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Abstract

Human periodontitis is a chronic inflammatory disease induced by opportunistic Gram-
negative anaerobic bacteria at the tooth-supporting apparatus. Within the gingivitis-
affected sulcus or periodontal pocket, the resident anaerobic bacteria interact with the 
host inflammatory reactions leading to a lower oxygen or hypoxic environment. A cellu-
lar/tissue oxygen-sensing mechanism and its appropriate regulation are needed to assist 
tissue adaptation to natural/pathology-induced variations in oxygen availability. In this 
chapter, we reviewed the biological relevance of hypoxia in periodontal/oral cellular 
development, epithelial barrier function, periodontal inflammation, and immunity. The 
role of hypoxia-inducible factor-1α in pathogen-host cross talk and alveolar bone homeo-
stasis was also discussed. The naturally occurring pathophysiological process of hypoxia 
appeared to entail fundamental relevance for periodontal defense and regeneration.
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1. Introduction

Regardless of the oxygen sources, when an animal acquires oxygen through its breathing 
apparatus, the oxygen will have to pass under a reducing partial oxygen pressure (pO

2
) gra-

dient from the source via circulation to different organs and then tissues and cells. In mam-
mals, such as rats, inspired pO

2
 is around 21.3 kPa at sea level. When blood flows through the 

alveolar capillaries, it drops to approximately 14 kPa and is then progressively reduced to 2.1, 
1.3, and 0.27–3.3 kPa in the spleen, thymus, and retina, respectively [1, 2], while in the brain, 
it may be as low as 0.05–1.07 kPa, depending on the cranial location [3].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Due to the colonization by subgingival biofilm, oxygen is persistently consumed to various 
extents by the facultative anaerobic microbes within the periodontal sulcus (2.33–8.40 kPa). In 
the gingivitis-affected sulcus or periodontal pocket, the inflammation induced by the residen-
tial anaerobic bacteria with or without microulcerations or wounding leads to an even lower 
oxygen tension [4]. At the tissue level, the availability of oxygen is dependent on the distance 
from the oxygen-supplying blood vessels. Although the diffusion distance of oxygen in vivo is 

estimated to be 100–200 μm, a pO
2
 of almost zero has been recorded in tissues 100 μm away 

from the nourishing blood vessels [5]. Therefore, a cellular/tissue oxygen-sensing mecha-
nism is needed to assist tissue adaptation to nature/pathology-induced variations in oxygen 
availability.

In humans, a drop in oxygen concentration in the atmosphere is sensed by the carotid body 
at the bifurcation of the carotid arteries, which then increases the rate and depth of breathing. 
At the levels of tissues and cells, including the human periodontium, such adaptive responses 
to low oxygen tension or hypoxia are mainly mediated through a key cellular transcription 
factor named the hypoxia-inducible factor (HIF) [6].

2. Hypoxia in the oral/periodontal environment

Oxygen is an essential molecule for survival. Mammals—including humans—depend on oxy-
gen for electron transport, oxidative phosphorylation, and energy generation. Variations in 
tissue oxygen needs are attributed to a number of physiological or pathological states, mean-
ing that the tissues concerned have to be able to adapt to various O

2
 environments including 

hypoxia. To survive, mammalian cells evolved in such a way that cellular O
2
 availability or 

homeostasis could be monitored and tightly regulated [7]. This is made possible by a cel-
lular HIF system. Cellular hypoxia, or a lower than “normal” concentration of O

2
 in cells, 

occurs commonly and could induce significant changes, immediate or delayed, on cellular 
processes, including cell growth and apoptosis, cell proliferation and survival, pH regulation 
and energy metabolism, cell migration, matrix and barrier function, angiogenesis, and vaso-
motor regulation [8–13]. These biological processes involve active responses by the body to 
secure an additional oxygen supply via circulation. Such dynamic processes of cellular/tissue 
oxygen monitoring, O

2
 consumption, and delivery, corresponding to the respective cellular/

tissue functional state, are tightly controlled to ensure proper survival of the multicellular 
organism concerned [14].

