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Abstract

Fruit trees have a long juvenile phase. For example, the juvenile phase of apple lasts for 6–12 
years and is a serious constraint for creating new varieties by breeding based on crossing 
and selection. In this chapter, we report a novel technology using the apple latent spherical 
virus (ALSV) vector to accelerate flowering time and life cycle in apple and pear seedlings. 
Inoculation of apple and pear cotyledons immediately after germination with ALSV-AtFT/
MdTFL1 concurrently expressing Arabidopsis FLOWERING LOCUS T (AtFT) gene and sup-
pressing apple TERMINAL FLOWER 1-1 (MdTFL1-1) gene can shorten the period from seed-
ing to flowering to 1.5–3 months after germination and generation times in order to obtain 
next-generation seeds in 1 year or less. Most next-generation seedlings obtained from ALSV 
vector–infected plants were free of the virus. We also developed a method for eliminating 
ALSV vectors from infected apple and pear plants by only high-temperature treatment. A 
method combining the promotion of flowering in apple and pear by ALSV vector with an 
ALSV elimination technique is expected to see future application as a new plant breeding 
technique that can significantly shorten the breeding periods of apple and pear.

Keywords: apple latent spherical virus (ALSV) vector, apple, pear, promotion of 
flowering, elimination of ALSV

1. Introduction

Woody fruit trees have a long juvenile phase—the period between germination and flower-

ing of plants. In apple and pear, the vegetative growth (juvenile phase) generally lasts for 

6–12 years with no flowering and fruiting. After transition from the juvenile phase to the adult 
phase, the trees flower/fruit every year [1–3].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Several apple varieties have been bred to in order to impart resistance to diseases and insect 

pests, as well as for quality improvement of the fruit. Breeding of fruit trees is convention-

ally conducted by crossing and selection [4, 5]. So, it is necessary to cultivate many hybrid 

seedlings to examine their characteristics for breeding new varieties. For example, “Fuji,” an 

apple variety that currently has the world’s highest production, was selected from 787 hybrid 

seedlings obtained by crossing “Kokkou (Ralls Janet)” with “Delicious” apples. This variety 

flowered and fruited approximately 12 years after seeding [6]. Since apple fruits are produced 

continuously on the same tree over dozens of years, breeding of a high-quality variety is very 

important for apple production.

A long juvenile period of apple seedlings is a major barrier to the breeding of new varieties. 

Moreover, breeding of fruit trees requires large fields for cultivation of seedlings and consid-

erable labor for their management. Technologies for shortening the juvenile phase, including 

grafting onto dwarfing rootstocks, have been developed; however, despite the use of these 
technologies, several years are required for flowering/fruition [1, 2].

In recent years, global warming is advancing owing to an increase of greenhouse gas con-

centrations in the atmosphere. Fruit trees are susceptible to global warming because their 

important physiological phenomena, such as flowering and dormancy, are dependent on 
environmental climates. In Japan, the influences of global warming on the production of 
apples have already begun to appear, with poor coloration of fruit, increased frost injury due 

to early flowering phase, and damage by harmful insects reported [7]. It is presumed that a 

further shift of land suitable for cultivation of fruit trees and changes in the distribution of 

diseases and pests caused by global warming will be accelerated in the future; therefore, it 
is necessary to implement rapid fruit breeding technologies. The improvement in efficiency 
of fruit tree breeding, particularly shortening of the juvenile phase, is gaining a great deal of 

attention.

Many genes involved in plant flowering have been identified in the past 20 years in model 
plants such as Arabidopsis thaliana and rice. The most important gene among them is the FT 

gene, which encodes the flowering hormone, “florigen.” Although it has been known since 
its discovery that florigen is a mobile signaling substance which is synthesized in leaves 
and transferred to the shoot apical meristem, it is sensitive to photoperiod. Interestingly, it 

took approximately 70 years to identify this molecule [8]. The FT gene encodes an approxi-

mately 20-kDa water-soluble protein belonging to the phosphatidylethanolamine-binding 
protein (PEBP) family, and was reported for the first time in A. thaliana (FLOWERING 

LOCUS T of A. thaliana (AtFT) gene) and rice (Heading gate3a (Hd3a) gene) [9–12]. The FT 

protein is conserved widely in angiosperms and has a common function of promoting 

flowering [8]. In fruit trees, it has been reported that flowering was promoted in geneti-
cally modified orange and pear expressing the citrus florigen-like gene, CiFT [13, 14]. Early 

flowering also occurs in genetically modified apples where the florigen-like gene, MdFT, is 

expressed [15, 16].

