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Abstract

The thermoelectric material ZnSb has been studied intensively in recent years and has
shown promising features. The other zinc-antimonide compound, Zn4Sb3 has remark-
able low thermal conductivity, but it is accompanied with phase transitions at moderate
temperature and has inherent stability problems. Compared to that, ZnSb is relatively
phase stable and has a relative high charge carrier mobility and Seebeck coefficient, thus
yielding a decent power factor. Meanwhile, its thermal conductivity can be reduced by
means of nanostructuring, thus giving a good figure of merit at moderate temperatures,
400–600K. Many researchers have dedicated their efforts to study and improve ZnSb
properties, and the figure of merit has been reported to be above one. Still, ZnSb as a
thermoelectric material has features and behaviours that are not well-understood. The
behaviour and properties of its intrinsic defects are not understood, but have interested
researchers in recent years. This chapter intends to offer a comprehensive review on
ZnSb to the readers. By combining own experiences from research on thermoelectric
materials, the authors address the prospect for improving the thermoelectric properties
of ZnSb and the concerns of transferring lab results to manufacturing.

Keywords: zinc antimonide, impurity band conduction, intrinsic defects, vacancies,
p-type

1. Introduction

The thermoelectric effect in ZnSb has been known for almost two centuries. The first
documented encounter can be traced back to the original work of Seebeck on thermoelectric
current generation on different materials and alloy pairs in 1819–1827 [1, 2]. Quantitative
measurements of the Seebeck voltage of ZnSb have been carried out by Becquerel in 1866 [3],
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and thermoelectric generators using Zn-Sb alloy were fabricated for practical purposes since
1870 [4]. From the early twentieth century, many attempted to solve the crystal structure, but
were barely successful [5–7], until Almin, finally, in 1948 determined the crystal structure of
ZnSb together with CdSb [8]. A large interest in ZnSb followed and was benefitted by the
progress on semiconductors since the 1950s. Figure 1 shows a thermoelectric device made
by ZnSb in the 1950s. It shows a solar thermoelectric generator prototype built by p-ZnSb
and n-Bi91Sb9 with an overall efficiency of 0.63% [9]. Around the same time, a thermoelectric
refrigerator made of n-PbTe and p-ZnSb was demonstrated in the USSR in the 1950s [10].
However, research reporting on ZnSb faded in the 1970s, and there was little improvement
in terms of its efficiency. In recent years, renewed attention appeared due to a
nanostructuring boom in material science, and the thermoelectric properties of ZnSb have
been intensively studied and improved. There are also other energy-related applications of
ZnSb actively being explored, such as electrodes for rechargeable Li-ion batteries [11], or
phase change memory cells [12].

Table 1 lists some reported figure of merit zT. The performance of ZnSb strongly depends on
doping concentration and operation temperature. In addition, preparation-induced defects
(phase impurity, oxidation and grain size) and intrinsic defects (vacancies, interstitials, clus-
ters) influence strongly the material's performance. These need to be controlled in order to
bring further progress, and in general, handling of the material has a learning curve and a
detailed understanding of the material, per se, is needed.

Figure 1. Solar thermoelectric generator. (Reprinted from [9], with the permission of AIP Publishing.) (a) Open circuit emf

(Seebeck coefficient) as a function of temperature on ZnSb-alloys comparing with other thermal couples. Materials:
(1) ZnSb (Sn, Ag, Bi)-Bi91Sb9, (2) ZnSb (Sn, Ag, Bi)-constantan, (3) Bi91Sb9Sn5-Bi91Sb9, (4) Chromel P-constantan.
(b) Thermoelectric efficiency on aforesaid materials; (c) Solar radiation thermopile contained 25 junctions built by p-ZnSb
in plot (a) and (b) and n-Bi91Sb9. Above: front surface exposed to the sun; below: rear view shows the thermoelectric
junctions.
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2. Crystal structure of ZnSb

2.1. Crystallographic structure and covalent bonds

The crystallographic structure of ZnSb has been determined by Almin [8]. According to this
determination, ZnSb has orthorhombic crystal structure, oP16 and belongs to the space group
Pbca no. 61. The structure of ZnSb has been studied and confirmed by different techniques,
albeit gave slightly different interatomic distances [25–28]. Figure 2 shows the crystal structure
of ZnSb that was generated by the structural data from Mozharivskyj [27].

The crystal structure can be viewed as a deformed zinc blende structure. The distorted edge-
sharing ZnSb4 tetrahedra generate a peculiar five-fold coordination of each atom, as seen in
Figure 2a: one of the same kind and four of the other kind. In the context of bonding and its
relation to conduction, all atoms in the crystal structure are tied together in a network—a
point, we will return to below.

Another way to systematize the structure is to group the atoms together in planar rhomboid
rings of Zn2Sb2 that have short Zn-Zn bonds connected to two different longer Zn-Sb bonds, as
seen in Figure 2a. These motifs are also tied together in a network that completes the crystal
structure. The crystal structure can be recognized in atomic scale by scanning transmission
electron microscopy (STEM), as shown in Figure 2b.

The interatomic distances for each bond are also annotated in Figure 2a. The bonds in ZnSb
have been categorized in three groups, shown in Figure 2c and d: the bonds i–vi are covalent

Report year zT At temperature (K) Sample Reference

(1961) 0.6 460 Single crystal [13]

(1964) 0.42 300 Single crystal [14]

(1964) 0.3 300 Polycrystalline [14]

(1966) 0.2 273 Single crystal [15]

(2010) 0.07 373 Polycrystalline [16]

(2010) 0.8 573 Polycrystalline [17]

(2012) 0.9 659 Polycrystalline with Cu [18]

(2013) 1.15 670 Polycrystalline with Ag [19]

(2014) 0.9 635 Polycrystalline with Ag [20]

(2014) 0.8 600 Polycrystalline with Cu [20]

(2014) 1 630 Polycrystalline with Sn+Cd [21]

(2014) 1.5 673 Polycrystalline with Cu [22]

(2015) 0.8 700 Polycrystalline with Zn vacancies [23]

(2015) 0.55 525 Polycrystalline [24]

