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Abstract

There is much interest in the study and production of nondigestible oligosaccharides 
(NDOs), due to their bioactivities and beneficial effects to the human health. The main 
approach in the production of NDOs relies on the action of glycosidases performing 
hydrolysis or transglycosylation of polysaccharides and sugars. In this chapter, a descrip-
tion of the main microbial glycosidases used for NDOs production, their sources, their 
principal properties, and a description of the production processes with the better results 
obtained are discussed.

Keywords: glycosidases, transglysosylation, enzymatic hydrolysis, oligosaccharides

1. Introduction

The concept of nondigestible oligosaccharides (NDOs) came from the observation that the 

human body does not have the necessary enzymes to hydrolyze β-glycosidic linkages present 
in some sugars of the human diet. Thus, these carbohydrates can arrive intact in the intestine 
where they are fermented selectively stimulating the growth and/or activity of bacteria in the 

colon acting as prebiotics [1]. In this context, nondigestible oligosaccharides have received 
much attention since they have important biological properties promoting health beneficial 
effects. Stimulation of the intestinal microbiota growth associated with low cariogenic and 
caloric value are some of these properties. Also noteworthy is a stimulation of the immune 
system leading to a reduced risk of diarrhea and other infections. The benefits are obtained by 
a decrease in intestinal pH due to the fermentation of NDOs, decreasing the proliferation of 
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pathogenic microorganisms, and an increase of the bifidobacteria population [2]. The bioac-

tive properties of NDOs can be influenced by monosaccharide composition, type of glycosidic 
linkage, and degree of polymerization [2].

Nondigestible oligosaccharides can be produced using chemical or enzymatic processes. 
The synthesis using chemical methods are complicated, with numerous protection and 

deprotection steps required in order to achieve regioselectivity [3]. Other challenges of 
chemical synthesis are the low yields, expensive chemicals, and impossibility for scale-
up. For those reasons with few exceptions, most of the NDOs are produced by enzymatic 
processes.

The enzymatic production of NDOs can be achieved by two different approaches, the use 
of glycosyltransferases or glycosidases. Glycosyltransferases catalyze the stereospecific 
and regiospecific transfer of a monosaccharide from a donor substrate (glycosyl nucleo-

tide) to an acceptor substrate. Some of the difficulties associated with the application of 
glycosyltransferases are availability of enzymes and sugar nucleotide donors, product 

inhibition, and reagent costs. These factors decrease the applications of these enzymes 
in the production of NDOs [4]. The glycosidases offer a good alternative for enzymatic 
production of NDOs, where they can be synthetized from monosaccharides using trans-

glycosylation reactions, or formed by controlled enzymatic hydrolysis of polysaccharides. 
Some advantages of the glycosidases in relation to glycosyltransferases are availability, 
good stability, and the fact that they act on easily found substrates and do not need 

 cofactors [3].

The transglycosylation route can be performed by the use of a good glycosyl donor that can be 

a disaccharide, in high concentrations. This donor will form an intermediate glycosyl-enzyme 
that can be intercepted by an acceptor to give a new glycoside or oligosaccharide [3]. When 
the substrate is a monosaccharide, it will be acting as a donor and acceptor. Some glycosidases 
used to produce NDOs using this approach are α-galactosidases, β-fructofuranosidase, cyclo-

maltodextrin glucanotransferase, and α-glucosidase [4].

The production of NDOs by controlled hydrolysis of polysaccharides involves the break of 
glycosidic bonds, the reaction is acid base catalyzed by an oxocarbenium ion-like transition 
state and involves two carboxylic groups at the active site [5]. The glycosidases can be divided 
into inverting or retaining depending on the configuration of the glycosidic linkage after the 
hydrolysis. Inverting glycosidases operate through direct displacement of the leaving group 
by water. The two carboxylic groups are responsible for the reaction, one provides base cata-

lytic assistance to the attack of water and the other provides acid catalytic assistance to cleav-

age of the glycosidic bond. Retaining glycosidases use a double displacement mechanism 
involving the formation of a covalent glycosyl enzyme intermediate, where one carboxylic 
group acts as acid catalyst for the glycosylation step and base catalyst for the deglycosylation 

step [3]. The second carboxylic group acts as a nucleophile and a leaving group. The enzymes 
inulinase, pullulanase, amylase, xylanase, endogalactanase, rhamnogalacturonase, endoga-

lacturonase, and chitosanase are used for NDOs production using the controlled hydrolysis 

approach [4].
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2. Production of NDOs through glycosyl transfer reaction

