be the best approach
to compare statistically the two bigger populations [23]. However, if these two arrays repre‐
sented the two populations to compare, statistical tests would not be suitable and descriptive
statistics would be the convenient statistical approach to compare these two populations.

Therefore, careful consideration was given to define correctly the two arrays of calculated and
monitored 2006 hourly NO2 concentrations at the AQMS, concluding that these two arrays
should be defined as two populations, not as two samples. The reason was that these two arrays
of concentrations did not comprise NO2 concentrations from any year other than 2006, or
averages over any time period other than an hour. Therefore, a hypothesis that these two arrays
are two samples of two bigger populations that may extend over many years of time, or
comprise air pollution concentrations calculated or monitored over a diversity of averaging
times, was invalid. Consequently, Pearson correlation coefficient (r) and the root mean square
error (RMSE) were used to compare the two populations. Further details about these two
descriptive statistics are given in [7, 24, 25]. The slope of the regression line through the origin
was also used to compare the two populations of hourly calculated and monitored concentra‐
tions.

Linear regression through the origin was used because it was already known that the perfect
relationship between hourly calculated and monitored concentrations is yi = xi without a
constant, where yi and xi were the calculated and monitored NO2 concentrations for hour i at
the AQMS, respectively. The value of i ranged from 1 to 8760 which was the total number of
hours in the year 2006. The linear regression analysis was undertaken for three cases, uncali‐
brated versus monitored, macrocalibrated versus monitored, and microcalibrated versus
monitored, concentrations. In all these three cases, the independent variable was the monitored
concentrations.

The comparison between the calculated and monitored hourly NO2 concentrations at the
AQMS was undertaken by the comparison between the slope of the best fit line through the
origin and 1.0, the slope of the perfect relationship. The magnitude and sign of the difference
between the slope of the best fit line through the origin and 1.0 indicated the tendency of
calculated NO2 concentrations to underestimate or overestimate the 2006 monitored NO2

concentrations on the micro, hourly, level. Moreover, the slope of the regression best fit line
through the origin was used for the graphical representation of the linear approximation of
the actual relationship between calculated and monitored hourly NO2 concentrations at the
AQMS, after each stage of the calibration process.

The Dunkirk AQMA air pollution model was run with the uncalibrated rural background
concentrations file to output the 2006 calculated hourly NO2 concentrations at the AQMS. This
was carried out for the identification of the initial discrepancy, before any calibration, between
the 2006 calculated and monitored hourly NO2 concentrations at the AQMS, as shown in
Figure 3. Then, the model was run with the macrocalibrated background concentrations file,
corresponding to run 23 in Table 1, to output the 2006 calculated hourly NO2 concentrations
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at the AQMS. This was for the microvalidation after the macrocalibration of the rural back‐
ground concentrations as shown in Figure 4.

Figure 3. Scatter diagram of hourly NO2 concentrations at the AQMS before any calibration.

Figure 4. Scatter diagram of hourly NO2 concentrations at the AQMS after macrocalibration.
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Pearson’s correlation coefficients were calculated as 0.541 before any calibration, and then as
0.412 after the macrocalibration, as shown in Figures 3 and 4. The slight decline in Pearson’s
correlation coefficient after the macrocalibration implied that the macrocalibration slightly
decreased the degree of linearity of the actual relationship between the calculated and
monitored hourly NO2 concentrations at the AQMS. Hence, the macrocalibration slightly
increased the drift of the shape of this actual relationship away from the perfect straight‐line
relationship.

On the other hand, the values of the RMSE were calculated as 18.45 µg/m3 before the calibration,
and then as 17.39 µg/m3 after the macrocalibration, as shown in Figures 3 and 4. The slight
decline in the RMSE after the macrocalibration implied that the macrocalibration slightly
lowered the difference between the calculated and monitored hourly NO2 concentrations.
Therefore, the macrocalibration not only improved the NO2 predictions of the model on the
macro, annual mean, level but also slightly improved the NO2 predictions on the micro, hourly,
level.

