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Abstract

Many problems in mathematics, statistics, finance, biology, pharmacology, physics,
applied mathematics, economics, and chemistry involve the determination of the global
minimum of multidimensional real-valued functions. Simulated annealing methods
have been widely used for different global optimization problems. Multiple versions of
simulated annealing have been developed, including classical simulated annealing
(CSA), fast simulated annealing (FSA), and generalized simulated annealing (GSA).
After revisiting the basic idea of GSA using Tsallis statistics, we implemented a modified
GSA approach using the R package GenSA. This package was designed to solve com-
plicated nonlinear objective functions with a large number of local minima. In this
chapter, we provide a brief introduction to this R package and demonstrate its utility
by solving non-convexoptimization problems in different fields: physics, environmental
science, and finance. We performed a comprehensive comparison between GenSA and
other widely used R packages, including rgenoud and DEoptim. GenSA is useful and
can provide a solution that is comparable with or even better than that provided by
other widely used R packages for optimization.

Keywords: classical simulated annealing (CSA), fast simulated annealing (FSA), gen-
eralized simulated annealing (GSA), GenSA

1. Introduction

Determining the global minimum of a multidimensional function is the focus of many prob-

lems in statistics, biology, physics, applied mathematics, economics, and chemistry [1–6].

Although there is a wide spectrum of problems, computing the global minimum remains a

challenging task, because, for example, modern problem dimensionality is increasing.

The optimization of convex functions is usually reasonably conducted using standard

optimization approaches, such as simplex optimization, the steepest descent method, and
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the quasi-Newton method. These methods can also provide reasonable results for the study

of simple non-convex functions with only a few dimensions and well-separated local

minima.

Deterministic methods are usually faster than stochastic methods although they tend to be

trapped into a local minimum. To overcome this particular issue, stochastic methods have

been widely developed and can determine a good approximation of the global minimum

with a modest computational cost. Among stochastic methods, genetic algorithms [7], evo-

lution algorithms [8], simulated annealing (SA) [9], and taboo search [10–12] have been

successfully applied.

Among popular approaches, genetic algorithms [7] mimic the process of natural DNA evolu-

tion. In this approach, a population of randomly generated solutions is generated. The solu-

tions are encoded as strings and evolve over many iterations toward better solutions. In each

generation, the fitness of each individual in the population is evaluated, and in the next

generation, strings are generated by crossover, mutation, and selection, based on their fitness.

Differential evolution belongs to such genetic algorithms.

Ant colony optimization (ACO) [13] is another set of stochastic optimization methods, which is

inspired by ants wandering to find food for the colony. An ant starts wandering randomly

while laying down pheromone trails that will influence other ants because they will be

attracted (increase in probability) by the trail, and if they eventually locate food, will return

and reinforce the trail. To avoid the algorithm converging to local minima, the pheromone trail

is set to evaporate proportionally to the time it takes to traverse the trail to decrease its

attractiveness. As a consequence, the pheromone density of short paths becomes higher than

that of longer paths. The design of ACO perfectly matches graph-based optimization (e.g.,

traveling salesman problem), but it can be adapted to determine the global minimum of real-

valued functions [14] by allowing local random moves in the neighborhood of the current

states of the ant.

The SA algorithm was inspired by the annealing process that takes place in metallurgy,

whereby annealing a molten metal causes it to achieve its global minimum in terms of thermo-

dynamic energy (crystalline state) [9]. In the SA algorithm, the objective function is treated as

the energy function of a molten metal, and one or more artificial temperatures are introduced

and gradually cooled, which is analogous to the annealing technique, to attempt to achieve the

global minimum. To escape from local minima, this artificial temperature (or set of tempera-

tures) acts as a source of stochasticity. Following the metallurgy analogy, at the end of the

process, the system is foreseen to reside inside the attractive basin of the global minimum (or in

one of the global minima if more than one global minimum exists). In classical simulated

annealing (CSA), the visiting distribution is a Gaussian function (a local search distribution)

for each temperature. It has been observed that this distribution is not optimal for moving

across the entire search space [5]. Generalized simulated annealing (GSA) was developed to

overcome this issue by using a distorted Cauchy-Lorentz distribution.

For a more extensive review of stochastic optimization algorithms, see the review provided by

Fouskakis and Draper [15].
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The R language and environment for statistical computing will be the language of choice in

this chapter because it enables a fast implementation of algorithms, access to a variety of

statistical modeling packages, and easy-to-use plotting functionalities. These advantages make

the use of R preferable in many situations to other programming languages, such as Java, C++,

Fortran, and Pascal [16].

In this chapter, we elaborate further on the background and improvements of GSA and the use

of the R package GenSA [17], which is an implementation of a modified GSA. We will also

discuss the performance of GenSA and show that it outperforms the genetic algorithm (R

package rgenoud) and differential evolution (R package DEoptim) in an extensive testbed

comprising 134 testing functions based on the success rate and number of function calls. The

core function of GenSA is written in C++ to ensure that the package runs as efficiently as

possible. The utility of this R package and its use will be presented by way of several applica-

tions, such as the famous Thomson problem in physics, non-convex portfolio optimization in

finance, and kinetic modeling of pesticide degradation in environmental science.