Proteins belonging to the PEBP family contain the A. thaliana TFL1 gene [17–19]. The TFL1 

gene is highly homologous with the AtFT gene but has an adverse function that it  suppresses 
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flowering. Fruit trees have a gene homologous to the TFL1 gene; the suppression of MdTFL1-1, 

an apple TFL1-like gene, was reported as leading to early flowering [20, 21]. Similarly, in pear, 

suppression of PcTFL1-1 and PcTFL1-2 led to the induction of early flowering [22]. In research 

using other genes, Flachowsky et al. reported that an early flowering apple line T1190 express-

ing BsMADS4, a transcription factor involved in the initiation of flower bud formation, could 
be used for breeding a disease-resistant variety via a rapid cycle breeding system where a 

generation was completed in 1 year [23].

Viral vector technology is a tool to express or suppress the target gene in the virus-infected 

plant [24, 25]. Infection of a plant by a plant virus vector integrated with the target gene 

for expression results in the occurrence of expression of the gene in the infected plant. 

Conversely, when attempting to suppress the expression of a gene, infection of a plant by 
a viral vector with a part of the target gene leads to induction of suppression of the target 

gene in the infected plant by virus-induced gene silencing (VIGS). Viral vectors have the 

advantage of allowing us to evaluate phenotypes rapidly. Recently, we constructed apple 

latent spherical virus (ALSV) vectors by adding cloning sites to the ALSV genome. The ALSV 

vector system can be used for the expression of a foreign gene and VIGS in various plant 

 species [26–38].

In this chapter, we introduce an ALSV vector-based technology for early flowering and short-
ening of a generation time in the apple and pear. Use of this technology allows apples and 

pear to complete a generation within 1 year, which reduces a breeding term of fruit trees sub-

stantially. Moreover, because the viral vectors can easily be removed from both next-genera-

tion seedlings and infected plants, this technology is considered not applicable to regulations 

of the Conservation and Sustainable Use of Biological Diversity through Regulations on the 

Use of Living Modified Organisms (Cartagena Protocol).

2. Apple latent spherical virus (ALSV) vectors

ALSV is a spherical virus with a diameter of approximately 25 nm originally isolated from 
an apple tree and is composed of two RNA genome segments (RNA1 and RNA2) and three 

types of coat proteins (Vp25, Vp20, and Vp24) [39–41]. The apple is the only natural host of 

ALSV; however, ALSV has a relatively wide range of hosts, and it can experimentally infect 
not only herbaceous plants such as Solanaceae, Cucurbitaceae, Fabaceae, and Gentianaceae but 

also fruit trees belonging to Rosaceae [26–38]. ALSV is characterized by latent infection causing 

no symptoms in almost all host plants and invasion of the shoot apical meristem of infected 

plants.

Previously, we used ALSV vectors constructed using pUC18 plasmid. These vectors had to be 

inoculated to Chenopodium quinoa plants for virus propagation [42]. Currently, we constructed 

RNA1 and RNA2 vectors using Ti plasmid where cloning sites for foreign gene were intro-

duced in both RNA vectors [43, 44]. As shown in Figure 1a, RNA1 vector has a cloning site in 

the 3′-noncoding region (SM), and RNA2 vector has two cloning sites in the ORF (XSB) and 
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the 3′-noncoding region (MN). These vectors can be inoculated to Nicotiana benthamiana by 

agro-infiltration [43, 44].

3. Efficient inoculation method of ALSV vector

Generally, it is difficult to directly inoculate cDNA clones of ALSV vector to apple and pear 
seedlings because cDNA clone results in a very low infection rate. Therefore, we first inocu-

lated the clones to an experimental plant, N. benthamiana by agro-infiltration, which have 
been established to introduce many plant viruses to plants, for viral multiplication. Then, we 

reinoculated the virus preparation (crude sap of infected N. benthamiana leaves) to a propa-

gation host C. quinoa for preparing the high-titer inocula for fruit trees. We established an 

efficient inoculation method using RNA sample extracted from the infected C. quinoa leaves 

by particle bombardment [42, 45]. Inoculation of apple seedlings immediately after germination 

Figure 1. (a) Genetic map of ALSV binary vector (pCALSR1-SM and pCALSR2-XSB/M). LB and RB, left and right 
borders, respectively. 35S, CaMV 35S RNA promoter. Tnos, nopaline synthase terminator. SM, MN, and XSB, cloning 
sites. (b) Outline of biolistic inoculation of ALSV vectors to apple cotyledon just after germination.
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by this method (Figure 1b) allowed us to achieve 90–100% infection rate. Cotyledons imme-

diately after germination of fruit trees appear to be highly susceptible to viral infection.