The slope of the best fit line through the origin of the actual relationship between the calculated
and monitored hourly NO2 concentrations at the AQMS was calculated as 0.631 before any
calibration, and then as 0.755 after the macrocalibration, as shown in Figures 3 and 4. Although
the results of the macrocalibration, corresponding to run 23 in Table 1, very slightly overesti‐
mated the 2006 annual mean of monitored NO2 concentrations at the AQMS, the slope of the
best fit line through the origin after the macrocalibration was less than 1.0. This indicated that,
after the macrocalibration, the model generally underestimated the monitored NO2 concen‐
trations at the AQMS on the micro, hourly, level. However, the slight increase in the slope of
the best fit line after the macrocalibration implied that the macrocalibration slightly reduced
the tendency of the model to underestimate the monitored hourly NO2 concentrations at the
AQMS. This, together with the reduction in the RMSE after the macrocalibration, confirmed
the slight improvement of the NO2 predictions of the model, after the macrocalibration, on the
micro, hourly, level.

To improve further the NO2 predictions of the model on the micro level, the idea of microca‐
libration was developed. This idea depended on the modification of Eqs. (8), (9), and (10) in
order to generate three one‐dimensional arrays for ∆NO2 background, ∆NOX background, and
∆O3 background as follows:

( )
( )

2 monitored   2 uncalibrated  
2 background  

2 macro  2 uncalibrated  

    1.48,i i
i

i i

NO NO
NO

NO NO
-

D = ´
- (11)

where ∆ℎ��2 background � is the adjustment value for the rural NO2 background concentration

for the hour i. ��2 monitored � is the monitored hourly NO2 concentration for the hour i.��2 uncalibrated � is the calculated hourly NO2 concentration for the hour i using the uncali‐

brated rural background concentrations. ��2 macro � is the calculated hourly NO2 concentra‐
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tion for the hour i using the macrocalibrated background concentrations. The value of i ranged
from 1 to 8760, which was the total number of hours in the year 2006:

 background    monitored    uncalibrated      ,X i x i x iNO NO NOD = - (12)

where ∆ℎ��� background � is the adjustment value for the rural NOX background concentration

for the hour i. ��� monitored � is the monitored hourly NOX concentration for the hour i.��� uncalibrated � is the calculated hourly NOX concentration for the hour i using the uncali‐

brated rural background concentrations. The value of i ranged from 1 to 8760, which was the
total number of hours in the year 2006:

( )
( ) ( )3 monitored   3   

3 background  
3 macro  3 uncalibrated  

    5.4 ,i uncalibrated i
i

i i

O O
O

O O
-

D = ´ -
- (13)

where ∆ℎ�3 background � is the adjustment value for the rural O3 background concentration for

the hour i. �3 monitored � is the monitored hourly O3 concentration for the hour i. �3 uncalibrated �
is the calculated hourly O3 concentration for the hour i using the uncalibrated rural background
concentrations. �3 macro � is the calculated hourly O3 concentration for the hour i using the

macrocalibrated background concentrations. The value of i ranged from 1 to 8760, which was
the total number of hours in the year 2006.

The three one‐dimensional arrays of ∆NO2 background, ∆NOX background, and ∆O3background, calculat‐
ed by Eqs. (11), (12), and (13), were added to the arrays of the uncalibrated hourly sequen‐
tial rural background concentrations of NO2, NOX, and O3, respectively. Hence the
microcalibrated background concentrations file was created based on the above three equa‐
tions. However, running the model with these microcalibrated background concentrations
resulted in the overestimation of the annual means of the monitored NO2, NOX, and O3 con‐
centrations at the AQMS as shown in Table 2. In addition, using these microcalibrated back‐
ground concentrations increased the difference between the calculated and monitored
hourly NO2 concentrations on the micro, hourly, level. This was indicated by the large in‐
crease in the RMSE as shown in Table 2.

A possible reason for the large increase in the RMSE after the microcalibration based on
Eqs. (11), (12), and (13) was the use of the macrocalibrated hourly concentrations in these
equations. As discussed before with regard to Figure 4, the hourly calculated concentrations
of the macrocalibrated model were not precise enough. The macrocalibrated model of the
Dunkirk AQMA was validated only on the macro, annual mean, level. Therefore, instead of
using ��2 macro � and �3 macro �, the macrocalibrated calculated hourly NO2 and O3 concen‐

trations, it was decided to alter two of the three equations for the microcalibration of the rural
background concentrations, using the macrocalibrated annual mean NO2 and O3 concentra‐
tions, so that:
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Case description Rec-
eptor
name