2. Method

As mentioned above, SA methods attempt to determine the global minimum of any objective

function by simulating the annealing process of a molten metal. Given an objective function

f ðxÞ with x ¼ ðx1,x2,…,xnÞ
T , we attempt to determine its global minimum using SA. The

general procedure for SA is as follows:

1. Generate an initial state x0 ¼ ðx01,x
0
2,…,x0nÞ

T randomly and obtain its function value

E0 ¼ f ðx0Þ. An initial temperature T0 is set. imax is set to be any big integer.

2. For step i ¼ 1 to imax,

• The temperature Ti is decreased according to some cooling function.

• Generate a new state xi ¼ xi−1 þ Δx, where Δx follows a predefined visiting distribution

(e.g., Gaussian distribution). Ei ¼ f ðxiÞ and ΔE ¼ Ei
−Ei−1.

• Calculate the probability p of xi−1 ! xi.If p < randomð0, 1Þ, xi is set back to its previous

state xi−1 and Ei is also set back to Ei−1.

3. Output the final state ximax and its function value Eimax.

We provide more details of SA methods as follows.

2.1. Classical simulated annealing (CSA)

According to the process of cooling and the visiting distribution, SA methods can be classified

into several categories, amongwhich CSA [9], fast simulated annealing (FSA) [18], and the

GSA [19] are the most common.
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In CSA, proposed by Kirkpatrick et al., the visiting distribution is a Gaussian function, which

is a local search distribution [5, 19]:

gðΔxÞ ∝ exp −
ðΔxÞ2

T

 !

, (1)

where Δx is the trial jump distance of variable x and T is an artificial temperature in the

reduced unit. In a local search distribution, for example, a Gaussian distribution Δx is always

localized around zero. The jump is accepted if it is downhill of the energy/fitness/objective

function. If the jump is uphill, it might be accepted according to an acceptance probability,

which is computed using the Metropolis algorithm [20]:

p ¼ min 1, exp −
ΔE

T

� �� �

: (2)

Geman and Geman [21] showed that for the classical case, a necessary and sufficient condition

for having probability 1 of ending at the global minimum is that the temperature decreases

logarithmically with the simulation time, which is impossible in practice because this would

dramatically increase the computational time.

2.2. Fast simulated annealing (FSA)

In 1987, Szu and Hartley proposed a method called FSA [18], in which the Cauchy-Lorentz

visiting distribution, that is, a semi-local search distribution, is introduced:

gðΔxÞ ∝
T

�

T2 þ ðΔxÞ2
�

Dþ1
2

, (3)

whereD is the dimension of the variable space. In a semi-local search distribution, for example,

the Cauchy-Lorentz distribution, the jumps Δx are frequently local, but can occasionally be

quite long. The temperature T in FSA decreases with the inverse of the simulation time, and

the acceptance algorithm is the Metropolis algorithm shown in Eq.(2).

2.3. Generalized simulated annealing (GSA)

2.3.1. Introduction to GSA

A generalization of classical statistical mechanics was proposed by Tsallis and Stariolo [19]. In

the Tsallis formalism, a generalized statistic is built from generalized entropy:

sq ¼ k
1−∑ p

q
i

q−1
, (4)

where q is a real number, i is the index of the energy spectrum, and sq tends to information

entropy:
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s ¼ −k∑ pilnpi (5)

when q ! 1. Maximizing the Tsallis entropy with the constraints

∑ pi ¼ 1, and

∑ p
q
i εi ¼ const,

(6)

where εi is the energy spectrum, and the generalized probability distribution is determined

to be

pi ¼
½1−ð1−qÞβεi�

1
1−q

zq
, (7)

where zq is the normalization constant that ensures that pi integrates to 1. This distribution

pointwise converges to the Gibbs-Boltzmann distribution, where q tends to 1.

The GSA algorithm [19] refers to the generalization of both CSA and FSA according to Tsallis

statistics. It uses the Tsallis-Stariolo form of the Cauchy-Lorentz visiting distribution, whose

shape is controlled by the parameter qv:

gqv

�

ΔxðtÞ
�

∝

½Tqv
ðtÞ�

− D
3−qv

1þ ðqv−1Þ

�

ΔxðtÞ

�2

½Tqv
ðtÞ�

2
3−qv

2

6

4

3

7

5

1
qv−1

þD−1
2

: (8)

Please note that qv also controls the rate of cooling:

Tqv
ðtÞ ¼

2qv−1−1

ð1þ tÞqv−1−1
Tqv

ð1Þ, (9)

where Tqv
is the visiting temperature. In turn, a generalized Metropolis algorithm is used for

the acceptance probability:

pqa
¼ min 1, ½1−ð1−qaÞβΔE�

1
1−qa

n o

, (10)

where β ¼ 1=ðKTqa
Þ. The acceptance probability is controlled by the artificial temperature, Tqa

.