Table 1. List of reported zT of ZnSb.
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bonds for building up the tetrahedron; the bonds vii and viii form the Zn2Sb2-ring; and the
bonds ix1-6 are the dimers that connect the Zn2Sb2-rings. The angles between each Sb-Zn-Sb
bond are also annotated in Figure 2d. Notice that the angles are close to those in regular
tetrahedron, 109.5°. Therefore, even though the structure has five-fold coordination, one can
still expect that ZnSb satisfies the tetrahedron rules to some extent. One of them is the
electron count per bond. ZnSb has seven valence electrons per formula unit, whereas a
regular tetrahedral binary semiconductor has eight valence electrons. Such electron-poor
valence often indicates a metallic bond. Yet, ZnSb behaves as a semiconductor. The clue
about its semiconducting property is probably due to the sp3-hybrid orbitals in the tetrahe-
dron, that often represents a semiconducting bond [30]. The counting rules cannot be
applied on a per-bond-basis without considering the complete network. Therefore, all the
atoms in the crystal structure are bonded together in a network. ZnSb, thereby, has been
classified as an electron-poor framework semiconductor (EPFS) [26, 31]. A quite similar
interpretation for the structure has been applied to the related compounds CdSb [30, 32–34]
and ZnAs [35].

Valence electrons in ZnSb have a certain distribution. Figure 3 shows the theoretical ab-initio
calculations by GGA-PBE (Generalized Gradient Approximation with Perdew-Burke-
Ernzerhof exchange functionals) of the so-called deformation charge [36].

The results show that a Zn atom transfers a small average fraction of 0.26 electrons to Sb along
Zn-Sb bond [37], which is expected due to the difference in Pauling electronegativity between
Zn (1.65eV) and Sb (1.96eV). Essentially, the same transfer was found in the calculations of
Benson et al. [38]. On the other hand, X-ray photoelectron spectroscopy (XPS) and electron
energy loss spectroscopy (EELS) measurements indicated a shift of a Zn Auger peak and
softening of EELS fine structure could be caused by a small net charge transfer of 0.1 electron

Figure 2. Crystal structure, bonding and coordination environment of ZnSb. (Reprinted with author's permission from
[29]. ©X. Song, 2016.) (a) Structure in a 1×2×3 cell generated by Mozharivskyj's data [27]. Both the deformed tetrahedra
and the Zn2Sb2-ring, as well as the interatomic distances between the nearest neighbours are annotated. (b) High-
resolution scanning transmission electron microscopic (HR-STEM) imaging reveals atomic scale structure that is recog-
nized corresponding to (a) and (c). (c) 3×1×3 cell shows the Zn2Sb2-ring network. Each ring has six nearest neighbours,
connected by bonds ix1-6. (d) The angles between Sb-Zn-Sb are similar to that of the standard tetrahedron, 109.5°. The
bonds i-vi are covalent bonds for building up the tetrahedron, while vii and viii are the bonds to form Zn2Sb2-ring; bonds
ix1-6 in (c) are the dimers, that connect the Zn2Sb2-rings.
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from Zn to Sb [39]. The apparent difference between reported experiments and calculations
can be related to experimental uncertainties and different volumes that were chosen for the
calculation.

2.2. Electronic structure

2.2.1. Band calculations

The band structure of ZnSb has been calculated by ab-initio methods by many groups in recent
years [2, 26, 31, 36–42]. The calculations are based upon density functional theory (DFT), but
with varying detailed approximations and trade-offs between computational cost and accu-
racy. By comparing different calculated band diagrams, one can see some features that are
common for most of the calculations and expect to filter out methodological errors in the
different reports. Figure 4 shows calculation of ZnSb band diagram.

The zero energy position corresponds to the largest energy of filled states. Thus, the states
below 0 correspond to the valence band, while those above correspond to the conduction
band. The value of the band gap is severely underestimated by the computational approxima-
tions. By using more accurate methods but at the expense of increased computation time, such
as HSE-hybrid functional (Heyd-Scuseria-Ernzerhof), the band gap was calculated to be
around 0.5eV [37]. This value is close to the experimental value for single crystal ZnSb. On
the other hand, the shape of the bands may be less affected by computational approximations.
The band diagram in Figure 4 shares some of the features found in most of the calculations
listed. The band gap is indirect with the maximum of the valence band along the symmetry

Figure 3. Deformation charge density distribution in electron per Å2 in the plane of a Zn2Sb2-ring calculated by GGA–

PBE. The colour map indicates the isocharge density lines: red indicates accumulation of electrons, whereas blue shows
loss of electrons in the relaxed structure of the compound compared with the number of electrons in the free atoms [36].
(DOI:10.1088/0953-8984/26/36/365401. © IOP Publishing. Reproduced with permission. All rights reserved.)
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line Γ-Χ and the minimum of the conduction band along Γ-Z. One can see that the conduction
band contains more satellites within 0.5eV of the minimum than pockets of the maximum in
the valence band. Thus, one can expect ZnSb would have acted better as an n-type material
than a p-type material, if stable n-type doping could have been achieved.

It is worth mentioning the band diagram that was calculated by Yamada in 1978 by using
pseudopotentials [43]. The maximum of the valence band was found to be on the line from Γ-Χ
at k =(0.93π/a, 0.0), which is close to the DFT values, and the band gap was 0.6eV. However, a
minimum of the conduction band is located at k=(0.47π/a, 0.0) along Γ-Χ, which is not in
agreement with most DFT calculations, and it is hard to determine experimentally due to the
difficulty in preparing n-type ZnSb.

2.2.2. Experimental band gap

The band gap has been measured by different methods. Values of 0.5–0.53eV for single crystal
ZnSb, which were measured by optical absorption, have been reported [44, 45]. These values

Figure 4. Band diagram of ZnSb showing energy states along high symmetry directions in k-space calculated by Berland
et al. [2] using GGA—PBE. The Brillouin zone for orthorhombic lattice with the high symmetry symbols are shown in inset
for indication. (Reprinted with author's permission from [29]. ©X. Song, 2016.)
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are essentially identical when considering the uncertainties, and 0.5eV has been considered to
be a reference value for single crystal ZnSb. Many research have also determined the thermo-
dynamic band gap from the temperature dependence of the charge carrier concentration in the
intrinsic regime. The charge carrier concentration is determined from the Hall coefficient, RH.

