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Abstract

Nowadays, biopolymers, a class of biomaterials, represent frontier area in the drug deliv-
ery systems. Drug release from nano- and microparticles is a complex process, which 
involves several steps. Uptake of nanoparticle in the intracellular is affected by numerous 
factors. Recently, gene delivery has been considered one of the promising approaches 
for the treatment of various diseases acquired genetically in human being. The use of 
biopolymers as nanoparticles in gene delivery can potentially avoid many of the safety 
concerns in the gene delivery system. In gene delivery, the genetic materials such as DNA 
plasmids, RNA and siRNA are either encapsulated inside or conjugated to the nanopar-
ticles, which protects the genetic materials until the drug reaches its target site. Treatment 
of the diseases is based on the effective delivery of the genetic materials into specific cells 
that are responsible for disease development. Various properties such as particle size, 
surface charge, morphology of the surface and release rate of the loaded molecules are 
the important parameters in the gene delivery system. In this chapter, various biopoly-
mers (cationic polymers) and inorganic non-viral-delivery vectors used in gene delivery 
used as therapeutic agents are discussed.

Keywords: gene delivery, polymers, biopolymers, delivery system, therapeutic effect

1. Introduction

Polymers are the materials that are either prepared/produced synthetically or isolated from 

natural sources. Polymers can respond based on their environmental conditions such as pH, 

temperature, ionic strength, electric field, magnetic field, chemical and biological stimuli to 
deliver the desired therapeutic agents. Recently, biopolymer is a biomaterial used in various 

delivery systems to interact with the biological system and release the therapeutic agent. 

These biopolymers are utilized in the various applications due to their biocompatibility, bio-

degradability and low immunogenicity. Among the various biopolymers, synthetic polymers 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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have well-defined structure and fine-tunable degradation kinetic and mechanical properties 
compared to the natural polymers. Recently, biodegradable nanoparticles have a major role 

in the field of health sciences especially for treating various diseases through drugs, vaccines 
and genes [1–7]. Nanoparticle in gene-delivery system has been utilized for treating various 

diseases such as cancer and haemophilia. The major challenge in the gene delivery is deliv-

ering the genetic materials such as DNA, plasmids, RNA and siRNA into the target/special 

cells to replace the damaged genes or expression inhibition of undesired genes or expression 

and production of required proteins. In gene delivery, the genetic material is either encap-

sulated inside the nanoparticle or conjugated to the nanoparticle. The nature, source and 

their physico-chemical properties of the polymers play an important role in the formation of 

desired properties of nanoparticles and to achieve a better therapeutic effect [8–12].

2. Polymeric gene delivery vector

The important property in polymeric vector is that the polymer should be non-toxic (biocom-

patible), biodegradable (hence have less toxicity) and also help to release the DNA from the 

complex into the cytoplasm. In polymeric vector, the polymer must be condensate with the 

genetic material. Condensate between the cationic polymer and genetic materials can be done 

through electrostatic interactions. By modifying the surface of NP, NP-DNA complexes can 

be formed by electrostatic binding between the positive charges of the NPs and the negative 

charges of the DNA. Only when the medium is aqueous and hydrophilic, the polymeric vec-

tor will be mobile, because the vector needs hydrophobic and hydrophilic components and be 

stabilized in an aqueous solution by forming micelles [13].

2.1. Polymer properties in polymeric gene delivery

Polymers have permanent cationic charges on its surface and are not preferred due to its 

strong condensate property with DNA, which will not release DNA into the cell. Hence, ion-

izable cationic polymers with pK values between 5 and 7 are preferred in the polymeric vector 

delivery which is shown in Figure 1.

Other important factors to be considered for the polymer in the polymeric gene-delivery vec-

tor are its molecular weight, molecular structure and composition of the polymer. Increase 

in the polymer’s molecular weight also increases its toxicity. Polymers of different molecu-

lar structures such as linear, branched, stars and dendrimers have an impact on the transfer 

genes into cells [14–18].