Annual
mean NOX

Annual
mean NO2

Annual
mean O3

NO2

RMSE
before
calibra-
tion 

NO2

RMSE
after
macrocali-
bration  

NO2

RMSE
after
microcali-
bration

Calculat-
ed 

Moni-
tored 

Calculat-
ed 

Moni-
tored 

Calculat-
ed 

Moni-
tored 

Based on equations 
(11), (12), and (13)  

AQMS 73.37 67.60 37.90 35.29 39.43 31.00 18.45 17.39 117.83

Based on equations 
(14), (12), (15), and
run 23

AQMS 68.46 67.60 31.58 35.29 34.99 31.00 18.45 17.39 11.07

Based on equations 
(14), (12), (15), and
run A

AQMS 67.71 67.60 33.03 35.29 33.10 31.00 18.45 17.39 6.63

Based on equations 
(14), (12), (15), and
run B

AQMS 67.55 67.60 33.96 35.29 32.52 31.00 18.45 17.39 5.11

Based on equations 
(14), (12), (15), and
run C

AQMS 67.48 67.60 34.85 35.29 31.47 31.00 18.45 17.39 4.21

Based on equations 
(14), (12), (15), and
run D

AQMS 67.47 67.60 35.19 35.29 30.96 31.00 18.45 17.39 4.09

Based on equations 
(14), (12), (15), and
run D with
no FAC file

AQMS 68.65 67.60 35.51 35.29 30.74 31.00 18.45 17.39 5.71

Table 2. Microcalibration development stages of the rural background concentrations.
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( )
( )

2 monitored   2 uncalibrated  
2 background   2 macro background

2 macro 2 uncalibrated

        ,i i
i

NO NO
NO NO

NO NO
-

D = ´D
- (14)

where ∆��2 background � is the adjustment value for the rural NO2 background concentration

for the hour i. ��2 monitored � is the monitored hourly NO2 concentration for the hour i.��2 uncalibrated � is the calculated hourly NO2 concentration for the hour i using the uncali‐

brated rural background concentrations. The value of i ranged from 1 to 8760, which was the
total number of hours in the year 2006. ��2 macro is the annual mean NO2 concentration

calculated using the macrocalibrated background concentrations. ��2 uncalibrated is the annual

mean NO2 concentration calculated using the uncalibrated rural background concentrations.∆���2 macro background is the macrocalibration adjustment value for the rural NO2 background

concentrations, as given in the column headed “∆ background in Table 1:

( )
( )
3 monitored   3 uncalibrated  

3 background   3 macro background
3 macro 3 uncalibrated

        ,i i
i

O O
O O

O O
-

D = ´D
- (15)

where ∆ℎ�3 background � is the adjustment value for the rural O3 background concentration for

the hour i. �3 monitored � is the monitored hourly O3 concentration for the hour i. �3 uncalibrated �
is the calculated hourly O3 concentration for the hour i using the uncalibrated rural background
concentrations. The value of i ranged from 1 to 8760, which was the total number of hours in
the year 2006. �3 macro is the annual mean O3 concentration calculated using the macrocali‐

brated background concentrations. �3 uncalibrated is the annual mean O3 concentration

calculated using the uncalibrated rural background concentrations. ∆��3 macro background is

the macrocalibration adjustment value for the rural O3 background concentrations, as given in
the column headed “∆ background” in Table 1.

A VBA computer program was written in MS‐Excel in order to automate the generation of the
three hourly sequential one‐dimensional arrays for ∆NO2 background, ∆NOX background, and ∆O3

background using Eqs. (14), (12), and (15). For any hour in the year 2006, if either the calculated or
monitored hourly concentration was missing, then the equation relevant to the type of missing
concentration would not be usable. This was handled in the VBA computer program as follows:∆���2 background � =   ∆   ��2 macro background for the hours of missing hourly NO2 concen‐

trations, ∆NOXbackground i = ∆NOXmacro background for the hours of missing hourly NOX concentrations,
and ∆O3background i = ∆O3macrobackground for the hours of missing hourly O3 concentrations.