A linear fit of lnRHT
3
2 vs. 1T will yield the activation energy, which is half of the thermodynamic

energy gap. (This assumes an effective density of states proportional to T
3
2.). Values of 0.47–

0.65eV have been reported in the literature for single crystal ZnSb based upon Hall effect
measurements [46, 47].

For polycrystalline ZnSb, the band gap is often reported to be around 0.31–0.35eV [13, 48],
which is smaller than that of single crystal material. It is justified to discuss whether the band
gap really is different, or if it is due to that the idealizations of the measurement methods do
not hold for polycrystalline material. One of the methods that has been used for estimating the
band gap is to measure the temperature dependence of the Seebeck coefficient. By determining
the temperature, Tmax, for the maximum of the absolute value of the Seebeck coefficient, αmax,
the band gap can be estimated from the Goldsmid formula, Eg ¼ 2qαmaxTmax [49]. This method
works well for many semiconductors, for instance Zr-NiSn half-Heusler [50]. However, there
have been reports on some systems that the Goldsmid formula does not apply [51, 52]. ZnSb
may be one of them. Guo and Luo have reported that the Goldsmid formula returned a value
of Eg=0.3eV for their polycrystalline ZnSb samples [23]. However, Böttger et al. justified that
for the samples that have a band gap of 0.3eV obtained by Goldsmid formula, the tempera-
ture-dependent resistivity was fitted better with a value of 0.44eV [53]. It is fair to state that it
depends upon the context whether it is best to reconsider the band gap value for polycrystal-
line or reconsider the idealizations used in the measurement methods.

We should also keep in mind that heavily doping may influence the density of states near the
band edges, forming tails that are extending into the band gap. The defect states in the band
gap also influence the Eg values. This is a well-documented phenomenon (for Si) [54], even if
the precision in a detailed quantitative understanding may be lacking. We have reported that
the maximum of the Seebeck coefficient of ZnSb could be varied considerably by the presence
of defect states in the band gap [52].

2.2.3. Effective mass and density of states

The idealized single parabolic band (SPB) model is convenient for analysing experimental
results. The model has been successful for finding the optimum doping concentration of many
thermoelectric materials [55–57]. When applied to Seebeck measurements on ZnSb with differ-
ent doping concentrations, it has been observed that Pisarenko plot (the Seebeck coefficient vs.
the charge carrier concentration) does not follow the SPB model with a single density of states
effective mass m�, which was determined to be (0.42–0.49)×m0, where m0 is free electron mass
[15, 53], but rather a different mass fit for different ranges of doping concentrations. A previous
study by Böttger et al. has suggested that deviations from idealized SPB behaviour could be
induced by impurity band states [53]. We have showed that deviations from simple SPB
behaviour at varying doping concentration could be modelled by introducing an impurity
band [52]. One may comment that the best fit with varying m� is not necessary to imply that
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the energy band curvature varies. It suffices that the temperature-dependent position of the
Fermi level varies differently than that in an idealized SPB case.

3. Electrical properties and doping effect

3.1. Electrical properties and scattering mechanisms

Table 2 summarizes the band gap, the charge carrier concentration and other electrical and
thermal properties reported for ZnSb in the literature.

Given the crystal structure, single crystal ZnSb exhibits anisotropic conduction, which is
strongly dependent on the anisotropic effective mass [58]. Böttger et al. determined each mass
tensor component from band diagram calculations [53]. Different components were given by
m�

a ¼ 0:1811m0; m�
b ¼ 0:4913m0; m�

c ¼ 0:0837m0. The results agree with the anisotropic Hall
mobility and the highest electrical conductivity is measured along the c-axis [15, 45]. Aniso-
tropic energy surface has also been observed by optical absorption indicating that the constant
energy surface in k-space in ZnSb is a spheroid [59].

There is much literature devoted to scattering mechanisms in semiconductors [65], while there
are fewer reports dealing with that topic specifically for ZnSb. It is expected that ZnSb has
similar behaviour to those semiconductors which have been much studied and follows similar
trends. ZnSb appears to have favourably small polarity due to small electronegativity differ-
ence between Zn and Sb. This would in turn lead to a negligible polar optical phonon scatter-
ing compared to III–V and II–VI compounds where polar optical phonon scattering may be
dominant. Roughly, transport in ZnSb is dominated by impurity scattering at low tempera-
ture, while at higher temperature, when lattice vibrations are stronger, longitudinal acoustic
phonon scattering dominates (deformation potential scattering). The hole mobility varies with
temperature as μ∝Tr, thus a plot of lnμ vs. T will give the scattering factor r that implies the
scattering mechanism. A value of -1 to -1.5 typically indicates that longitudinal acoustic
phonon scattering dominates. In Figure 5a, the slopes of the Hall mobility approaches -1.5 as
the doping concentration decreases. It indicates that acoustic phonon scattering dominates
within the temperature range. The deviation from -1.5 for each individual curve is attributed
to additional ionized impurity scattering [66]. It is also seen that the higher hole concentration
corresponds to an increase in ionized impurity scattering, which limits the hole mobility.

Not only the intentional dopants, but also defects, that are ionized or neutralized, screened or
unscreened, contribute to scattering. Likely scattering centres are Zn vacancies, interstitials,
internal strain, grain boundaries and dislocations. Figure 5b shows the resistivity for an
unprocessed ZnSb ingot that was obtained directly from solidification and hot-pressed ZnSb

pellets with different dopant concentrations. The temperature coefficient, dρdT, for the unprocessed
ingot is positive, which is commonly observed for metals and semiconductors in a certain
temperature range where phonon scattering dominates. For the processed samples, either with

or without Ag, the temperature coefficient dρdT is negative. The reason for the negative temperature
coefficient could be the dominant Coulomb scattering due to charged defects or impurities.
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Reference Report year Structure Dopant σ (S) r (Ω·cm) µ (cm2/(V·s)) p (cm-3) α (µV/K) Eg(eV) κ (W/(m·K))