As described earlier, the normal tissue/cellular pO
2
 levels in mammals are dependent on their 

location and physiology and, hence, vary among different human body compartments and 
cell/tissue conditions [15]. Hypoxia in oral cells/tissues is, in fact, a common occurrence [6]. 
The local hypoxic microenvironment is considered a consequence of growth/development, 
wound healing, smoking habits, or concurrent oral inflammation/infection/diseases.

Taking oral cellular development/regeneration as an example, the blood vessel network is pro-
moted by vascular endothelial growth factors (VEGF) secreted by stem cells from apical papilla 
under hypoxia, suggesting a role of hypoxia in pulp revascularization and  bioengineered pulp 
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replacements [16]. On the other hand, it is reported that extreme hypoxia-like response induced 
by the chemical cobalt chloride (CoCl

2
) could stimulate periodontal ligament (PDL) stem cell cyto-

toxicity through mitochondria-apoptotic and autophagic pathways involving HIF-1α [17]. 
During pathological processes, it is reported that a low oxygen level may regulate cell migration 
of oral cancer cells, thus influencing the invasion and metastasis in malignant oral lesions [18].

With reference to growth, increasing evidence shows that certain hormonal regulation could 
be interfered with hypoxia or HIF [19]. For instance, it is reported that growth hormone expres-
sion in lymphocytes and parathyroid hormone-related protein in articular chondrocytes can 
be induced by hypoxia [20, 21]. We postulate that if similar biology could be expressed in the 
head and neck region, HIF or hypoxia may bring profound effects on the growth and devel-
opment of orofacial structures.

3. Hypoxia and chronic periodontal inflammation

Metabolic shifts under hypoxia are common occurrences in the periodontal inflammatory 
process as a result of the imbalance between the tissue oxygen supply and consumption [22]. 
The accumulation of intracellular HIF-1 promotes the transcription of a spectrum of genes to 
maintain cellular homeostasis. Hypoxia induces the expression of a number of angiogenic fac-
tors to improve the blood supply in needed areas including inflamed periodontium [6]. These 
include VEGF, platelet-derived growth factor (PDGF), and angioprotein-1 and -2. Related 
genes produce controlling perfusion, such as the PDGF-β receptor, cyclooxygenase-2, and 
nitric oxide synthase (NOS), of which NOS modulates vascular smooth muscle cells’ func-
tions and reacts to changes in the cellular HIF-1 level [23]. Moreover, HIF activation promotes 
a metabolic switch to reduce oxygen consumption by shifting energy metabolism from aero-
bic respiration to glycolysis. Activation of HIF also upregulates the expression of pyruvate 
dehydrogenase kinase, which reduces the incorporation of pyruvate into the citric acid cycle 
[24]. This metabolic switch is essential for the hosts’ defense because such HIF-1α–regulated 
glycolytic metabolism is required in B cell development [25] and T cell metabolism [26].

Under a chronic inflammatory state, hypoxia induces protective cellular responses or a local 
defense. However, if the cause of inflammation cannot be eradicated, such hypoxic cell/tissue 
reactions contribute to the pathophysiology of inflammation and, hence, disease pathogenesis 
[27]. A similar scenario can be observed within the human periodontium in periodontitis. 
Periodontitis is characterized by chronic inflammation of the tooth-supporting tissues, initi-
ated by a multitude of Gram-negative anaerobic pathogens including Aggregatibacter actino-

mycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and so on 
[28]. At sites where a chronic inflammatory reaction could be found, oxygen consumption 
is elevated and blood perfusion is stimulated, but the actual local microcirculation could be 
compromised [29]. This local tissue pO

2
 change is partly due to increased oxygen consump-

tion, including oxygen usage by both resident cells and infiltrated defense cells, and partly 
because of diminished oxygen availability due to endothelial damage and vasoconstricted 
microcirculation.
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Local hypoxia in periodontitis in turn enhances the anaerobic Gram-negative pathogens’ sur-
vival and further lowers the oxygen tension at the vicinity. The tissue hypoxia in periodontal 
disease has been characterized by increased HIF-1α protein that is detectable in periodontitis-
affected tissue biopsies using Western blot and anti–HIF-1α immunostaining [6, 30]. Myeloid 
cell lineage of HIF-1α–/– (deprived) mice had impaired immune effector molecules, such as 
nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) production, thus reducing their 
bactericidal capability [31]. Therefore, the ability to adapt to a reduced oxygen supply, which 
maintains immune cell surveillance capability in all tissue environments, is important and 
necessary in the successful elimination of pathogens [32].