2.2. Preparation of polymeric gene vector

Polymeric vectors are prepared by mixing plasmid DNA with a cationic polymer. During 

condensation between plasmid DNA and polycation, plasmid DNA undergoes a confor-

mational change from a hydrodynamic size of 200–300 nm to particles of less than 100 nm. 

Plasmid DNA has a highly organized chemical structure [19–22]. A condensation between 

plasmid DNA and polycation is shown in Figure 2.
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The order of mixing and vortex speed of mixing plays an important role in the size of the 

DNA nanoparticles. DNA can be condensate, either by evaporation under vacuum or by 

freeze drying. The freeze/thaw cycle can influence the particle size of DNA nanoparticles.

The charge ratio of DNA nanoparticles is the calculated ratio of amines on the polymer rela-

tive to the phosphates on DNA at a given stoichiometry of polymer to DNA. When a cationic 

Figure 1. Gene delivery process of polymeric nanoparticle.

Figure 2. Condensation between plasmid DNA and polycation.
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polymer binds to plasmid DNA, sodium ions are displaced and the electronegative charge is 

partially satisfied. DNA condensates are normally prepared at near-neutral pH in low ionic 
strength buffer [23, 24].

3. Dendrimers

Dendrimer is a monodisperse macromolecule with perfectly branched regular structure and 

having at least one branched junction at each repeat unit 3. These dendrimers are used in 

gene delivery. The dendrimer/DNA complexes are encapsulated in a water-soluble polymer, 

and then deposited on or sandwiched in functional polymer films with a fast degradation by 
dehydration to mediate gene transfection.

Biodegradable dendrimers are commonly prepared by inclusion of ester groups in the 

polymer backbone, which will be chemically hydrolysed and/or enzymatically cleaved by 

esterases in physiological solutions. These dendrimers are large molecular weights which 

accumulate and retain in higher amounts in the tumour tissues. Dendrimer fragments are 

eliminated safely through urine.

Dendrimers are prepared through either a divergent method or a convergent method.

In the divergent methods, as given in Figure 3, dendrimer grows from a multifunctional core 

molecule to outwards. The first-generation dendrimers are derived from the core molecule 
that reacts with monomer molecules containing one reactive and two dormant groups. This 

periphery molecule is then activated to react with more monomers. This step is subsequently 

repetitive to produce layer-by-layer dendrimers for several generations.

In the` convergent approach, stepwise dendrimer is constructed, starting from the end groups 

and progressing inwards. The growing branched polymeric arms are called dendrons, which 

can attach to a multifunctional core molecule (Figure 4).

Figure 3. Formation of dendrimer by divergent methods.
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Whereas the structure Y in dendrimer is chemically active focal point and Z is the functional 

chemical group of another monomer.

3.1. Other types of dendrimers

3.1.1. Amino acid-based dendrimers

Amino acid-based dendrimers were developed to capitalize on the unique properties of the 

amino acid-building blocks, including chirality, hydrophilicity/hydrophobicity, biorecogni-

tion and optical properties. Optically active protein-mimetic dendrimers have been synthe-

sized using various amino acids, such as tryptophan, phenylalanine, glutamic acid, aspartic 

acid, leucine, valine, glycine and alanine.

Amino acid-based dendrimers can be synthesized by

1. amino acid or peptide grafting and display on the surface of a conventional dendrimer

2. attachment of amino acids or peptides to an organic or a peptide core.

3.1.2. Glycodendrimers

Carbohydrate interactions with different receptors displayed at the cell surface control a num-

ber of normal (e.g., lymphocyte activation and cell-cell adhesion) and abnormal (e.g., cell-

pathogen adhesion and cancer cell metastasis) biological processes. Glycodendrimers have 

been synthesized by coupling isothiocyanate-functionalized glycosyl and mannopyranoside 

ligands as well as an N-hydroxysuccinimide (NHS)-activated galactopyranosyl derivative to 

amine-terminated dendrimers.