[60] (1947) – – – 0.0072 – – 250 – 1.4

[9] (1954) – 2at.% Sn+0.1at.% Ag – 0.0019 – – 210 – –

[61] (1960) Single crystal – 2.8 3.57 350 5.1×1016 440 0.52–0.57 –

[46] (1961) Single crystal – 3 0.33 480 3×1016 550 0.49 –

[62] (1963) Single crystal – 1.6 0.63 248 4.1×1016 – – –

[62] (1963) Single crystal – 5.6 0.18 1150 3.1×1016 – – –

[45] (1964) Single crystal – 6.4 0.16 10 4×1018 110 0.53 1.1

[14] (1964) Single crystal – 19.7 0.05 384 3.2×1017 490 – –

[14] (1964) Polycrystalline – 20 0.05 95.2 1.3×1018 375 – 1.3

[14] (1964) Polycrystalline 0.1at.% Ga 2.04 0.49 210 6×1016 675 – –

[14] (1964) Polycrystalline 0.1at.% Cu 110 – 680 1.1×1018 – – –

[63] (1964) Single crystal – – – 3×1017 – 0.48 –

[15] (1966) Single crystal 825 0.001 800 2×1016 182 – 3.7

[15] (1966) Single crystal Cu 42 0.02 660 4×1017 – – –

[15] (1966) Single crystal Cu 898 0.001 510 1×1019 – – –

[47] (1967) Single crystal Au 26.9 0.04 233 4.2×1017 404 0.47–0.65 –

[47] (1967) Single crystal In 37.5 0.03 326 7.7×1017 288 0.47–0.65 –

[47] (1967) Single crystal Te 51 0.02 379 8.3×1017 400 0.47–0.65 –

[16] (2010) Polycrystalline 2wt.% Ag – 0.01 – – 185 – 2.3

[17] (2010) Polycrystalline 28.2–32.1 – – – 400–500 – 1.41

[19] (2013) Polycrystalline 0.002at.% Ag – 0.0016 111 2.6×1019 181 – 1.5

[20] (2014) Polycrystalline Sn 180 – – 4.9×1018 250 – 1.8

[64] (2014) Polycrystalline Cu 640 – – 2.5×1019 134 – –

[21] (2014) Polycrystalline 0.15at.% Cu 935 – – 2.4×1019 142 – –

[23] (2015) Polycrystalline 3at.% VZn 800 0.0012 66 7.9×1017 275 0.29 1.75

Table 2. Summary of electrical properties of ZnSb.
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3.2. Doping effects

The most direct purpose of doping is to vary the charge carrier concentration. A broad range of
dopant elements has been reported for ZnSb. The selection of dopant is often rationalized
based on the same valence electron counting scheme that is applied to the elemental group IV,
III–V or II–VI tetrahedrally bonded semiconductors. These considerations are applied for
acceptors, while donors are challenging. One will have acceptors by replacing group I ele-
ments for Zn or group IV elements for Sb. It is expected that donors can be substitutes for
group III elements on Zn sites and group VI elements on Sb sites. In all cases, there may be an
issue with doping efficiency, i.e. not all the added dopant atoms will be electrically active. It is
common and qualitatively well-understood for other semiconductors that this inefficiency
involves segregation (solid solubility limit), clustering of dopant atoms and/or agglomeration
of complexes of dopant atoms and point defects. A theoretical calculation predicts that the
optimum hole concentration for the thermoelectric efficiency of ZnSb is around 2×1019cm-3

[53], which is achievable in p-type ZnSb. For donors in ZnSb, there may also be additional
issues to what has been mentioned above.

3.2.1. Acceptors

3.2.1.1. IZn—acceptors as elements of group I

CuZn, AuZn, AgZn all yield p-type conduction [47, 67]. Most of the reported charge carrier
concentrations are below the optimum value, and probably depend upon the details of sample

Figure 5. (a) Hall mobility along the c-axis as a function of temperature for p-type ZnSb at various hole concentrations (1)
3×1016cm-3; (2) 4×1017cm-3; (3) 5.5×1017cm-3; (4) 1×1019cm-3. (Reprinted with permission from [15]. Copyright (1966) by
the American Physical Society.) (b) Resistivity vs. temperature of ball-milled and hot-pressed samples with varying silver
content. Inset: unprocessed sample (Ingot) [16]. (Reprinted with permission of Springer.)
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preparation. However, the highest hole concentration that have been reported for Ag doping is
4×1019cm-3 (for 0.02at.% Ag) [19] while that for Cu is 2×1019cm-3 (for 0.1at.% Cu) [15, 21, 64].
There are several interesting behaviours that involve additional states in the band gap when
doping with Cu. Some details can be seen in [52].

3.2.1.2. IVSb—acceptors as the elements of group IV

Hole concentrations around (4–14)×1018cm-3 were obtained in materials with a content of
(0.06–3) at.% Sn [53, 68]. The hole concentration variations with Sn doping concentrations
where apparently opposite for these two studies. The highest hole concentration of 14×1018

cm-3 was obtained for content 0.1at.% Sn [68] and yielded the highest mobility. It was
suggested that two different doping mechanisms are effective in different temperature ranges
involving different intrinsic defects, Sn on different lattice sites and their variation with tem-
perature [68].

3.2.1.3. IZnIVSb—co-doping

Hole concentrations of (2–2.5)×1019cm-3 have been reported by co-doping of group I (0.15at.%
Cu or Ag)/IV (0.6at.% Pb, Sn, or Ge)/Cd [20, 21]. The measured transport coefficients at
different regions indicate two types of impurity acceptor: one embedded into Zn sites, and
another into Sb sites. Here, Cd is not expected to act as an acceptor, but for increasing the
phonon scattering and thereby reducing the thermal conductivity. A similar intended function
has been applied by adding P to increase alloy phonon scattering in the Cu doped ZnSb [18,
69].

3.2.2. Donors

n-Type ZnSb is desired because (i) thermoelectric modules are preferably built of parallel legs
of n-type and p-type materials, and it is preferable to use the same material (ZnSb) for
minimizing the thermal stress; (ii) theoretically, n-type ZnSb is believed to be a much better
thermoelectric material than p-type [36, 40, 42]. However, no real successful stable n-type
doping has been achieved. But, temporary n-type behaviours have been reported by doping
with group III and group VI elements.