4. Induction of early flowering of apple and pear by ALSV 
vector infection

We first constructed an ALSV vector expressing AtFT (ALSV-AtFT) and inoculated this vector 

to cotyledons of apple seedlings as shown in Figure 1a. The results indicated that approxi-

mately 30% of the infected seedlings formed flower buds and flowered 1.5–2 months after the 
inoculation at the stage 7–8 true leaves [30]. This was likely the result of expression of AtFT 

from ALSV-AtFT in the shoot apical meristem of the infected seedlings. The flowers induced 
by ALSV-AtFT infection showed an apparently normal morphology. Pollens collected from 

these flowers were used for pollination of apple flowers that flowered naturally, which led 
to the formation of fruits with normal seeds. Thus, inoculation of ALSV-AtFT allowed us to 

achieve early flowering in apple seedlings. However, the flowering rate was no greater than 
approximately 30% of the infected seedlings, and the flowered seedlings shifted to vegeta-

tive growth and flowered again only rarely. In the following experiments, we constructed 
ALSV-MdTFL1 which a part of MdTFL1-1 gene was inserted in a cloning site in the XSB site 
of RNA2 vector. This vector suppressed the expression of an MdTFL1-1 gene in infected apple 

[29], and the infection of this vector resulted in the formation of flower buds 1.5–3 months 
after inoculation (stage 8–19 true leaves). The infected apple seedlings showed continuous 

flowering where they formed flower buds on the extending auxiliary buds for several months. 
Unfortunately, the rate of flowering by ALSV-MdTFL1 infection was as low as approximately 
10% of the infected seedlings.

Finally, we constructed an ALSV vector (ALSV-AtFT/MdTFL1) that expresses AtFT and sup-

presses MdTFL1-1 gene concurrently [46]. Surprisingly, greater than approximately 90% 
of ALSV-AtFT1/MdTFL1-infected apple seedlings formed flower buds and flowered 1.5–3 
months after inoculation (stage 7–22 true leaves) (Figure 2a), and the majority of these early 

flowering seedlings showed continuous flowering in which they flowered continuously 
over several months (Figure 2b). It was confirmed that their pollens were fertile and pol-
lination between early flowering individuals led to fruit formation (Figure 2c). Their fruit 

skin color displayed green, yellow, and red coloring in the process of maturation depend-

ing on the individual (Figure 2d). Their fruit size was approximately 2.5–4.5 cm, and seeds 
formed inside, with seeds germinating and growing normally after breaking of dormancy 

(Figure 2d) [46]. In addition, the total soluble solids (TSS) determined by a refractometer was 

showed 7.8–13.5% in their juice. From the above, fruits formed in seedlings infected with 
ALSV-AtFT/MdTFL1 were likely to be used for evaluating quality regarding their skin color 

and sugar content.

It was revealed that infection of apple seedlings by ALSV-AtFT1/MdTFL1 allowed 

us to shorten one generation (from seeds of the current generation to formation of the 
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 next- generation seeds) of apples that usually takes 5–12 years, to a year or less. This new 
technology is expected to be able to shorten substantially the period for breeding a new vari-

ety of apple via crossbreeding. In addition, as conventional breeding of fruit trees requires 

large fields, the use of this new technology enables completion of one generation in a growth 
chamber (Figure 3).

We also verified whether the technology of inducing early flowering using ALSV vec-

tor was applicable to pear [46]. We inoculated cotyledons of pear seedlings immediately 

Figure 2. (a) Precocious flowering of apple seedlings infected with ALSV-AtFT/MdTFL1 (45 days postinoculation 
(dpi)). Eleven of 12 apple seedlings infected with ALSV-AtFT/MdTFL1 produced flower buds within 2 months. 
(b) A seedling (3 months postinoculation (mpi)) showing continuous flowering. Arrows indicate the flowers. (c) Apple 
seedlings with fruits (arrows) 8.5 mpi. (d) Ripe fruits on ALSV-AtFT/MdTFL1 infected apple seedlings (10 mpi) with 
viable seeds.
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after  germination with ALSV-AtFT/MdTFL1 and confirmed that approximately 33% of the  
infected individuals flowered and showed continuous flowering where they flowered contin-

uously over several months as the apple seedlings did (Figure 4a, b). We also constructed an 

ALSV vector (ALSV-AtFT/PcTFL1) that simultaneously performs AtFT expression and sup-

pression of PcTFL1-1 expression and inoculated to cotyledons of pear seedlings. The results 

indicated that approximately 86% of the infected individuals showed continuous flowering. 
This effect is likely due to replacement of the apple gene (MdTFL1-1) by pear counterpart 

(PcTFL1-1). This confirmed that the sequence identity is important for efficient gene silencing 
as reported elsewhere [28, 47, 48]. In addition, the pollens of early-flowered pear seedlings 
were fertile and triggered fruition of the infected individuals via pollination with their pistils 

(Figure 4c). We presume that this technology is likely to be feasible for all fruit trees that are 

susceptible to ALSV infection, and substantially contributes to optimization of breeding by 

crossing of new fruit tree varieties.