Proinflammatory cytokines and matrix metalloproteinases (MMPs) act as mediators for 
the inflammation process or play a role in extracellular matrix degradation, respectively. 
Researchers often investigate the levels of such biological markers in the periodontium 
in attempts to gauge the severity of periodontal disease and monitor periodontal treat-
ment outcomes [33]. Recent studies reported that a hypoxic environment may upregulate 
proinflammatory cytokines and MMPs’ expression from host cells during periodontal dis-
ease [34]. The idea was that hypoxia further encourages lipopolysaccharide (LPS)-induced 
TNF-α, interleukin-1β, and interleukin 6 (IL-6) expressions via LPS toll-like receptor (TLR) 
interaction that, in turn, activates the nuclear factor kappa B (NF-κB) pathway in human 
PDL cells upon exposure to the aforementioned Gram-negative bacterial surface compo-
nent [35–37].

At the collagen destruction front, periodontal epithelial cells could produce MMPs in 
response to bacteria-induced activation of pathogen-associated molecular patterns (PAMP) 
including TLRs. These host enzymes contribute to the extracellular matrix degradation that 
accommodates local inflammatory reactions, as well as the later tissue remodeling that ensues 
once inflammation stops [38, 39]. Inhibition of HIF-1α activity by chetomin, a Chaetomium 

metabolite that can incapacitate tumor cells’ hypoxic adaptation or knockdown HIF-1α gene 
expression by small, interfering RNA, could markedly attenuate the production of LPS- and 
nicotine-stimulated MMPs and prostaglandin E

2
 from PDL cells. Such observations suggest 

the possibility of HIF-1α being a potential target in periodontal tissue destruction associated 
with smoking and dental plaque [40]. Further supporting the idea that hypoxia may be one of 
the key biological responses in periodontal inflammation.

Certain periodontopathogens, other than acting as effective mediators of periodontal inflam-
mation, are capable of doing more harm to a host under a low pO

2
 environment. For instance, 

P. gingivalis LPS under hypoxia increases PDL fibroblasts’ oxidative stress and induces a 
reduction of catalase, indicating a collapse of the protective machinery favoring the increase 
in reactive oxygen species (ROS) and the progression of inflammatory oral diseases [41].

Considering the healing of oral wounds, several studies reported that the biological process 
in general could be enhanced or accelerated under hypoxia via HIF-1 [42, 43]. For exam-
ple, the wound healing of rat palatal mucosa was enhanced by the hydroxylase inhibitor 
dimethyloxalylglycine, a HIF-1α stabilizer, under a hypoxic environment, and this enzyme 
was reported to induce hypoxia-mimetic angiogenesis [44]. With reference to hard tissue 
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healing, CoCl
2
 triggered the expression of angiogenic mediators and bone turnover-related 

genes, which promoted fracture healing and repair in vivo [45]. The research report also indi-
cated that, during distraction osteogenesis, an angiogenic effect and bone healing could be 
promoted by conditioned media collected from dental pulp cells under hypoxia [46]. These 
findings implied the possibility that a low tissue oxygen level may act as a biological signal, 
promoting soft and hard tissue healing, including that of the orofacial regions, mediated 
through inflammation.

4. Hypoxia and periodontal immunity

Hypoxic responses or HIF is reported to be strongly related to innate human responses, with 
low oxygen modulating energy metabolism and various genes’ expression within defense 
cells that, in turn, dictate the immune performance and the host protection outcomes [47]. 
The biological impact of low pO

2
 on T cells’ functions was reflected by the HIF-1– and ade-

nosine receptor–modulated effects [48]. Indeed, both lymphocytes and myeloid cells were 
affected and the hypoxia-induced adaptive immune response changes would interfere or 
affect the innate immunity. The relevance of hypoxia in pathological processes was well estab-
lished upon the appreciation that wounds, infectious loci, and tumor growth each involved 
extremely low oxygen tension [1].