3.1.3. Hydrophobic dendrimers

Dendrimers with hydrophobic interiors and a hydrophilic surface are called hydrophobic 

dendrimers. Hydrophobic dendrimer gives better encapsulation and efficient solubilization of 
hydrophobic drug molecules. Specifically, dendrimers with hydrophobic cores were proved 

Figure 4. Formation of dendrimer by convergent method.
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to effectively retain hydrophobic drug molecules in the voids of their branching architecture, 
mimicking amphiphilic polymer micelles.

3.1.4. Asymmetric dendrimers

Asymmetric dendrimers are synthesized by coupling dendrons of different genera-

tions to a linear core, which yields a branched dendrimer with a nonuniform orthogonal 

architecture.

There are two different types of dendrimeric copolymers:

1. Segment-block dendrimers—segmented with segments of different constitution.

2. Layer-block dendrimers—concentric spheres of differing chemistry [25–42].

4. Cationic polymers

DNA, when combined with sufficient amounts of cationic polymers, will condense into dis-

crete entities which are called as polyplexes [43]. The polyplexes are compact nanoparticles 

formed through electrostatic interactions between the positive charges of amines and the neg-

ative charges of DNA phosphates. The strength of DNA binding to the polymers is related to 

the N:P ratio.

The most common cationic polymers used as nonviral gene-delivery vectors include chitosan, 

PLL, polyethylenimine (PEI), poly(amido amine) (PAMAM) dendrimers and select polypep-

tides [24, 44, 45].

4.1. Chitosan

Chitosan is a polysaccharide copolymer composed of randomly distributed β-(1-4)-linked 
d-glucosamines and N-acetyl-d-glucosamines, obtained by partial alkaline deacety-

lation of chitin [46], with different molecular weights (50–200 kDa), degrees of deacety-

lation (40–98%) and viscosities [47]. Chitosan is a natural polymer, Figure 5, with linear 

polyamine, having reactive amino and hydroxyl groups, biodegradable to normal body 

constituent, safe and non-toxic, and binds to mammalian and microbial cells. The main 

commercial sources of chitosan are the crustacean shell wastes of crabs, shrimps and 

Figure 5. Structure of chitosan.
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lobsters [48]. Chitosan is soluble in aqueous solutions of some acids and some selective 

N-alkylidination. Its solubility, biodegradability, reactivity and adsorptivity of many sub-

strates depend on the amount of protonation of the –NH
2
 function on the C-2 position of 

the D-glucosamine unit, whereby the polysaccharide is converted to a polyelectrolyte in 

acidic media. Chitosan is considered one of the most valuable polymers for biomedical and 

pharmaceutical applications due to its biodegradability, biocompatibility, antimicrobial, 

non-toxicity and anti-tumour properties.

Chitosan effectively condenses DNA and protects it from nuclease degradation. Various con-

jugates such as thiolation, glycolation and folate chitosan are available. Chitosan is biode-

gradable, biocompatible, low immunogenicity and non-toxic at low molecular weights (10–50 

kDa). It has been suggested that the toxicity of chitosan is perhaps due to impurities in the 

chitosan polymers [49–60].

4.2. Poly-L-lysine

Poly-L-lysine (ε-poly-L-lysine), as given in Figure 6, is a small natural homopolymer of the 

essential amino acid L-lysine that is produced by bacterial fermentation. Poly-L-lysine is a 

positively charged amino acid polymer with approximately one HBr per lysine residue. The 

hydrobromide allows the poly-L-lysine to be in a crystalline form soluble in water. Adhesion 

Figure 6. Structure of poly-L-lysine.
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into the cell wall is based on the interaction between the negatively charged ions of the cell 

membrane and positive charge of poly-L-lysine. Simple electrostatic mixing of DNA and poly-

L-lysine produces DNA particles with various structures. The mode of binding between the 

poly-L-lysine and DNA is cooperative and non-cooperative binding. Condensation between 

the DNA with the PLA depends upon the PLL chain length. Increase in the length of the PLL 

chain increases the condensation [61–68].