3.2.2.1. IIIZn—donors as elements of group III

Group III elements have been used as donors to yield n-type conduction in CdSb [70]. It was
later reported that ZnSb could also be made n-type by In doping, probably substituting Zn as
InZn. AlZn and GaZn also exhibited temporary n-type behaviour [71, 72]. However, the n-type
conduction did not always occur. Justi et al. did not achieve n-type ZnSb with Ga despite
several attempts with single and polycrystalline ZnSb [14]. Niedziolka et al. predicted theoret-
ically by DFT calculations that boron would electronically be a good candidate for n-type
ZnSb, but did not succeed to synthesize the material and ascribed it to the high formation
energy of a boron atom on a Zn site [36].
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3.2.2.2. VISb—donors as elements of group VI

Some success with Te doping has been reported. Ueda et al. reported that a Te content in very
narrow window around 2at.% yielded n-type, possibly by forming substitutions of Te atoms
on Sb sites, TeSb; while at lower concentration (<1at.%) and higher concentrations (>3at.%), the
samples are always p-type. Excess doping with Te results in precipitation of the ZnTe phase
and a change in conduction from n- to p-type [73]. No n-type doping was observed by S
doping [29].

3.2.2.3. n-Type to p-type transition

A temporary n-type behaviour with a transition to p-type has been reported. Explanations for
these behaviours are related to such factors as oxygen migration on internal surfaces or grain
boundaries [71]. Schneider has reported an n-type to p-type transition in n-type ZnxCd1-xSb
every time when an oxygen gas was flushed into the sample container, and relaxed back to n-
type after a certain time [71]. Another factor entering into explanations are Zn vacancies acting
as acceptors and their migration [36, 42, 74]. A similar transition from n-type to p-type also
occurs in the related compound CdSb, which has been attributed to Cd-vacancies [75].

4. Zn vacancies and intrinsic defects

The theoretical intrinsic charge carrier concentration of perfect ZnSb at room temperature is

approximately 2×1014cm-3 given by pi ¼ 2 2πm�kBT
h2

� �3
2
eη, where η ¼ −

Eg

2kBT
, and taking Eg ¼ 0:53

eV and m� ¼ 0:42×m0 [15]. However, the experimental measurements show that the charge
carrier concentration of the best single crystals at room temperature is around (1–2)×1016cm-3

[15, 46, 61, 62] and up to ∼1018cm-3 for polycrystalline samples without intended dopants [14,
45]. This deviation is considered due to the intrinsic defects, giving a net hole concentration.
The most favoured intrinsic defects in ZnSb are Zn vacancies, which are believed to yield p-
type conduction [42, 74]. The intrinsic defects in ZnSb have been calculated on by DFT
methods [42, 74]. The calculations gave much lower formation energies for Zn vacancies than
other intrinsic defects, meaning that Zn vacancies will out-number other intrinsic defects by
orders of magnitude. Discrete vacancy defect states are considered to accept electrons from (or
donate electrons to) the bands, if they are negatively (or positively) charged. The charge state
of the defect will depend on the Fermi level for electrons. This can, in principle, be calculated
from the condition of electrical charge conservation (charge neutrality). Figure 6 shows a
conceptual schematic model of a Zn vacancy in different charge states. It is based upon a
combination of interpretation of Bjerg et al.'s work [74] and a popularization of Fairs Vacancy
model for silicon [76].

The vacancy can in principle have any charge states, but only -2, -1 and 0 seem readily
accessible by doping and temperature variation. The formation energy for VZn

- in this config-
uration was calculated to be 0.32eV. The net hole concentration in ZnSb without any doping
was then calculated from the requirement of charge neutrality and assuming equilibrium
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number of vacancies in different charge states (-1 and -2 dominated). The net hole concentra-
tion in this configuration was calculated to be 8.8×1017cm-3 at room temperature, which is in
the range of the experimental Hall concentrations measured by Böttger et al. (4–10)×1017cm-3

[16]. One should also compare the calculated net hole concentration to the hole concentration
of undoped single crystal ZnSb that is significantly lower than 8.8×1017cm-3. This apparent
discrepancy indicates that exact values of formation energies should be used with caution.
However, the concepts and the idea of VZn as a very important defect seem valid.

There have been many reports on changes in charge carrier concentration after heat treat-
ments, both for single crystal and polycrystalline ZnSb. Many observed a slow recovery to the
initial values of the charge carrier concentration [15, 20, 44, 45, 47, 61, 77]. Andronik et al.
specifically attributed this change to Frenkel defects [77]: by Zn atoms leaving their lattice sites
and becoming vacancy-interstitial pairs, VZn-ZnI. By assuming that all of the measured
changes in charge carrier concentration were due to Frenkel defect formation, the activation
energy of the process could be determined. The Frenkel defect concentration nϕ was assumed

to be given by nϕ ¼
ffiffiffiffiffiffiffiffiffi

NN′

p

e
−

Eϕ
2kBT, where nϕ ¼ ni−n0 is the concentration of Frenkel defect, n0 and

ni are the concentration before and after heating, respectively, N is the concentration of atoms,
N′ is the concentration of interstitials (there are more than one interstitial position in the
lattice), Eϕ is the formation energy of a Frenkel pair. The formation energy was determined

Figure 6. Schematic drawing of occupancy of localized states associated with the Zn vacancy in ZnSb. (Reprinted with
author's permission from [29]. ©X. Song, 2016.) The vacancy will have different charge states -1, -2, -3 dependent upon the
position of the Fermi level EF with respect to the levels E−1

V , E−2
V and E−3

V . EV is the valence band onset and EC is the
conduction band (CB) onset.
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from experiments to be 0.5eV. This experimental value seems in the range of formation
energies calculated by Bjerg et al. [74]. On the other hand, the formation energy for a Zn
vacancy calculated by Jund et al. gave a different value of 0.8eV [42]. This calculation used a
Zn64Sb64 supercell with 128 lattice sites and compared it to the energy of a Zn63Sb64 supercell
at 0K, which corresponds to a vacancy concentration of 1.5at.%.

Recently, we have studied evaporation of Zn by thermogravimetry and Zn vacancy created
during vaporization [29]. The net hole concentration was measured to be about 6×1018cm-3,
corresponding to a vacancy concentration of about 0.03at.%. Schematically, two processes in
series were considered as:

ZnSbðsÞ⇌Zn1−xSbðsÞ þ x � ZnðgÞ, (1)

ZnSbðsÞ⇌ZnðgÞ þ SbðsÞ: (2)

Reaction (1) occurs when the VZn was created but within the dilute limit, while reaction (2)
applies to a situation where the Zn vacancy concentration is beyond the solubility limit and
ZnSb decomposes into Sb phase and Zn vapour.