The VBA computer program applied Eqs. (14), (12), and (15) along with the macrocalibration
results of run 23 in Table 1 to generate the microcalibrated background concentrations file.
Running the Dunkirk AQMA air pollution model with this background concentrations file
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significantly improved the RMSE, r, and the slope of the best fit line through the origin as
shown in Table 2 and Figure 5. This indicated a significant improvement for NO2 hourly
predictions by the model when using this background concentrations file. However, the model
with this background concentrations file underestimated the annual mean of monitored NO2

concentrations, and overestimated the annual mean of monitored O3 concentrations, at the
AQMS as shown in Table 2. Hence, using the trial and error macrocalibration approach, it was
necessary to undertake additional runs of ADMS‐Roads, beyond run 23, as shown in Table 1.

Figure 5. Scatter diagram of hourly NO2 concentrations at the AQMS after the microcalibration based on run 23.

The background concentrations of these additional macrocalibration runs were modified so
that the annual mean of monitored NO2 concentrations was deliberately overestimated, and
the annual mean of monitored O3 concentrations was deliberately underestimated, by these
runs, named A–D in Table 1. Consequently, after the “normal”microcalibration underestima‐
tion of the annual mean of monitored NO2 concentrations and the “normal” microcalibration
overestimation of the annual mean of monitored O3 concentrations, the microcalibration runs
based on the results of these additional macrocalibration runs gave a good estimate of the
annual means of both the monitored NO2 and O3 concentrations at the AQMS. This not only
improved the results of the microcalibrated model on the macro level, but also further
improved the results on the micro level as shown in Table 2 and Figure 6. Therefore, the
microcalibrated background concentrations obtained by Eqs. (14), (12), and (15), based on the
macrocalibration results of run D, were considered the final microcalibrated background
concentrations.
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Figure 6. Scatter diagram of hourly NO2 concentrations at the AQMS after the microcalibration based on run D.

The microcalibration development, from run 23 to run D, increased the error between the
calculated and monitored NO2 concentrations at a few hours, as implied by the comparison
between the scatter in the overestimated points on the lower left side of Figures 5 and 6. A
thorough investigation was undertaken in order to identify the reason for such unexpected
behavior of the microcalibration process at these hours. A potential reason was the very high
ratio of the monitored NOX concentration to the monitored NO2 concentrations, e.g., 7, which
was accompanied by a high monitored O3 concentration at these hours. However, a high
calculated NOX concentration by the air pollution model was accompanied by high calculated
NO2 concentration and low calculated O3 concentration at these hours. This suggested either
imprecise model simulation of the actual atmospheric chemical reactions between NOX and
O3 due to inaccurate input meteorological data or imprecise monitoring data at these hours.

The high monitored NOX concentration resulted in a high increase in the NOX background
concentration due to the microcalibration at these hours. Such a high increase in the NOX

background concentration substantially increased the calculated NO2 concentration, resulting
in a big difference between the calculated and low monitored NO2 concentrations at these
hours. At some of these hours, for which the NO2 concentration was underestimated before
any calibration, the microcalibration iterations increased the background NO2 concentration
in order to increase the calculated NO2 concentration, which changed the NO2 underestimation
into an increasingly greater NO2 overestimation. At the rest of these hours, for which the
NO2 concentration was overestimated before any calibration, the reduction in calculated NO2

concentration due to the microcalibration iterations was masked by the increase in calculat‐
ed NO2 concentration due to the high NOX background concentration.
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4. Impact of traffic profiles on the macro- and microvalidation

As mentioned in Section 2, the hourly and monthly traffic flow profiles were considered in the
set‐up of the air pollution model by use of a special text file, a FAC file. The impact of the traffic
profiles on the macro and micro levels was investigated by turning off this FAC file in the final
microcalibrated version of the Dunkirk AQMA model, corresponding to run D in Table 2. The
exclusion of the traffic profiles did not have a significant impact on the calculated annual
mean NO2, NOX, and O3 concentrations as shown in Table 2. Therefore, it was concluded that
the consideration of the traffic profiles in the air pollution model was not important for the
macrovalidation.

Figure 7. Scatter diagram of hourly NO2 concentrations at the AQMS after the microcalibration based on run D without
a FAC file.