When qv ¼ 1 and qa ¼ 1, then GSA is exactly CSA. Another special instance is given by qv ¼ 2

and qa ¼ 1 for which GSA is exactly FSA. Asymptotically, GSA has a similar behavior thanthe

stochastic steepest descentas T ! 0. A faster cooling than CSA and FSA is achieved when

qv > 2.

It has been shown in a few instances that GSA is superior to FSA and CSA. Xiang et al.

established that a pronounced reduction in the fluctuation of energy and a faster convergence

Generalized Simulated Annealing
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to the global minimum are achieved in the optimization of the Thomson problem and Nickel

cluster structure [4–6]. Lemes et al. [22] observed a similar trend when optimizing the structure

of a silicon cluster.

2.3.2. Improvement of GSA

A simple technique to accelerate convergence is as follows:

Tqa
¼

Tqv

t
(11)

where Tqa
is the acceptance temperature, Tqv

is the visiting temperature, and t is the number of

time steps. Our testing shows that this simple technique accelerates convergence [6].

The performance of GSA can be further improved by combining GSA with a local search

method, large-scale bound-constrained Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

[23] for a smooth function, or Nelder-Mead [24] for a non-smooth function. A local search is

performed at the end of each Markov chain for GSA.

3. Results

The GenSA R package has been developed and added to the toolkit for solving optimization

problems in the Comprehensive R Archive Network (CRAN) R packages repository. The

package GenSA has proven to be a useful tool for solving global optimization problems [17].

3.1. Usage

The GenSA R package provides a unique function called GenSA whose arguments were

described in the associated help [25]:

par: Numeric vector. Initial values for the parameters to be optimized over. Default value is

NULL, in which case, the initial values will be generated automatically.

lower: Numeric vector with a length of par. Lower bounds for the parameters to be optimized

over.

upper: Numeric vector with a length of par. Upper bounds for the parameters to be optimized

over.

fn: A function to be minimized, where the first argument is the vector of parameters over

which minimization is to take place. It should return a scalar result. The function has to

always return a numerical value; however, not applicable (NA) and infinity are supported.

...: Allows the user to pass additional arguments into fn.
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control: A list of control parameters, discussed below. The control argument is a list that can be

used to control the behavior of the algorithm. Some components of control are the following:

• maxit: Integer. Maximum number of iterations of the algorithm. Default value is 5000,

which could be increased by the user for the optimization of a very complicated objective

function.

• threshold.stop: Numeric. The program will stop when the objective function value is≤

threshold.stop. Default value is NULL.

• smooth: Logical. TRUE when the objective function is smooth, or differentiable almost

everywhere, and FALSE otherwise. Default value is TRUE.

• max.call: Integer. Maximum number of calls of the objective function. Default value is

10,000,000.

• max.time: Numeric.Maximum running time in seconds.

• temperature: Numeric. Initial value for the temperature.

• visiting.param: Numeric.Parameter for the visiting distribution.

• acceptance.param: Numeric.Parameter for the acceptance distribution.

• verbose: Logical. TRUE means that messages from the algorithm are shown. Default value

is FALSE.

• trace.mat: Logical. Default value is TRUE, which means that the trace matrix will be

available in the returned value of the GenSA call.

The default values of the control components are set for a complicated optimization problem.

For typical optimization problems with medium complexity, GenSA can determine a reason-

able solution quickly; thus,using the variable threshold.stop to the expected function value is

recommended to make GenSA stop at an earlier stage. A maximum run time can be also set by

max.time argument or max.call argument for setting the maximum run time or number of

calls, respectively.

3.2. Performance

An extensive performance comparison of currently available R packages for continuous global

optimization problems has been published [26]. In this comparison, 48 benchmark functions

were used to compare 18 R packages for continuous global optimization. Performance was

measured in terms of the quality of the solutions determined and speed. The author concluded

that GenSA and rgenoud are recommended in general for continuous global optimization [26].

Based on this conclusion, we set out to perform a more extensive performance test by includ-

ing more benchmark functions and the additional algorithm DEoptim. The SciPy Python

scientific toolkit provides an extensive set of 196 benchmark functions. Because these 196
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benchmark functions are coded in Python, we had to convert the Python code to R code. As a

result, a subset containing 134 functions was available for this test. One hundred runs using a

random initial starting point were performed for every combination of the 134 benchmark

functions and the aforementioned three methods. We used a local search method to further

refine the best solution provided by Deoptim, because this technique provides a more accurate

final result [17]. The default values of the parameters of every package were used in this

comparison. A tolerance of 1e-8 was used to establish whether the algorithm determines the

global minimum value.