It has been well appreciated that low oxygen tension is common at inflamed periodontitis 
sites [4]; thus, the corresponding local immune responses must adapt to the hypoxic chal-
lenges. As mentioned above, hypoxia plays an important role in modulating the cellular 
activities of innate and adaptive immunity, so the impact of low pO

2
 in periodontal immune 

responses is quite significant.

Oral innate immunity is the first line of defense against periodontopathogens, which func-
tions to recognize, attenuate, and eliminate the nonself invaders and to trigger down-
stream immune responses. Granulocytes and monocytes/macrophages are the main cell 
types for innate periodontal immunity [49, 50]. When extensive inflammation takes place, 
these cells have to travel into the tissue compartment with low pO

2
 (i.e., the infected area) 

to provide defense and wall-off the invasion. To prevent the invasion, intense energy 
metabolism has to occur within the involved innate defense cells. An appropriate hypoxic 
cellular reaction and adaptation is, therefore, very important in the periodontal innate 
immune cells, which develop functional and survival responses regulated by the oxygen 
sensor HIF [51].

Defense cells rely heavily on glycolysis for the production of ATP to compensate for the limited 
oxidative metabolism in hypoxia. Immune cell energy metabolism appeared to significantly 
influence its corresponding response. As a critical modulator for the expression of glycolytic 
enzymes, the absence of HIF-1α leads to a significant reduction of ATP availability in myeloid 
cells [52]. It was reported that a knockdown of HIF-1α protein led to a nullified IL-6 produc-
tion when exposed to LPS, suggesting that HIF-1α supported the LPS-dependent expression 
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of IL-6 that, in turn, prevented the depletion of ATP and, therefore, protected myeloid cells 
against LPS/TLR4-induced apoptosis [53]. In human monocytes, LPS and hypoxia synergisti-
cally activated HIF-1 through p44/42 mitogen-activated protein kinases (MAPK) and NF-κB; 
however, repetitive exposure to LPS could induce tolerance to bacterial endotoxins and, 
hence, impair corresponding HIF-1α induction, which reduces the ability of monocytic cells 
to survive and function under low oxygen [54, 55].

To combat invading pathogens, HIF also promotes polymorphonuclear neutrophil (PMN) 
recruitment via the restoration of blood flow at inflamed tissues and enhances neovascular-
ization. With hypoxia, the HIF restored perfusion also facilitates PMNs’ diapedesis [56, 57]. 
Furthermore, PMN apoptosis was attenuated under hypoxia, with HIF-1α reported to be a 
protective factor in the regulation of its functional longevity [58]. Such longevity regulation 
involved NF-κB signaling that was found to be essential in constitutive HIF-1 protein transla-
tion [58, 59].

The cellular stress-related transcription factor NF-κB is closely related to hypoxia despite the 
fact that the relationship is not yet completely understood. It was reported that classical or 
canonical NF-κB activation under the stress of hypoxia often involves the activation of trans-
forming growth factor-B-activating kinase and the inhibitor of κB kinase (IKK) complex [60]. 
In addition to classical NF-κB signaling, the noncanonical NF-κB pathway could be activated 
by hypoxia independent of HIF-1α via NF-κB-inducing kinase and IKK homodimer activa-
tion [61]. ROS, a key inflammatory regulator in chronic periodontal inflammation, is con-
firmed to mediate HIF-1α induction dependent on NF-κB [62].