On the other hand, the exclusion of the traffic profiles slightly worsened the hourly calculat‐
ed NO2 concentrations as shown in Figure 7. This was indicated by the higher RMSE, the lower
r, and the slightly lower slope of the best fit line through the origin, without a FAC file in
Figure 7 compared to with a FAC file in Figure 6. Therefore, it was concluded that the
incorporation of the traffic profiles in the air pollution model could further improve the
microvalidation by reducing the RMSE between the calculated and monitored hourly NO2

concentrations by 28.4%.
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5. The calibration of background concentrations versus the use of grid
sources

Grid air pollution sources are used in ADMS‐Urban to model residual, poorly defined or
diffused emissions in urban areas, such as the emissions from domestic heating sources and
minor roads [26]. This enables ADMS‐Urban to model emissions from sources that are not
defined explicitly in the air pollution model. Therefore, Nottingham City Council uses grid
sources in ADMS‐Urban to compensate for the difference between rural and urban background
concentrations [8]. However, the capability to model emissions from such air pollution sources
is only available in ADMS‐Urban, not in ADMS‐Roads. Hence, the Dunkirk AQMA air
pollution model was set up in ADMS‐Urban, with the Rochester rural background concentra‐
tions, and this time with a grid source. The air pollution emissions of the grid source were
obtained from the UK National Atmospheric Emissions Inventory (NAEI).

The ADMS‐Urban model was run to output the 2006 annual mean concentrations of NO2,
NOX, and O3 at the AQMS as shown in Table 3. Comparing Table 2 with Table 3, the calculated
annual mean NO2, NOX, and O3 concentrations from the ADMS‐Roads model, with microca‐
librated background concentrations, were closer to the corresponding annual means of
monitored concentrations than were the calculated annual means from the ADMS‐Urban
model, with a grid source and rural background concentrations. This indicated that the ADMS‐
Roads model, with microcalibrated background concentrations only, was more precise than
the ADMS‐Urban model, with a grid source and rural background concentrations, on the
macro level.

Case description NO2 annual mean, µg/m3 NOX annual mean, µg/m3 O3 annual mean, µg/m3 

Calculated  Monitored  Calculated  Monitored  Calculated  Monitored

ADMS‐Urban with CRS 37.65 35.29 69.31 67.6 35.18 31.0

ADMS‐Urban with CRS with

trajectory model

37.77 35.29 69.31 67.6 35.07 31.0

Table 3. Monitored versus calculated annual mean concentrations at the AQMS by ADMS‐Urban.

The 2006 hourly NO2 concentrations calculated by the ADMS‐Urban model were compared to
the 2006 hourly monitored NO2 concentrations at the AQMS as shown in Figure 8. Hence,
comparing Figure 6 with Figure 8, the results of the ADMS‐Urban model, with a grid source
and rural background concentrations, gave a much higher RMSE than did the results of the
ADMS‐Roads model, with microcalibrated background concentrations only. In addition, the
results of the ADMS‐Urban model gave a much lower r, and a lower slope of the best fit line
through the origin, than did the results of the ADMS‐Roads model, with microcalibrated
background concentrations only. Therefore, the results of the ADMS‐Roads model, with
microcalibrated background concentrations only, were much closer to the 2006 hourly NO2
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concentrations monitored by the AQMS than were the results of the ADMS‐Urban model, with
a grid source and rural background concentrations. This indicated that the ADMS‐Roads
model, with microcalibrated background concentrations only, was much more precise than the
ADMS‐Urban model, with a grid source and rural background concentrations, on the micro
level.

Figure 8. Scatter diagram of monitored versus calculated hourly NO2 concentrations at the AQMS by ADMS‐Urban.

Comparing Table 1 (run 23) with Table 3, the calculated annual mean NO2, NOX, and O3

concentrations from the ADMS‐Roads model, with macrocalibrated background concentra‐
tions only, were closer to the corresponding annual means of monitored concentrations than
were the calculated annual means from the ADMS‐Urban model, with a grid source and rural
background concentrations. This indicated that the ADMS‐Roads model, with macrocalibrated
background concentrations only, was more precise than the ADMS‐Urban model, with a grid
source and rural background concentrations, on the macro level.