The reliability of a method can be measured by the success rate%, which is defined as the

number of successful runs over 100 runs. For each testing function, the number of function

calls required to achieve the global minimum was recorded for every method, and we refer to

this as the number of function calls. Please note that rgenoud required a longer time to

complete 100 runs compared with GenSA and DEoptim. Table 1 shows the success rate% and

the average number of function calls (in parentheses).

The mean of the success rate% over all the benchmark functions is 92, 85, and 86% for GenSA,

DEoptim, and rgenoud, respectively. Because the number of function calls changes dramati-

cally, the median rather than the mean of the number of function calls is provided: 244.3 for

GenSA, 1625.9 for Deoptim, and 1772.1 for rgenoud.

A heatmap of the success rate% for GenSA, DEoptim, and rgenoud is displayed in Figure 1.

The color scaling from red to green represents the success rate% from 0 to 100. Clearly, GenSA

has a larger green region (high success rate%) than DEoptim and rgenoud.

Both the success rate% and number of function calls show that GenSA performed better than

DEoptim and rgenoud in the testbed composed of 134 benchmark functions.

3.3. Applications

3.3.1. The Thomson problem in physics

The physicist J.J. Thomson posed the famous Thomson problem after proposing his plum

pudding atomic model, based on his knowledge of the existence of negatively charged elec-

trons within neutrally charged atoms [27]. The objective of the Thomson problem is to deter-

mine the minimum electrostatic potential energy configuration of N equal point charges

constrained at the surface of a unit sphere that repel each other with a force given by Cou-

lomb's law. The Thomson model has been widely studied in physics [28–31]. In the Thomson

model, the energy function is

E ¼
1

2
∑
j≠i

1

j r
!
i− r

!
jj

: (12)

The number of metastable structures (local minima) of the Thomson problem grows exponen-

tially with N [28]. The region containing the global minimum is often small compared with

those of other minima [30]. The Thomson problem has been selected as a benchmark for global
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Function name GenSA DEoptim-LBFGS rgenoud

AMGM 100% (93.0) 100% (62.6) 100.0% (88.8)

Ackley01 100% (746.2) 100% (1710.0) 100.0% (1840.1)

Ackley02 100% (182.9) 100% (1703.6) 100.0% (2341.6)

Ackley03 100% (352.5) 100% (1420.2) 100.0% (1860.9)

Adjiman 100% (33.3) 100% (1133.9) 100.0% (1677.5)

Alpine01 100% (756.0) 70% (2756.8) 95.0% (46852.2)

Alpine02 100% (56.4) 100% (913.6) 100.0% (1688.0)

BartelsConn 100% (263.1) 100% (1539.8) 100.0% (2343.5)

Beale 100% (145.6) 100% (1311.8) 100.0% (1711.0)

BiggsExp02 100% (85.6) 100% (763.3) 100.0% (1710.5)

BiggsExp03 100% (190.7) 100% (2614.4) 100.0% (1975.9)

BiggsExp04 100% (3498.8) 88% (8182.5) 100.0% (4234.5)

BiggsExp05 98% (40117.8) 14% (10864.2) 17.0% (13871.5)

Bird 100% (112.3) 100% (1777.3) 100.0% (1702.9)

Bohachevsky1 100% (875.1) 100% (1107.5) 100.0% (2673.1)

Bohachevsky2 100% (1372.9) 100% (1155.2) 76.0% (2554.5)

Bohachevsky3 100% (623.4) 100% (1342.4) 96.0% (2596.9)

BoxBetts 100% (129.2) 100% (1866.3) 100.0% (2018.8)

Branin01 100% (42.2) 100% (1747.6) 100.0% (1694.9)

Branin02 100% (1495.7) 28% (2830.9) 96.0% (1752.3)

Brent 100% (11.0) 100% (987.5) 100.0% (1687.9)

Bukin02 100% (39.9) 100% (1477.4) 100.0% (1679.7)

Bukin04 100% (217.9) 100% (1029.4) 100.0% (1744.2)

Bukin06 0% (NA) 0% (NA) 0.0% (NA)

CarromTable 100% (119.5) 100% (2040.9) 100.0% (1729.6)

Chichinadze 100% (517.4) 100% (1063.9) 92.0% (2219.8)

Colville 100% (4515.8) 100% (8230.9) 100.0% (2996.1)

CosineMixture 100% (22.0) 100% (3875.3) 100.0% (1670.6)

CrossInTray 100% (70.8) 100% (1512.8) 100.0% (1772.1)

CrossLegTable 0% (NA) 0% (NA) 2.0% (51829.0)

CrownedCross 0% (NA) 0% (NA) 2.0% (16045.0)

Cube 100% (1717.2) 100% (2030.3) 52.0% (21649.8)

DeVilliersGlasser01 100% (2343.8) 0% (NA) 1.0% (43919.0)

DeVilliersGlasser02 2% (173501.0) 0% (NA) 0.0% (NA)

Deb01 100% (57.1) 100% (4000.0) 100.0% (1700.8)