Dendritic cells (DCs), a group of professional antigen-presenting cells, are key members that 
enable cross talk between the innate and adaptive immune systems. They present an antigen 
to activate naive lymphocytes and assist in the development of specific adaptive immune 
responses to pathogens. Hypoxia has been found to play an important role in the maturation 
and cytokines release of DCs, but the mechanism of the related divergent effects still remains 
controversial [63]. Studies found that the knockdown of HIF-1α in DCs inhibited their mat-
uration and significantly impaired their capability to stimulate allogeneic T cells, probably 
because of the reliance on the HIF-controlled glycolysis [64, 65]. In contrast, it is reported 
that low oxygen tension inhibited the DCs’ defense against LPS, but strongly upregulated 
the production of proinflammatory cytokines in the cells involved [66]. Similar results can be 
observed in the human antifungal response: hypoxia at the site of Aspergillus fumigatus infec-
tion inhibited the full activation and function of DCs [67]. These findings suggest that hypoxia 
may function as a regulator against DCs’ mediated immune overreaction.

Lymphocytes are known to be involved in periodontal tissues’ health homeostasis, and their 
functional upset was believed to be associated with periodontal pathogenesis. An HIF-1α 
deficiency was associated with abnormal B cell development, which led to autoimmunity 
in a mouse model [68]. A recent study also indicated that T cells’ HIF-1α regulation played 
a critical role in avoiding cardiac damage in diabetic mice [69]. We postulated that a simi-
lar protection mechanism may be called to function in diabetic periodontium. Therefore, 
hypoxia or HIF-1α regulation in DCs and lymphocytes may confer a marked impact on the 
innate and adaptive cellular immunity in periodontal tissues, with the exact mechanism yet 
to be elucidated.
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5. HIF and epithelial barrier function

The human periodontium is a unique environment for microorganisms. One special charac-
teristic is the nonshedding tooth’s hard tissue surface, allowing microorganisms to remain 
in situ. To counter the invasion of possible pathogens, the corresponding epithelial tis-
sues build up an effective barrier against the colonizing microbes [70]. With appropriate 
daily oral hygiene, the continued host-bacteria interaction maintains the periodontium in 
health or low grade/subclinical inflammation. Those who have inadequate oral hygiene 
tip the balance toward a proinflammatory state, resulting in inflammatory responses that 
present clinically as gingivitis. Due to poor oral hygiene and inherited or acquired risks, 
approximately 20% of the human population, develop chronic periodontal inflammation 
with tissue destruction resulting in what is known as periodontitis [71]. Regardless of the 
host-parasitic interaction outcomes, humans and their complex residential microflora have 
coevolved over time [72].

TLRs on the periodontal/gingival epithelial cells recognize the conserved molecular patterns 
on pathogenic bacteria that are also known as PAMP, limiting invasion of the microbes, and 
help to maintain oral health [73]. Other than providing a physical barrier to the outside world, 
the skin and mucosal membrane produce a number of antimicrobial peptides (AMPs). The 
AMPs have a broad activity spectrum against both Gram-negative and Gram-positive bacte-
ria colonization, enveloped viruses, fungi, and even transformed or cancerous cells.

It has become clear that AMPs, such as defensins and the cathelicidins family of peptides—
especially LL-37, play important roles independently or together in maintaining oral health, 
including antimicrobial effects and mediating chemotaxis of the immune cells [74, 75]. 
Researchers reported that a deficit of cathelicidin allowed infection by A. actinomycetemcomi-

tans and the development of severe periodontitis [76].

The epithelial cells in both oral mucosa and the gut are relatively hypoxic [4, 77]. The corre-
sponding oxygen gradient between the epithelium and subepithelial perfusion in turn pro-
vides a matching cellular HIF-1α gradient in the tissues involved and perhaps the respective 
physiological function in cellular homeostasis. In human intestine, when the oxygen supply 
was impaired due to stasis of the local perfusion, the affected site would be left with increased 
susceptibility to infection [78]. As such, appropriate adaptive response to hypoxia at the epi-
thelial barriers is vital. HIF-1α functions as an intracellular pO