In respect of the 2006 hourly NO2 concentrations, comparing Figure 8 with Figure 4, the
results of the ADMS‐Urban model, with a grid source and rural background concentrations,
gave a slightly higher RMSE than did the results of ADMS‐Roads, with macrocalibrated
background concentrations only. Both the ADMS‐Urban model and the macrocalibrated
ADMS‐Roads model generally underestimated the 2006 hourly monitored NO2 concentra‐
tions which was indicated by the best fit line through the origin having a slope of less than
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1.0 in both Figures 8 and 4. However, the slope of the best fit line in the ADMS‐Urban case
(in Figure 8) was closer to 1.0 than was the slope of the best fit line in the macrocalibrated
ADMS‐Roads case (in Figure 4). Therefore, the tendency of the ADMS‐Urban model, with a
grid source and rural background concentrations, to underestimate the hourly monitored
NO2 concentrations was less than that of the ADMS‐Roads model, with macrocalibrated
background concentrations only.

Continuing the comparison of Figure 8 with Figure 4, the results of ADMS‐Urban, with a grid
source and rural background concentrations, gave a slightly higher r than did the results of
ADMS‐Roads, with macrocalibrated background concentrations only. This implied that the
ADMS‐Urban model slightly increased the degree of linearity of the actual relationship
between the calculated and monitored hourly NO2 concentrations at the AQMS. Hence, the
actual relationship between the calculated and monitored hourly NO2 concentrations was
slightly closer to the perfect straight line relationship in the case of the ADMS‐Urban model
than it was in the case of the macrocalibrated ADMS‐Roads model. The RMSE, r, and the slope
of the best fit line through the origin indicated that the ADMS‐Roads model, with macrocali‐
brated background concentrations only, was almost as precise as the ADMS‐Urban model,
with a grid source and rural background concentrations, on the micro level.

The trajectory model of CRS can be used along with a grid air pollution source in ADMS‐Urban
to adjust the background concentrations in the main model domain, the model application
area, on the basis of the grid source emissions [26]. The trajectory model uses the grid source
domain, which is usually larger than the main model domain. Then, the trajectory model
increases the background concentrations within the nested main model domain, to take
account of the emissions in the larger grid source domain. This converts the rural background
concentrations within the model application area to urban background concentrations before
ADMS‐Urban actually starts its calculations of the air pollution concentrations. Therefore, it
was decided to investigate the impact of running the ADMS‐Urban model with the trajectory
model of CRS on the annual mean and hourly calculated air pollution concentrations at the
AQMS.

Running the ADMS‐Urban model with the trajectory model of CRS did not significantly change
the calculated annual mean NO2, NOX, and O3 concentrations at the AQMS from the calculated
annual means of these concentrations using the CRS only, as shown in Table 3. In addition,
comparing Figure 9 with Figure 8, running the ADMS‐Urban model with the trajectory model
of CRS did not significantly change the RMSE, r, or the slope of the best fit line through the
origin of the actual relationship between the hourly calculated and monitored NO2 concen‐
trations at the AQMS. Therefore, it was concluded that using the trajectory model of CRS for
running ADMS‐Urban did not provide any significant improvement to running ADMS‐Urban
with the CRS only, on either the macro or the micro level. Therefore, using the trajectory model
of CRS did not change the results of comparing the ADMS‐Urban model, with rural back‐
ground concentrations and a grid source, to the ADMS‐Roads model, with either macro‐ or
microcalibrated background concentrations.

In terms of the model runtime, running ADMS‐Urban with a grid source, rural background
concentrations and either the CRS or the trajectory model of CRS required 44 min to calculate
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the annual mean and hourly concentrations of NO2, NOX, and O3 at a single output receptor
point, the site of the AQMS. On the other hand, running ADMS‐Roads with the CRS and either
the macrocalibrated or microcalibrated background concentrations required 9 min to calculate
the annual mean and hourly concentrations of NO2, NOX, and O3 at the same output receptor
point, the site of the AQMS, on the same computer. Therefore, compared to running ADMS‐
Urban, using ADMS‐Roads with the background concentrations calibration technique not only
improved the air quality predictions of the air pollution model on the macro and micro levels,
but it also saved 35 min of the model runtime for each output receptor point. This saving in
the model runtime, when related to an output grid with a large number of receptor points,
constitutes a significant reduction in the air pollution model runtime.

Figure 9. Scatter diagram of monitored versus calculated hourly NO2 concentrations at the AQMS by ADMS‐Urban
with the trajectory model of CRS.