4.3. Polyethylenimine

Polyethylenimine (PEI), as given in Figures 8 and 9, is water-soluble, linear or branched 

polymers composed of the amine group and two carbon aliphatic CH
2
CH

2
 spacer. It is a 

weakly basic aliphatic polymer and polycationic one due to primary, secondary and tertiary 

amino groups. PEIs are available in different molecular masses and forms. Various forms 
of PEIs are shown in Figure 7–9. Linear polyethylenimines contain all secondary amines, 

whereas branched PEIs contain primary, secondary and tertiary amino groups. Due to their 

high cationic charge density at physiological pH, PEIs are able to form non-covalent com-

plexes with DNA, siRNA and antisense oligodeoxynucleotide, and then brought into the 

cell via endocytosis. Once inside the cell, protonation of the amines results in an influx of 
counter-ions and a lowering of the osmotic potential, leading to bursts in the vesicle releas-

ing the polymer-DNA complex (polyplex) into the cytoplasm. If the polyplex unpacks, then 

the DNA is free to diffuse to the nucleus; however, the long PEI chains have higher effi-

ciency in gene transfection, and are more cytotoxic [69–93].

Figure 8. Structure of branched PEI.

Figure 7. Structure of linear PEI.
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5. Cationic lipids

The four constituents are given as follows:

1. The cationic polar head group.

2. A hydrophobic chain that affects the physical properties of the lipid bilayer.

3. The space between two mentioned sections that improves chemical stability, biodegrad-

ability and gene transfection efficiency.

4. A backbone domain as a scaffold [19].

5.1. Monovalent cationic lipids

5.1.1. DOTMA

Chemically, it is N-[1-(2,3-dioleyloxy) propyl]-N,N,N-trimethylammonium chloride, as given in 

Figure 10, that consists of four different moieties: (1) a quaternary ammonium head group as the 
cationic head group, (2) a glycerol-based backbone, (3) two linkage bonds and (4) two hydrocar-

bon chains. Alternations can be made in the above moieties to reduce the toxicity and increase 

the gene transfection efficiencies. Replacement of a methyl group on the quaternary amine 
of DOTMA with a hydroxyl improves protein expression after gene transfection due to the 

replaced hydroxyl group in contact with the aqueous layer surrounding the liposome. Increase 

in the length of the aliphatic chain decreases the gene transfection and vice versa [94–98].

5.1.2. DOTAP

DOTAP, [1,2-bis(oleoyloxy)-3-(trimethylammonio) propane], as given in Figure 11, consists 

of a quaternary amine head group coupled to a glycerol backbone with two oleoyl chains. 

Figure 9. Structure of dendrimer PEI.

Biopolymer in Gene Delivery
http://dx.doi.org/10.5772/65694

145



The only differences between this molecule and DOTMA are that ester bonds link the chains 
to the backbone rather than ether bonds. The ester bonds present in the backbone are hydro-

lysable and lead to render the lipid biodegradable and reduce cytotoxicity. DOTAP cannot 

be used alone as a cationic liquid for gene delivery due to its dense positive charge, thereby 

preventing the ion exchange. Its gene-delivery efficiency can be changed by combining with 
other helper liquids [94, 99–103].

5.1.3. DC-Chol

3β[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol, as given in Figure 12, contains 

a cholesterol moiety attached by an ester bond to a hydrolysable dimethylethylenediamine. 
Due to the presence of cholesterol moiety, it is biocompatible and has good stability. The 

combination of DC-Chol and dioleoylphosphatidylethanolamine (DOPE) in the ratio 1:1 

Figure 10. Structure of DOTMA.

Figure 11. Structure of DOTAP.
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reduces the lipoplex aggregation; it assists the DNA dissociation during gene delivery [94, 

99, 100, 103, 104].