2
 sensor, enabling appropri-

ate adaptive responses for cell survival. Using prolyl hydroxylase inhibitor or AKB-4924, a 
HIF-1α stabilizing agent, production of cathelicidin and β-defensin in uroepithelial cells was 
significantly enhanced, and Escherichia coli infection was deterred [79]. On the other hand, a 
deletion of HIF-1α in skin keratinocytes decreased the production of cathelicidin and led to 
increased susceptibility of infection by a group of A. Streptococcus [80]. Naturally occurring 
low-grade hypoxic reaction and hence HIF-1 accumulation in gut/urogenital/skin epithelia 
followed by corresponding HIF-1 downstream genes expression were recently postulated to 
be a key concept that underpin biological barrier function of intestinal epithelium [77, 81]. If 
in case the same biological process is also in action at the dentogingival junction, HIF-1 would 
contribute in the periodontal epithelial barrier function that maintains periodontal health and 
prevents oral pathogenic microorganism invasion.
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Besides AMPs, there are also many factors regulated by HIF at the periodontal epithelial 
barrier. For instance, trefoil factors (TFF), secreted molecules from mucous epithelia, were 
involved in oral protection against tissue damage and immune response [82, 83]. Their expres-
sion was influenced by cellular pO

2
 levels. It was reported that HIF-1 mediated the induction 

of TFF gene expression and provided an adaptive link for the maintenance of the barrier func-
tion during hypoxia of gastric/intestinal lining cells [84, 85]. Salivary mucins form a protective 
layer on the oral surfaces including that of oral sulcular and junctional epithelia, which serve 
as a physical barrier against bacterial invasion and function as essential antimicrobial macro-
molecules [86, 87]. Similar to TFF, mucins’ production was upregulated in hypoxia [88]. This 
evidence indicated that the epithelial barrier cells’ HIF regulation may constitute an impor-
tant defense mechanism. Such oral protective machinery could contribute an additional local 
defense mechanism against periodontal diseases.

6. HIF in the periodontopathogen-host cross talk

Hypoxia is common in the inflammatory microenvironment, and appropriate cellular 
responses to hypoxia contribute to mucosal defense through the oxygen-sensitive transcrip-
tion regulator HIF-1α. Hypoxia increases the expression of certain TLRs on human gingival 
keratinocytes [89], the interaction of low oxygen with appropriate bacteria ligands in vivo 

could potentially enhance the production of cytokines and antimicrobial peptides and thus, 
in theory, could help to eliminate or reduce the pathogen-related concerns.

The human periodontium is persistently exposed to risks of infection; the source is the com-
mensal and pathogenic oral microorganisms constituting the dental plaque adhering onto 
teeth. Bacterial components, such as LPS and peptidoglycans, released by bacteria recognized 
by TLRs on the surface of host cells could instigate the inflammatory reaction cascade [38]. 
Under steady-state conditions, activation of TLRs by commensal bacteria is critical for the 
maintenance of oral health [73]. Thus, TLRs provide the first line of defense in periodontal 
health maintenance. When stimulated, such as via TLRs recognition, PMNs exhibit increased 
chemotaxis and proinflammatory cytokine production [90].

Our group previously reported that bacterial components may induce HIF-1α accumulation 
during periodontal disease pathogenesis independent of hypoxia [91]. An immunoprecipita-
tion experiment showed that human gingival fibroblasts’ HIF-1α accumulation was induced 
by LPS in the dose- and time-dependent manner. The accumulation of HIF-1α may be modu-
lated by TLRs and pattern recognition in certain ways, since a TLR4 neutralizing antibody 
could attenuate such an effect from E. coli LPS. Moreover, the expression of TLR4, CD14, and 
MD-2 in both human gingival keratinocytes and fibroblasts is confirmed, and the TLR4 pro-
tein expression in periodontal epithelial compartments appeared different in vivo, indicating 
that LPS sensing in the dentogingival front in health could be heterogeneous in nature [92].

A recent study on oral squamous cell carcinoma provided a novel mechanism of HIF-1 and 
TLRs’ interplay. It was reported that the activation of TLR3 and TLR4 stimulated the expres-
sion of HIF-1 through NF-κB, while HIF-1 accumulation increased the expression of TLR3 
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and TLR4 through direct promoter binding [93]. This observation provided evidence that the 
TLR3/4-NF-κB pathway may form a positive feedback loop with HIF-1, which theoretically 
could also happen in the periodontal tissue. Further investigations are needed to confirm such 
a postulation.