6. Conclusions and recommendations

The mathematical algorithm implemented by VBA computer programing in Section 2 was
necessary for the processing of large files of primary traffic flow count data that were recorded
every 5 min for all of the year 2006.The computer program outputs for each main road in the
Dunkirk AQMA were the AADT flow, and the hourly and monthly traffic profiles for the air
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pollution model. The application of this computer program significantly reduced the process‐
ing time and effort, which may allow an increase in the number of road links that can be
modeled in air pollution dispersion models. This improves the model accuracy, and thus
increases the reliability of air quality predictions.

The application of the VBA computer program also helps to avoid the potential human errors
that may arise during the manual processing of large files of traffic flow input data, which may
further increase the reliability of air pollution dispersion models. The high resolution of the
primary traffic flow data for which the program can start the processing makes this computer
program suitable for a broad range of other road links with similar or less traffic flow data
resolution.

The macrocalibration of background concentrations reduced effectively the error between the
calculated and monitored annual means of NOX, NO2, and O3 concentrations. The iterative
application of the microcalibration Eqs. (14), (12), and (15) to background concentrations
reduced effectively the error between the calculated and monitored annual means of NOX,
NO2, and O3 concentrations, and also the error between the hourly calculated and monitored
NO2 concentrations. Further investigation is required into the adaptation of the macrocalibra‐
tion and microcalibration equations for modeling the air pollution dispersion of inert pollu‐
tants, e.g., CO and PM. As chemical reactions will not be considered, the calibration equations
may reduce to one equation for the macrocalibration, and one equation for the microcalibra‐
tion, of the input background concentrations.

For the hours with missing monitored air pollution concentrations, the microcalibration
equations were unusable. This was addressed by using the macrocalibrated background
concentrations for these hours, as discussed in Section 3.2. As the macrocalibrated background
concentrations give less precise calculated concentrations on the hourly level (see Sections 3.2
for details), such a strategy may reduce the reliability of the number of exceedances and
percentiles predicted by the air pollution model. Therefore, for the hours with missing
monitored air pollution concentrations, further research is needed to investigate the impact of
using the macrocalibrated background concentrations on the reliability of the predicted
number of exceedances and percentiles by the air pollution model. In case of a significant
adverse impact, further research is recommended into the microcalibration of the rural
background concentrations of these hours, based on the meteorological data and the micro‐
calibrated background concentrations of other hours with monitored concentrations.

The inclusion of the hourly and monthly traffic profiles in the Dunkirk AQMA air pollution
model did not have a significant impact on the error between the annual means of calculated
and monitored concentrations. On the other hand, the inclusion of these traffic profiles did
reduce the RMSE between the hourly calculated and monitored NO2 concentrations by 28.4%
(see Section 4 for details). As the Dunkirk AQMA air pollution model did not include a large
number of road sources, further research is recommended to investigate the impact of
including the monthly and hourly traffic profiles on the microvalidation of an air pollution
model that has a large number of road sources. This is to correlate between the number of road
sources with traffic profiles in the air pollution model and the possible reduction in the RMSE
between the hourly calculated and monitored NO2 concentrations.
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In terms of the error between the annual means of calculated and monitored NO2 concentra‐
tions, using ADMS‐Roads with only the macro‐ or microcalibrated background concentrations
was more accurate than using ADMS‐Urban with a grid source and rural background
concentrations. Moreover, in terms of the error between the hourly calculated and moni‐
tored NO2 concentrations, using ADMS‐Roads with only the microcalibrated background
concentrations was much more accurate, although slightly less accurate with only macrocali‐
brated background concentrations (see Section 5 for details). Using the trajectory model of CRS
in ADMS‐Urban did not significantly change the error between the monitored and calculated
concentrations otherwise obtained, and so effectively did not change the comparative results
between using ADMS‐Roads and ADMS‐Urban.

Replacing the grid source with either the macro‐ or microcalibrated background concentra‐
tions can save up to 35 min of the model runtime for each output receptor point. This saving
in the model runtime, when related to an output grid with a large number of receptor points,
constitutes a significant reduction in the air pollution model runtime. The microcalibration
mathematical equations did not require any input data to start the iterations, apart from the
monitored air pollution concentrations. In comparison, the grid air pollution sources require
precise input data for the air pollution emissions which may impede their usage in air pollution
modeling of areas without a precise emissions inventory.
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