5.2. Multivalent cationic lipids

5.2.1. DOSPA

DOSPA is a derivative of DOTMA. Chemically, it is 2,3-dioleyloxy-N-[2(sperminecarboxamido)

ethyl]-N,N-dimethyl-l-propanaminium trifluoroacetate, which is given in Figure 13. The dif-

ference between DOSPA and DOTMA is a spermine group, which is bound through a peptide 

bond to the hydrophobic chains. Spermine group allows more efficient packing of DNA due 
to its hydrogen bond interaction with the DNA [43, 94].

5.2.2. DOGS

DOGS, chemically it is di-octadecyl-amido-glycyl-spermine, structure of the DOGS is similar 

to DOSPA, as given in Figure 14. The molecular structures of both DOGS and DOSPA consist 

of a multivalent spermine head group and two 18-carbon alkyl chains. The saturated chains 

Figure 12. Structure of DC-Col.

Figure 13. Structure of DOSPA.
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in DOGS are linked to the head group through a peptide bond. The packing ability of DNA 

by DOGS is due to its large head group molecule and the length of long unsaturated carbon 

chains. DOGS have efficient packing of DNA, due to its spermine head group. The presence 
of spermine head group in DOGS leads to efficient packing of DNA [94, 105–107].

6. Neutral lipids

The commonly used neutral lipids are dioleoylphosphatidylethanolamine (DOPE), as given in 

Figure 15, and dioleoylphosphatidylcholine (DOPC), as given in Figure 16. These neutral lip-

ids are used in combination with the other cationic polymers. The gene transfection efficiencies 
of the cationic polymer are increased when it is used in combination with the helper neutral 

liquids. The increase in gene transfection efficiency is due to conformational shift to an inverted 
hexagonal packing structure like a honeycomb by DOPE at lower or acidic pH. The formation 

Figure 14. Structure of DOGS.

Figure 15. Structure of DOPE.

Advanced Technology for Delivering Therapeutics148



of inverted hexagonal-packing structure condenses the DNA inside by electrostatic interac-

tions. During gene transfection, fusion and destabilization of the lipoplex occur which lead to 

the release of DNA from endosomal vesicles. Cationic polymers DOTAP, DC-Chol and other 

cholesterol derivatives have been incorporated with DOPE for gene transfection efficiency [94, 

103, 108–114].

7. Poly(ethylene) glycol (PEG)

Chemically, poly(ethylene) glycol (PEG) (C
2n

H
4n+2

O
n+1

)
 
is a polyether or polymer of ethylene 

oxide.

The physical properties of PEG vary with respect to its chain length, whereas its chemical 

properties are almost the same. It is available in different molecular weights and different 
geometries such as branched PEG, star PEG and comb PEG. PEG is non-toxic and excreted 

through kidney. Degradation of the drug can be protected due to its surface modification 
property, and it has been extensively used as liposomal targeting by liposomal coating. The 

liposomes have longer circulation time in blood, reduced macrophage uptake, higher gene 

transfection efficiencies, larger available concentration and bioavailability [94, 115–120].

8. Conclusion

Nanotechnology is a science adapted in various research areas specifically in the drug-
delivery system. At present, gene delivery system includes viral-based, non-viral-based and 

combined hybrid systems, which are widely used for the treatment of various diseases. To 

provide the desired concentration of the drug in the target site and therapeutic effect is critical 
of the drug-delivery system. Biopolymer is a biomaterial that has been utilized extensively for 

formulating genetic material into a nanoparticle either embedded or encapsulated within the 

polymeric matrix. Despite various biopolymers, choosing a suitable biopolymer, nanoparticle 

preparation procedure with desired properties can achieve the bio-distribution and effective 

Figure 16. Structure of DOPC.
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delivery of the genetic material into the target site and regulate the damaged genes to produce 

the required proteins.
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