7. HIF and bone homeostasis

HIF appears to play important functional roles in bone homeostasis. The regulatory system 
seemed complex because HIF is known to stimulate both bone resorption and regeneration, 
the two essential biological processes in bone homeostasis/repair.

It is reported that a lack of oxygen in periodontal tissues may contribute to alveolar bone 
resorption and, in theory, accelerated periodontitis [94]. Chromatin immunoprecipitation 
showed that HIF-1α binds to the receptor activator of the NF-κB ligand (RANKL) promoter 
region, and mutations of the putative HIF-1α binding site prevented hypoxia-induced 
RANKL transcriptional promotion, thus suggesting that HIF-1α mediates hypoxia-induced 
upregulation of RANKL expression and enhanced osteoclastogenesis [95]. Furthermore, it 
was reported that hypoxia triggered the differentiation of peripheral mononuclear blood cells 
into functional osteoclasts in a HIF-dependent manner [96].

Conversely, in recent studies, HIF-1α was considered to be a critical mediator of neoangio-
genesis required for bone regeneration. Exposure of PDL stem cells to hypoxia improved their 
osteogenic potential, mineralization and paracrine release, and the mitogen-activated protein 
kinase kinase/extracellular signal-regulated kinase, and p38 MAPK signaling pathways were 
involved [97–99]. It was suggested that HIF, HIF mimicking agents, or HIF stabilizing agents 
were considered triggers for the initiation and promotion of angiogenic-osteogenic coupling 
[100, 101]. A recent animal study reported new bone and vessels formation induced by the 
overexpression of HIF-1α via adenovirus, leading to enhanced alveolar bone defect regen-
eration [102]. A similar result was reported from a study investigating bone loss arrest in 
ovariectomized C57BL/6 J mice via activated HIF-1α and Wnt/β-catenin signaling pathways 
[103]. Cementoblastic differentiation of human dental stem cells, a key cellular mechanism 
concerning periodontal regeneration, was reported to be stimulated by hypoxia in an HIF-1-
dependent manner [104].

Taken together, these reports suggested that HIF-1α plays a part in alveolar bone homeosta-
sis, resorption, or periodontal regeneration, while the exact nature of HIF-1α’s roles in these 
processes and the way in which the related pathophysiological processes were regulated war-
rants further investigations.

8. Conclusions

It seems that tissue/cellular hypoxia, or more specifically, expression of HIF-1α, is involved 
in periodontal inflammation. HIF-1 not only mediates the host’s immune response, providing 
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defense against microbial invaders and maintaining periodontal health, but also could facili-
tate periodontal-supporting tissue breakdown and, hence, the progression of periodontitis.

Putting all currently available information together, it appears that hypoxia could bring either 
beneficial or detrimental effects on periodontal health. At the present juncture, we hypothe-
size that similar to the intestines, a low-grade hypoxia or low level of HIF-1 is expressed in the 
human periodontium for baseline defense or to act as a surveillance “alarm” against signifi-
cant invasion or periodontitis. A successful immune response that associates with appropriate 
HIF-1 mediated biological reactions would result in periodontal health maintenance. Over- or 
underactivation of the immune system with or without the corresponding dysregulation of 
HIF-1 biology in tissues as well as alveolar bone, however, could give rise to periodontal tis-
sue damages. We also postulate that other risk indicators related to progression of periodonti-
tis, such as smoking and diabetes mellitus, under the influence of periodontal plaque biofilm, 
may exert their harmful effects via inappropriate activation of the HIF pathway. Effects of 
these risks indicators are particular relevant as they often undermine proper periodontal heal-
ing/regeneration after therapy [105].

The mechanisms underlying the role of HIF-1 and periodontal defense/pathogenesis, how-
ever, remain elusive. Further investigations are, therefore, required in these directions to deci-
pher what leads to the unfavorable immune reactions in periodontal inflammation and the 
reasons why that came about. Such new knowledge not only fosters the further understand-
ing of human periodontal disease pathogenesis, but may provide novel therapeutic strategies 
that take advantage of the new understandings of periodontal HIF biology, an important 
 element relevant for periodontal defense and regeneration.
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