Deb03 100% (78.8) 100% (4028.9) 100.0% (1708.1)
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Function name GenSA DEoptim-LBFGS rgenoud

Decanomial 100% (1519.3) 100% (741.4) 100.0% (2050.8)

DeckkersAarts 100% (74.6) 100% (1525.0) 100.0% (1988.7)

Dolan 100% (2504.7) 1% (10293.0) 82.0% (25067.4)

DropWave 100% (3768.7) 85% (4009.8) 83.0% (2973.3)

Easom 97% (5077.5) 100% (1343.0) 100.0% (1875.7)

EggCrate 100% (122.9) 100% (912.2) 100.0% (1697.2)

ElAttarVidyasagarDutta 100% (675.7) 93% (1625.9) 100.0% (2115.7)

Exp2 100% (85.3) 100% (781.2) 100.0% (1707.7)

Exponential 100% (20.6) 100% (580.3) 100.0% (1682.5)

FreudensteinRoth 100% (395.4) 83% (2620.7) 100.0% (1700.9)

Gear 100% (2225.8) 100% (1118.0) 93.0% (1609.6)

Giunta 100% (39.6) 100% (592.3) 100.0% (1686.6)

GoldsteinPrice 100% (158.7) 100% (1023.0) 100.0% (1703.5)

Gulf 100% (1739.0) 100% (4076.4) 1.0% (1810.0)

Hansen 100% (149.7) 100% (104.0) 100.0% (132.0)

HimmelBlau 100% (53.7) 100% (2384.8) 100.0% (1698.7)

HolderTable 100% (138.0) 100% (2010.3) 100.0% (1701.7)

Hosaki 100% (49.8) 100% (583.2) 100.0% (1699.5)

Infinity 100% (225.8) 100% (113.4) 100.0% (492.0)

JennrichSampson 0% (NA) 0% (NA) 0.0% (NA)

Keane 100% (21.4) 100% (679.1) 100.0% (629.5)

Leon 100% (128.0) 100% (1338.2) 35.0% (2156.5)

Levy05 100% (152.8) 100% (144.7) 100.0% (224.6)

Levy13 100% (867.3) 100% (1138.5) 100.0% (1771.7)

Matyas 100% (33.8) 100% (967.7) 100.0% (1702.4)

McCormick 100% (42.2) 100% (747.8) 100.0% (1705.4)

Michalewicz 100% (97.3) 100% (69.0) 100.0% (157.3)

MieleCantrell 100% (2935.1) 100% (1942.7) 100.0% (3438.9)

Mishra03 81% (138334.7) 0% (NA) 24.0% (5745.0)

Mishra04 0% (NA) 0% (NA) 13.0% (1833.2)

Mishra05 100% (1289.1) 77% (1396.9) 100.0% (1680.0)

Mishra06 0% (NA) 0% (NA) 0.0% (NA)

Mishra07 100% (38.9) 100% (3055.9) 100.0% (1679.7)

Mishra08 100% (1519.3) 100% (741.4) 100.0% (1900.8)

Mishra09 100% (80.0) 85% (4832.0) 99.0% (12356.0)
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Function name GenSA DEoptim-LBFGS rgenoud

Mishra11 100% (30.9) 100% (3152.2) 100.0% (1613.1)

MultiModal 100% (134.5) 100% (481.8) 100.0% (1691.6)

NewFunction01 1% (243864.0) 0% (NA) 27.0% (9823.3)

NewFunction02 0% (NA) 0% (NA) 33.0% (12260.0)

Parsopoulos 100% (29.9) 100% (3267.7) 100.0% (1683.9)

Paviani 100% (423.3) 100% (18764.2) 100.0% (2168.7)

PenHolder 100% (94.3) 100% (1391.3) 100.0% (1701.6)

Plateau 100% (35.5) 100% (22.4) 100.0% (27.6)

Powell 100% (692.4) 100% (6501.1) 100.0% (2052.4)

Price01 100% (27.4) 100% (2107.0) 100.0% (1686.6)

Price02 100% (1242.4) 92% (4031.3) 85.0% (2087.7)

Price03 100% (3840.5) 64% (2574.6) 56.0% (1855.1)

Price04 100% (440.1) 100% (1075.4) 94.0% (6413.9)

Qing 0% (NA) 0% (NA) 0.0% (NA)

Quadratic 100% (26.0) 100% (872.2) 100.0% (1695.8)

Quintic 100% (928.2) 76% (2694.1) 36.0% (42496.5)

Rastrigin 100% (482.4) 98% (3753.6) 100.0% (1840.2)

Ripple01 100% (5742.4) 71% (4053.3) 99.0% (4758.6)

Ripple25 100% (414.7) 99% (3165.8) 100.0% (1771.5)

RosenbrockModified 100% (1343.5) 24% (3625.6) 95.0% (2329.0)

RotatedEllipse01 100% (26.0) 100% (1345.8) 100.0% (1699.9)