Figure 3. (a) Precocious flowering and fruit production of apple seedlings infected with ALSV-AtFT/MdTFL1 (7 mpi) in 
a growth chamber with a hydroponic cultural apparatus. Arrows indicate fruits. (b) Ripe fruits in seedlings shown in (a) 

with viable seeds. Scale bars indicate 1 cm.
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5. Elimination of ALSV from infected apple and pear trees

We tested 487 seeds obtained using pollens of ALSV-infected apple trees as the pollen parent, 

as well as 450 seeds from fruits on ALSV-infected apple trees, by ELISA and RT-PCR to test 
seed transmission. The rates of seed transmission from pollens and ovules were 0.38 and 4.5%, 
respectively [49]. We also investigated the rate of seed transmission from ovules using qRT-

PCR, indicating that approximately 1% seedlings (two individuals out of 192 individuals) 
were infected with the virus [50]. Examination of 47 next-generation apple seedlings obtained 

from early-flowered seedlings using ALSV technology (ALSV-AtFT1/MdTFL1) showed that 
none of them were infected with ALSV vector, indicating that virus-free individuals can be 

obtained successfully [46].

Elimination of ALSV vectors from infected plants may allow the use of early flowering 
plants as breeding materials without genetic modification. We sometimes observed a phe-

nomenon in which ALSV multiplied in inoculated leaves but not move to upper un-inocu-

lated leaves [38]. We incubated ALSV-infected apple and pear seedlings for four weeks in a 

37°C chamber, then returned them to a 25°C, and investigated the distribution of ALSV in 
infected plants. It was revealed that ALSV stopped movement to new tissues after the 37°C 
treatment, and no ALSV multiplication was observed in new tissues developed at 25°C [38]. 

We attempted detection of ALSV from the shoot apical meristem tissue of ALSV-infected 
apple and pear seedlings after incubation at 37°C by in situ hybridization; however, no 
ALSV was detected from the shoot apical meristem tissue after incubation at 37°C. It is 
likely that exclusion of ALSV from the shoot apical meristem tissue by high-temperature 

treatment (37°C) leads to cessation of subsequent ALSV movement to newly developed 
 tissues [38] (Figure 5).

Figure 4. (a) Precocious flowering of a pear seedling infected with ALSV-AtFT/MdTFL1 (45 dpi). (b) Continuous 
flowering of a pear seedling infected with ALSV vector (3 mpi). (c) Fruition on a pear seedling infected with ALSV vector 
(7 mpi). Arrows indicate fruits on a pear seedling.
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The results indicate that ALSV free tissues could be easily obtained from infected plants that 

flowered early by ALSV-AtFT1/MdTFL1 infection. Use of virus-free tissues as scions is likely 
to allow us to grow virus-free plants.

6. Discussion and perspective

The long juvenile phase of fruit trees is a significant barrier for efficient fruit tree breeding 
[3, 51]. The technology developed in the present study substantially shortens one generation 

of fruit trees via infection of the trees with an ALSV vector for promotion of flowering in 
fruit tree breeding. Conveniently, the majority of individuals of the obtained next-generation 

seedlings were free of ALSV because of low seed transmission rate of ALSV. Our ALSV vector 
technology, which is different from recombinant DNA technology, induces no mutation on 
the genome of the infected fruit tree. It is difficult to distinguish between normal plants and 
the plants after removal of ALSV vector. It is also possible to remove the virus easily by heat 

treatment from the infected materials, with these fruit trees not distinguishable from normal 

fruit trees. Therefore, these trees are likely to be used for breeding materials.

Velázquez et al. reported that they constructed a clbvlNpr vector from the Citrus leaf blotch 

virus and induced citrus in the juvenile phase to flower early via AtFT expression by the vec-

tor [52]. ALSV infects not only Rosaceae fruit trees but also citrus and grape; we can expect 
that ALSV will be used for the promotion of flowering in a greater variety of fruit trees in the 
future.

In recent years, determination of the full genome sequence of fruit trees has advanced, leading 

to publication of these sequences [53, 54]. This information is expected to accelerate bioinfor-

matics, identification of molecular markers, marker selection, and omics research in fruit trees 

Figure 5. ALSV distribution in apple and pear seedling before and after heat treatment. Red color indicates the tissues 

which developed before heat treatment and systemically infected with ALSV. Yellow color indicates the tissues which 

developed during heat treatment and in which ALSV was weakly detected and/or not detected. Green color indicates 

the tissues which developed after heat treatment and in which ALSV was not detected. Black circles indicate the shoot 

apical meristems.
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even more [3, 51, 55–59]. The combination of virus-induced flowering technology described 
here with information obtained from these research is expected to lead to further optimiza-

tion of fruit tree breeding in the future.
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