5. Impurity band conduction

In an idealized semiconductor, which is well-approximated by pure Si crystals [78], the charge
carrier concentration shows the so-called freeze out at low (cryogenic) temperatures: the
dopant atoms are not ionized and the charge carrier concentration goes towards zero, charac-
terized by an infinite Hall coefficient in Hall measurements. However, the Hall coefficient in
undoped ZnSb has shown a turning point at low temperatures, typically below 50K, as seen in
Figure 7, and then a decrease with further cooling, which is explained by impurity band
conduction [79]. Here, the term impurity band is most likely tied to defects, but observed
phenomena are similar to what can be observed for high doping concentration in semiconduc-
tors. Impurity band conduction has been reported in many materials [80–82]. It was also
observed for ZnSb by Justi et al. in the 1960s [14]. Recently, several others have reported on
impurity bands in ZnSb [53, 79, 83].

Let us here analyse sketchily the conditions for observing the characteristics shown in
Figure 7. The specifics of this observation are given in [79]. The changes in hole concentra-
tion as the sample was cooled is in principle similar to that of a textbook low doping
concentration semiconductor, where the charge carriers are frozen out of the valence band.
The valence band of the sample in Figure 7 will be nearly empty (for holes) at the lowest
temperature. The holes are transferred to the acceptor-based impurity band. However, the
holes are mobile in the impurity band and contribute to conduction and Hall effect. Thus,
the Hall coefficient decreases with cooling to the lowest temperatures. In order to get
conduction in the impurity band, some donor compensating centres are needed. (Without
donor level, the impurity band would be full of holes, i.e. empty for electrons and there is
no conduction).
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We turn to a situation where the doping concentration is much higher than that of the sample
in Figure 7, and first consider the large difference in characteristic features of the change in
the charge carrier concentration with temperature. Figure 8 compares the Hall concentration
of the charge carrier and the Hall mobility (inset) at low temperature for high (0.3at.% Cu)
and lower concentration (no Cu), respectively (data in Refs. [52, 79]). One can see that the
characteristic feature of impurity band conduction vanished in the highly doped sample at
low temperature. The situation is qualitatively as follows: A highly doped sample is equiv-
alent to a degenerate semiconductor, where the hole concentration is high and the Fermi
level is located in the valence band. The native impurity band would be full of holes and so
would the top of the valence band. At the lowest temperatures, the conduction will occur
within the valence band. Therefore, one cannot have a similar change with temperature as in
the case of undoped ZnSb where there was a vanishing conduction in the valence band at the
lowest temperature.

Figure 7. The Hall coefficient of an undoped hot-pressed ZnSb sample. (Reprinted with author's permission from [29].
©X. Song, 2016.) The Hall coefficient in ideal cases is inversely proportional to the charge carrier concentration. If there
was regular freeze-out of the charge carriers, the Hall coefficient goes to infinity at low temperatures. However, in the
presented case of undoped ZnSb, there is a turning point in the Hall coefficient, which was interpreted as a signature of an
impurity band.
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5.1. The impurity band in ZnSb—its nature, origin and specific points of interest

The nature and theoretical treatment of general impurity band can be found in textbooks [84].
The band states are considered to come from interactions, which set in for concentrations
above a certain value of defect species, such as dopant atoms, impurities or intrinsic crystal
defects.

The formation of impurity band is illustrated in Figure 9 for an n-type semiconductor. Elec-
trons at a donor level can be transferred to a neighbour donor by thermal activation and
tunnelling, but without entering into states in the conduction band. One would then have the
hopping regime for transport in the material as illustrated in Figure 9a. When the donor
concentration increases further, the wave functions of the donor states overlap and can form a
band, where one has impurity band conduction, as illustrated in Figure 9b.

The mobility in the impurity band is typically small because the band is relatively narrow, and

as a consequence, one would have a small dispersion curvature in Eðk
⇀

Þ and large effective

Figure 8. Temperature dependence of the Hall concentration of charge carriers at the temperature lower than 300K of
highly doped ZnSb (0.3at.% Cu content) and undoped ZnSb. (Reprinted with author's permission from [29]. ©X. Song,
2016.). Inset: the Hall mobility.
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mass. In a semiconductor, at low temperature, conduction can occur dominantly in the impu-
rity band if there are some compensating levels, such that the impurity band is not fully
occupied. At a particular higher concentration, there may be a smear of the impurity band
and the conduction band, as illustrated in Figure 9c. Beyond this concentration, the Mott
transition, which is a sharp transition from insulator to metal behaviour, can take place.

Usually, the Mott criterion for when the transition occurs isNI≥0:014a−3B , where NI is the atomic
concentration of impurities and aB is the Bohr radius of the impurity. There are several differ-
ent treatments yielding essentially the same numbers [84]. The most considered situations are
those of high concentrations of shallow donors or acceptors. Here, the Mott criterion gives the
insulator-metal transition. However, one can create impurity bands with a certain energy
anywhere in the band gap. Some of the concentrations for the Mott transition then approxi-
mately correspond to the concentration to have an impurity band. Rawat et al. have suggested
a Yb mid-gap impurity band in PbTe affecting the thermoelectric properties [86].

With the doping concentrations for optimum thermoelectric performance that typically is
∼1019cm-3, it is reasonable to expect that the formation of impurity bands is rather common
in thermoelectric materials. Also, impurity band formation is just one of several high doping
effects one should expect, such as the Mott transition, band tailing and band gap
renormalization [84]. Thus, one should discuss thermoelectric material in the framework of
the theory related to heavily doped semiconductors.