RotatedEllipse02 100% (28.0) 100% (1218.1) 100.0% (1700.8)

Salomon 95% (9790.3) 86% (4050.4) 21.0% (3143.1)

Schaffer01 99% (7105.6) 92% (3092.8) 59.0% (4520.3)

Schaffer02 100% (2078.9) 100% (2125.2) 100.0% (2677.8)

Schaffer03 100% (2786.3) 91% (4096.2) 99.0% (3236.3)

Schaffer04 100% (2920.9) 98% (4063.5) 86.0% (6505.1)

Schwefel01 100% (131.2) 100% (651.8) 100.0% (1734.5)

Schwefel04 100% (63.9) 100% (842.8) 100.0% (1698.8)

Schwefel06 100% (3536.0) 100% (2302.3) 100.0% (1790.4)

Schwefel20 100% (2079.8) 100% (1670.2) 100.0% (1779.1)

Schwefel21 100% (2158.6) 100% (1853.2) 100.0% (1774.8)

Schwefel22 100% (2772.0) 100% (1678.6) 100.0% (1775.0)

Schwefel26 100% (131.3) 100% (1648.2) 100.0% (1687.5)

Schwefel36 100% (361.3) 100% (1298.7) 100.0% (1930.6)
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optimization algorithms in a number of previous studies [4, 5, 28, 32]. The Thomson problem

has been solved by both deterministic methods, including steepest descent [28], and stochastic

methods, including (but not limited to) constrained global optimization (CGO) [29], the GSA

algorithm [4, 5], genetic algorithms [30], and the Monte Carlo method [31, 33]. Typically,

deterministic methods with multiple starts can provide a good solution when there are fewer

point charges, whereas stochastic methods have to be used when N is large.

Function name GenSA DEoptim-LBFGS rgenoud

SixHumpCamel 100% (83.3) 100% (909.2) 100.0% (1695.7)

Sodp 100% (64.3) 100% (477.7) 100.0% (1697.5)

Sphere 100% (17.4) 100% (730.2) 100.0% (1683.2)

Step 100% (471.0) 100% (219.3) 100.0% (1131.5)

Step2 100% (433.4) 100% (222.0) 100.0% (1177.1)

StyblinskiTang 100% (94.7) 100% (861.4) 100.0% (1824.2)

TestTubeHolder 100% (839.0) 98% (3957.5) 100.0% (2088.5)

ThreeHumpCamel 100% (86.3) 100% (817.5) 100.0% (1699.0)

Treccani 100% (49.1) 100% (1015.2) 100.0% (1696.4)

Trefethen 64% (20972.8) 0% (NA) 46.0% (29439.5)

Trigonometric02 100% (1766.2) 100% (1319.6) 99.0% (4809.6)

Ursem01 100% (47.7) 100% (682.1) 100.0% (1753.8)

Ursem03 100% (584.0) 100% (1645.7) 100.0% (1777.7)

Ursem04 100% (210.2) 100% (1372.3) 100.0% (1847.3)

UrsemWaves 100% (2565.0) 26% (4025.8) 50.0% (1674.8)

VenterSobiezcczanskiSobieski 100% (698.3) 100% (1748.0) 100.0% (2004.8)

Vincent 100% (41.4) 100% (3013.4) 100.0% (1703.5)

Wavy 100% (535.1) 100% (3110.8) 100.0% (1745.0)

WayburnSeader01 100% (156.1) 96% (2258.3) 93.0% (16665.5)

WayburnSeader02 100% (262.8) 100% (1772.3) 100.0% (1826.0)

Wolfe 100% (50.3) 100% (3252.9) 100.0% (1720.7)

XinSheYang02 100% (1048.0) 87% (2284.5) 100.0% (1768.5)

XinSheYang04 100% (457.0) 88% (3329.7) 100.0% (1777.5)

Xor 100% (26204.2) 48% (18245.1) 100.0% (1852.9)

YaoLiu09 100% (482.3) 98% (3753.6) 100.0% (1824.3)

Zacharov 100% (59.7) 100% (944.3) 100.0% (1696.6)

Zettl 100% (123.4) 100% (846.8) 100.0% (1712.5)

Zirilli 100% (131.0) 99% (702.3) 100.0% (1695.1)

Table 1. The success rate% and average number of function calls (in parentheses) for GenSA, DEoptim, and rgenoud.
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Figure 1. Heat map of the success rate% for GenSA, DEoptim, and rgenoud.
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We can define an R function for the Thomson problem as follows:

>Thomson.fn<- function(x) {

fn.call<<- fn.call + 1

x <- matrix(x, ncol = 2)

y <- t(apply(x, 1, function(z) {

c(sin(z [1]) * cos(z [2]),

sin(z [1]) * sin(z [2]), cos(z [1])) }))

n <- nrow(x)

tmp<- matrix(NA, nrow = n, ncol = n)

index<- cbind(as.vector(row(tmp)), as.vector(col(tmp)))

index<- index [index [, 1] < index [, 2],, drop=F]

rdist<- apply(index, 1, function(z) {

tmp<- 1/sqrt(sum((y [z [1],] - y [z [2],])^2))

})

res<- sum(rdist)

return(res)

}

In this example, we chose six point charges because our purpose is only to show how to use

our package GenSA. The global energy minimum of six equal point charges on a unit sphere is

9.98528137 [28].

We applied GenSA with default settings to the Thomson problem. As the number of point

charges is small, GenSA can determine the global minimum easily. We set the maximum

number of function calls allowed, max.call, to 600:

>n.particles<- 6 # regular octahedron with global minimum

9.98528137

>lower.T<- rep(0, 2 * n.particles)

>upper.T<- c(rep(pi, n.particles), rep(2 * pi, n.particles))

>require(GenSA)

>options(digits = 9)

>set.seed(1234)

>fn.call<<- 0

>out.GenSA<- GenSA(par = NULL, lower = lower.T, upper = upper.T,

fn = Thomson.fn, control = list(max.call=600))

>print(out.GenSA[c(“value”, “counts”)])

$value

[1]9.98528137

$counts

[1]600

>cat(“GenSA call function”, fn.call, “times.\n”)

GenSA call function 600 times.

The global minimum 9.98528137 for six point charges is determined within 600 function calls.
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3.3.2. Kinetic modeling of pesticide degradation

Various types of pesticides have been widely used in modern agriculture. It is important to

calculate the concentration of a pesticide in groundwater and surface water. We will show how

GenSA can be used to fit a degradation model for a parent compound with one transformation

product. All the data and models are from the R packages mkin [34] and FOCUS (2006) [35].

After loading the library, we obtain the data (FOCUS Example Dataset D). The observed

concentrations are in the column named “value” at the time specified in column “time” for

the two observed variables named “parent” and “m1.”

>require(mkin)
>require(GenSA)
>require(deSolve)
>options(digits = 9)
>set.seed(1234)
>str(FOCUS_2006_D)
'data.frame':44 obs. of3 variables:
$ name : Factor w/2 levels “m1”,”parent”: 2 2 2 2 2 2 2 2 2 2 ...
$ time :num0 0 1 1 3 3 7 7 14 14 ...
$ value: num99.5 102 93.5 92.5 63.2 ...

The measured concentration of parent and m1 change with time is displayed in the lower

panel of Figure 2.

According to the kinetic model displayed in the upper panel of Figure 2, we define the

derivative function as follows:

>df<- function(t, y, parameters) {
+d_parent<- -parameters [”k_parent_sink”] * y [”parent”]-
+parameters [”k_parent_m1”]* y [”parent”]
+d_m1 <- parameters [”k_parent_m1”]* y [”parent”]-
+parameters [”k_m1_sink”]* y [”m1”]
+return(list(c(d_parent, d_m1)))
+ }

There is one initial concentration, parent_0, and three kinetic parameters, k_parent_m1,

k_parent_sink, and k_m1_sink, whose values need to be fitted out by fitting the concentration

curves. The initial concentration of m1, m1_0, is always zero. We define the objective function,

fn, as the sum of the squares of residuals (deviations predicted from observed values for both

the parent and m1):

>fn<- function(x,
+names_x = c(“parent_0”, “k_parent_sink”, “k_parent_m1”,
“k_m1_sink”),

+names_y = c(“parent”, “m1”),
+names_parameters = c(“k_parent_sink”, “k_parent_m1”,
“k_m1_sink”),
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+tspan = if (!is.null(dat.fitting))
+sort(unique(dat.fitting [[”time”]])) else NULL,
+df, dat.fitting = NULL) {
+m1_0 = 0
+names(x) <- names_x
+y0 <- c(x [”parent_0”], m1_0)
+names(y0) <- names_y
+parameters<- x [c(“k_parent_sink”, “k_parent_m1”, “k_m1_sink”)]
+stopifnot(!is.null(tspan))
+out<- ode(y0, tspan, df, parameters)
+if (is.null(dat.fitting)) {
+rss<- out
+ }else {
+rss<- sum(sapply(c(“parent”, “m1”), function(nm) {
+o.time<- as.character(dat.fitting [dat.fitting$name == nm,
”time”])
+sum((out [, nm][match(o.time, out [, “time”])] -
+dat.fitting [dat.fitting$name == nm, “value”])^2,
na.rm = TRUE)
+}))
+}
+return(rss)
+ }

Then, we use GenSA to estimate the four parameters. As the model is not complicated, we

limit the running time of GenSA to 5seconds by setting max.time=5:

>res<- GenSA(fn = fn, lower = c(90, rep(0.001, 3)),
+upper = c(110, rep(0.1, 3)),
+control = list(max.time = 5), df = df,
+dat.fitting = FOCUS_2006_D)
>names(res$par) <- c(“parent_0”, “k_parent_sink”, “k_parent_m1”,
“k_m1_sink”)
>print(round(res$par, digits = 6))
parent_0 k_parent_sinkk_parent_m1k_m1_sink
99.5984910.0479200.0507780.005261

GenSA successfully determines the correct value of the initial concentration of the parent and

the three kinetic parameters. The fitting curves for the parent and m1 are displayed in the

lower panel of Figure 2.