When it comes to ZnSb specifically, it has been estimated that the impurity band may exist for
the impurity concentrations that are well within the observed doping concentrations. We have

Figure 9. Schematics of impurity state/band and conduction band (CB) for n-type semiconductor at low impurity
concentration, medium concentration and high concentration at random impurity distribution. Band diagrams illustrate
the hopping conduction and impurity band conduction. (Reprint with author's permission from [84]. ©E. Fred Schubert,
2015). Inset: dimensional schematic calculated density of states for high impurity concentration. E0 is assumed to be the
onset of the conduction band; DCðEÞ is the number of conduction band and DimðEÞ is the density of states of impurities in
periodically arrangement. (Reprinted with permission from [85]. Copyright (1953) American Chemical Society.)
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determined the critical impurity concentration in ZnSb to be about 6×1017cm-3 in previous
study, which is around the acceptor concentrations used in the model to fit the low tempera-
ture measurements [79]. For the doping concentration of 1018–1019cm-3 in ZnSb, one can expect
impurity bands to form. For undoped or very lightly doped material, we suggested that point
defects, especially Zn vacancies can be expected to be involved in impurity bands. From the
discussion of vacancy formation in Section4, it appears likely that a high concentration of
vacancies can be created by annealing, even to some extent they could combine with any other
possible impurities or defects in impurity band. The impurities will likely be dependent on the
specific dopants and the preparation technique. For example, oxygen is expected to be an
impurity in ball-milled material and the amount introduced will depend upon the atmosphere
during processing. Presently, one cannot make a conclusion about the importance of oxygen in
this context and the solid solubility of oxygen is unknown. Fedorov et al. observed evidence for
impurity levels in the band gap associated with different combinations of group I (Ag or Cu)
and group IV (Sn or Ge) acceptor elements, which all were similar to each other, but different
to those of the single acceptor element [21]. Temperature-dependent transport coefficients
were also measured that were interpreted as a temperature-dependent energy state being
present with a level in the valence band. The energy states were considered as hybridized
states formed by mixing characteristics of the valence band and the impurity band. In a general
case, a temperature-dependent level can have a similar effect as a defect chemistry reaction
involving growth and decrease with temperature of the population of two defect species
having different energy, as suggested in Ref. [52].

5.2. Impact of impurity band on thermoelectric properties

An impurity band will have an effect on the transport properties and the thermoelectric device
properties. It may not be immediately transparent how. The conduction in the impurity band is
perhaps aminor effect in this context. Themost important effect may be on the Seebeck coefficient.

5.2.1. Effect on conduction

The effect of impurity bands on the electrical conductivity is expected to be largest when holes
in the valence band (for p-type) do not contribute to the conduction [53]. This is expected to
have a strong effect for samples where the doping is below degenerate, but sufficiently close to
the Mott criterion, and in addition at low temperatures. It is expected, that in a thermoelectric
material, the mobility of the charge carriers in an impurity band is much lower than that in the
valence band, thus the impurity band should only have a modest effect on the electrical
conductivity when valence band conduction is strong.

5.2.2. Effect upon Seebeck—effective density of states mass

The density of states effective mass may be affected by an impurity band. The density of states
may be changed by several high doping effects including the formation of impurity bands.
Qualitatively a smear of the impurity band and valence band is expected. Thus, even though
the conduction of impurity band is often only observable at low temperature, the Seebeck
coefficient can be affected above room temperature. The details to calculate the transport
coefficients can be found in Ref. [79]. The Seebeck coefficient is sensitive to the position of the
Fermi level and how the density of states varies with energy. Both these factors can be affected
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by an impurity band. There have been reports on change of density of states effective mass
with varying doping concentration [53]. From a Pisarenko plot, one can find the density of
states effective mass by fitting measured data. In Ref. [52], we obtained the best fitting by
assuming an impurity band. Further, it was shown that camel-shaped curves of Seebeck
coefficient with temperature, which is unusual in ZnSb, could be modelled by a temperature-
dependent impurity band. It has been suggested that if one could engineer the energy structure
of impurity band, then one could have a tool to enhance the thermoelectric performance [87].

Another impact of the impurity band may be on the n-type to p-type transition. This was
suggested by Schneider by the observation of a sharp increase in the electrical conductivity
on a temporary n-type and following n-type to p-type transition [71]. On a similar topic,
though with different statements, Fedorov et al. rationalized the difficulty in doping ZnSb n-
type by the formation of an impurity band close to the conduction band [21].

6. ZnSb synthesis techniques

Common synthesis methods for most of bulk thermoelectric materials can be categorized into
three groups according to different processing steps, namely stoichiometric melts (SM), pow-
der metallurgic method (PM), pseudo-pulverized and intermixed elements sintering method
(Pseudo-PIES), as shown in Figure 10.

Polycrystalline ZnSb ingots can be synthesized by the so-called SMmethods, i.e. melting of the
elemental zinc and antimony followed by solidification in air or quenching in cold water. The
purity of the starting elemental zinc and antimony materials has a significant impact on the
resulting electrical properties. For example, starting materials with purities of 99.99% and
99.9999% allows to obtain the charge carrier concentration of ∼1019 and ∼1016cm-3, respec-
tively, on undoped polycrystalline ZnSb [14]. Since ZnSb does not melt congruently, solidifica-
tion will result in a mix of the phases, Zn4Sb3, ZnSb and Sb. This mix can be homogenized by
sufficient heat treatments to reach the thermodynamic equilibrium state with a single uniform
ZnSb phase [14, 15]. Another problem with the solidification is that the sample contains cracks
that significantly influence on the electron transport [13].

The solidified ingots are often milled into fine powder and pressed to pellets, which is a
procedure that includes the basic ingredients of standard powder metallurgy (PM). Milling
offers access to nanosized grains, thus providing possibility to enhance the thermoelectric
properties. Earlier studies show that different milling techniques led to a trend of grain size
as 80.0, 44.6 and 32.4nm for manually grinding, dry-milling and wet-milling [16], as well as
10 nm for cryo-milling [88], respectively.

The PIES method (pulverized and intermixed elements sintering method) has been introduced
into preparation of thermoelectric (Bi/Sb)2(Te/Se)3 materials, where all the elements are initially
mixed and milled to fine powder before hot-pressing (no melting process) [89]. The electrical
conductivity of the sample that was synthesized by this method has been reported about 5
times higher than that for the SM sample [90]. Distinguished from a typical PIES method, we
often used pseudo-PIES for ZnSb, which partially mixed the dopant element with SM ingot in
ball-milling, and then processed hot-pressing.
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Figure 10. Flow chart of synthesis procedures. (Reprinted with author's permission from [29]. ©X. Song, 2016.)
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There are different kinds of compaction techniques that follows powder metallurgy and have
been used for fabrication of ZnSb samples. The most common ones are cold-pressing (at room
temperature with ultra-pressure 2–10GPa [83, 91]), hot-pressing (>450°C with pressure of 20–
300MPa [16, 19, 20, 35]), and spark plasma sintering (SPS) (the electrical current is passed
through the sample with 5min reaction time at 350–450°C [83, 92]). One important difference
among hot-presses is the manipulation of secondary phases; both removal and proportioning
are possible, and obviously depends upon the temperature and duration, but also on details of
the instrument design and the environment of the ZnSb powder. Xiong et al. have reported that
the volume fraction of Sb phase was estimated to be ∼2wt.% by Rietveld refinement in a hot-
pressed sample [19] at 673K in vacuum followed by an evacuated quartz ampoule and
annealed at 673K for 80h. A recent study on SPS-samples showed also that Sb phase domains
were distributed along the samples, accompanied with Zn4Sb3 on the surface [92]. Another
difference is the final grain size of pellets. We have reported that rapid hot-press helped to
minimize the grain size due to shorter cooling time [88].