3.3.3. Finance: risk allocation portfolios

Portfolio selection problems were addressed by mean-risk models in the 1950s. The most

popular measures of downside risk are the value-at-risk (VaR) and conditional VaR(CVaR).

Portfolio weights for which the portfolio has the lowest CVaR and each investment can
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contribute at most 22.5% to the total portfolio CVaR risk were estimated using differential

evolution algorithms in Mullen et al. [16] and Ardia et al. [36]. The code for the objective

function in portfolio optimization is rewritten below from Ardia et al. [36]:

>library(“quantmod”)

> tickers <- c(“GE”, “IBM”, “JPM”, “MSFT”, “WMT”)

>getSymbols(tickers, from = “2000-12-01”, to = “2010-12-31”)

[1] “GE” “IBM” “JPM” “MSFT” “WMT”

> P <- NULL

>for(ticker in tickers) {

Figure 2. Kinetic modeling of pesticide degradation. Upper panel: illustration of pesticide degradation model. Lower

panel: experimental concentration data and fitting curves for parent and m1.
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+tmp<- Cl(to.monthly(eval(parse(text = ticker))))
+P <- cbind(P, tmp)
+ }
>colnames(P) <- tickers
> R <- diff(log(P))
> R <- R [-1,]
> mu <- colMeans(R)
> sigma <- cov(R)
>library(“PerformanceAnalytics”)
>pContribCVaR<- ES(weights = rep(0.2, 5),
+method = “gaussian”, portfolio_method = “component”,
+mu = mu, sigma = sigma)$pct_contrib_ES
>obj<- function(w) {
+if (sum(w) == 0) {w <- w + 1e-2 }
+w <- w/sum(w)
+CVaR<- ES(weights = w,
+method = “gaussian”, portfolio_method = “component”,
+mu = mu, sigma = sigma)
+tmp1 <- CVaR$ES
+tmp2 <- max(CVaR$pct_contrib_ES - 0.225, 0)
+out <- tmp1 + 1e3 * tmp2
+return(out)
+}

GenSA can be used to determine the global optimum of this function using a bounded search

domain from 0 to 1 values for the five parameters to be optimized:

>library(GenSA)
>lb<- rep(0, 5) # lower bounds, minimum values for all 5 parameters
are 0
>ub<- rep(1, 5) # upper bounds, maximum values for all 5 parameters
are 1
> out1.GenSA <- GenSA(fn = obj, lower = lb, upper = ub)

For non-differentiable objective functions, the smooth parameter in the control argument can

be set to FALSE, which means that the Nelder-Mead method is used in the local search:

> out2.GenSA <- GenSA(fn=obj, lower=rep(0, 5), upper=rep(1, 5),
+control=list(smooth=FALSE, max.call=3000))
The max.call parameter is set to 3000 to make the algorithm stop
earlier:
> out2.GenSA$value
[1] 0.1141484884
> out2.GenSA$counts
[1] 3000
>cat(“GenSA call functions”, fn.call.GenSA, “times.\n”)
GenSA call functions 3000 times.
>wstar.GenSA<- out2.GenSA$par
>wstar.GenSA<- wstar.GenSA/sum(wstar.GenSA)

Computational Optimization in Engineering - Paradigms and Applications42



>rbind(tickers, round(100 * wstar.GenSA, 2))

[,1] [,2] [,3] [,4] [,5]

tickers “GE” “IBM” “JPM” “MSFT” “WMT”

”18.92” “21.23” “8.33” “15.92” “35.6”

>100 * (sum(wstar.GenSA * mu) - mean(mu))

[1] 0.03790568876

GenSA determined a minimum of 0.1141484884 within 3000 function calls.

4. Discussion and conclusions

The discrete optimization problem, in particular, the feature selection problem, exists exten-

sively. GSA can also be used for the discrete problem. Please refer to [37] for details.

GSA is a powerful method for the non-convex global optimization problem. We developed an

R package GenSA based on Tsallis statistics and GSA. In an extensive performance testbed

composed of 134 benchmark functions, GenSA provided a higher average success rate% and a

smaller median of the number of function calls compared with two widely recognized R

packages: DEoptim and rgenoud. GenSA is useful and can provide a solution that is compara-

ble with or even better than that provided by other widely used R packages for optimization.

R is very good for program prototype. When there is a need for heavy computation, other

computational languages, such as C/C++, Fortran, Java, and Python,are recommended. Con-

sidering both speed and usability, aPython version of GSA, PyGenSA, is being developed and

will be released within the SciPy scientific toolkitat the end of 2016.
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