Another important consideration of the synthesis technique is the ability to produce large
amounts of thermoelectric materials in a cost-effective way. Considering that one of the
favourable aspects of ZnSb from a commercial point of view is the lowmaterials cost, there have
been several efforts where the cost efficiency of the synthesis technique is important [92–94].

7. From laboratory to fabrication

ZnSb practical devices have been produced [9, 95], and there has been a promising achieve-
ment on thermoelectric performance of ZnSb in the laboratory. However, it is still challenging
to transfer the achievement from laboratory to modern manufacturing. Progress in synthesis
from different points of view have also to go through many tests regarding machinability,
mechanical stability, thermal stability, thermal cycling and long-term stability, as well as
compatibility with targeted fabrication techniques. Several of these issues are expected to
contribute to—as well as benefit from—a further fundamental understanding of ZnSb, when
practical solutions on short and long timescales are targeted. On a short to medium timescale,
ZnSb can take advantage of new fabrication technologies that has been developed, but using
traditional approaches for the device functionality. On a longer perspective, ZnSb may also be
brought further into the explorations of new nanotechnology approaches to improve the
performance of possible future generations of thermoelectrics.

One hindrance towards an ideal thermoelectric module made entirely of ZnSb is the inability to
synthesis of stable n-type ZnSb. Although theoretical modelling shows favourable electronic
structure of n-type ZnSb, there seems to be no promising paved routes to success. The direct
synthesis of n-type ZnSb by doping would need a breakthrough. From an optimistic point of
view that may arise indirectly from various other investigations on ZnSb, perhaps through
defect engineering or a combination of different approaches, for example, modulation doping
by embedded higher band gap materials with the appropriate band offsets for supply of
electrons combined with compensation of Zn vacancy acceptors. A practical compromising
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route towards module-making is using another semiconductor than ZnSb for the n-type leg, for
instance Mg2Sn1-xSix that matches ZnSb well in expected operation temperature, has the same
environmentally friendly profile [20], as well as a low cost on rawmaterials. There might also be
other suitable material candidates. Any practical problems with thermal expansion mismatch of
materials in a module would have to be solved. Previous experiences with ZnSb modules have
made it necessary to dope or add elements to ZnSb in order to achieve suitable mechanical
properties. Fortunately, there has been a large development in packaging technology for elec-
tronic devices in the last couple of decades. New options for substrates and bonding techniques
may be offered and meet the requirements on thermal expansion of the semiconductors.

The thermal stability of the synthesized ZnSb needs to be tested and probably be improved. This
is one area where both fundamental studies and practical solutions may enter. ZnSb samples are
subjected to Zn evaporation at high temperatures. The evaporation depends naturally verymuch
on the ambient and the surface conditions. It is possible that protective layers can be applied to
minimize evaporation. The situation has some similarities to that of several binary electronic
materials, such as III–V materials, where one of the elements have a much higher vapour
pressure, than what can be tolerated at the desired processing temperature. For GaAs, dielectric
films SiO2 and Si3N4 have been used for the purpose of preventing arsenic evaporation. A similar
approach with a conformal deposition of a protective dielectric layer may be advantageous for
ZnSb. Thermal stability also has to do with the thermal generation of point defects and their
diffusion at elevated temperatures. The understanding of the phenomena is unsatisfactory from
an academic point of view, in particular on the level of defect chemistry and electronic structure,
but there are many experimental observations of the simple electrical parameters. Several
authors have reported that after a heat treatment of ZnSb, the electrical conductivity and the
charge carrier concentration increased, while the Seebeck coefficient decreased. The change was
followed by a slow recovery towards the initial values at room temperature [15, 20, 44, 45, 47, 61,
77]. The characteristics can be related it to the VZn-ZnI Frenkel pair formation at elevated
temperatures, and the recovery caused by their slower recombination at lower temperature.
The vacancy concentration was linked to hole concentration. It was rationalized that these
hysteresis effects would not be significant at high doping concentrations [15]. The doping effect
on the vacancy concentration was then not considered. A detailed understanding of the vacan-
cies, interstitials and their energy levels, ionization and formation energies is needed to under-
stand the influence for higher doping concentration. The influence of more complicated defects
can also be a large challenge. There are also reports on various temperature-cycling phenomena
[52, 96, 97], involving the doping atoms and energy levels of these. Some of these effects may
differ for different synthesis details.

The thermal stability is referring to all properties of the material, including the thermal con-
ductivity. We have reported grain growth induced by heating, particularly in nanostructured
bulk samples [88]. The grain growth will naturally induce a change of thermal conductivity
due to the dependence on phonon scattering. To which extent, it constitutes a practical prob-
lem depends upon the targeted operation temperature. Approaches to minimize grain growth
usually consist of adding atoms that segregate in grain boundaries, thereby preventing grain
growth. This is an area that needs further study.
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There are various routes that can make ZnSb a part of long-term exploration to improve
thermoelectrics by nanostructures (not just nanograins). Some of them may use ways of
depositing films of ZnSb, such as by MOCVD, sputtering [98, 99] and electroplating [11, 100],
etc. By these techniques, it could be feasible to make composites and layered structures in a
controlled way with different materials with suitable band offsets for energy filtering [101].
Possibilities of making high quality epitaxial films may also be attractive for fundamental
material property studies. One might also do band engineering in the material by introducing
misfit stress. Thin-film deposition may also offer a possibility to grow template nanostructures
and exploiting the possibilities of quantum confinement in ZnSb and study the conduction
band properties of ZnSb by injection into nanostructures.
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