2.1. Galactosidases

β-Galactosidases (EC 3.2.1.23) hydrolyze the nonreducing terminal of β-D-galactose residues 
in β-D-galactosides. The enzyme can be used in the production of galacto-oligosaccarides 
(GOs) by transgalactosylation reaction in which a galactosyl is transferred into the hydroxyl 
group of the galactose residue of lactose [6]. Due to the strong prebiotic factor, GOs can mod-

ulate the grown of microorganisms of the gut flora, increasing the population of bifidobacte-

ria, this enhancement is associated with beneficial effects, inhibition the grown of potentially 
pathogens, improvement, elimination, prevention, stimulation mineral adsorption, and dec-

rement cholesterol and lipids [7].

When using concentrated solutions of lactose (40%), high yields of GOs can be achieved. 
The β-galactosidase of Pseudozyma tsukubaensis showed high transgalactosylation capability, 

yielding of 18.28% of GOs with concentration of 73.12 g/L from a 40% lactose solution [8]. The 
immobilization of chemically aminated β-galactosidase from Aspergillus oryzae onto Purolite® 

A-109 leads to an increase in the operational stability and transgalactosylation capacity of the 
enzyme, producing in the optimum conditions (400 g/L lactose, pH 4.5, 50°C) 100 g/L of GOs 
in a fluidized bed reactor [9]. The utilization of an ultrafiltration membrane bioreactor, allows 
the synthesis and separation in one system. Using high lactose concentrations (470 g/L) and 
β-galactosidase from A. oryzae, the system yielded 1.88 gGOS/mgE that is 2.44-fold higher 
than the conventional batch (0.77 gGOS/mgE) [10].

The milk whey, a by-product from the dairy industry, is a valuable substrate for GOs produc-

tions due to its lactose contend (45–60%). The whey is produced by the processing and manu-

facturing of raw milk into products such as yogurt, ice cream, butter, and cheese through 
processes such as pasteurization, coagulation, filtration, centrifugation, chilling, etc. [11]. 
Depending on the procedure used to precipitate the casein, two types of whey are formed, 

the acid whey (pH < 5) is obtained after fermentation or addition of organic or mineral acids, 
whereas the sweet whey (pH 6–7) is obtained by addition of proteolytic enzymes like chymo-

sin [12]. The production of GOs from milk whey using a two-dimensional packed bed bioreac-

tor yielded 97% [13], while a yield of 29.9% of GOs with a concentration of (119.8 mg/mL) was 
achieved using cheese whey as substrate in a 4 h process [14]. When whey permeate was used 
as substrate in a membrane reactor system, a mixture of GOs with 77–78% of purity was pro-

duced [15]. A high lactose conversion was achieved (70–80%), when using whey as a substrate 
in the production of GOs, yielding 10–20% of total sugars and producing oligomers with DP3, 
DP4, and DP5 [16]. The GOs production from whey permeate yielded 50% corresponding to 
322 g prebiotics/kg whey permeate, presenting tagatose and lactulose in the oligosaccharides 
mixture [17]. Galacto-oligosaccharides were synthesized by enzymatic transgalactosylation in 
UF-skimmed milk permeate fortified with lactose (40% w/w). The GOs yields, expressed as 
a percentage of the initial lactose content, were 41, 21, 13, and 11% with β-galactosidase from 
Bacillus circulans, A. oryzae, Aspergillus aculeatus, and Kluyveromyces lactis, respectively, under 

optimal conditions [18].
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2.2. β-fructofuranosidases

The β-D-fructofuranosidases catalyze the hydrolysis of β-D-fructofuranoside residues at 
the nonreducing end of β-D-fructofuranosides [19]. Fructooligosaccharides (FOs) can be 
produced by transfructosylation of sucrose by β-fructofuranosidases, which is carried out 
through the breaking of the β(2-1) glycosidic bond and the transfer of the fructosyl moiety 
onto any acceptor other than water, such as sucrose or a FO. The sucrose is used as substrate 
acting as the glycosyl donor and as the glycosyl acceptor in competition with water (hydroly-

sis) in a glycosyl transfer reaction [20]. Besides the strong prebiotic factor, many bioactivities 
have been associated with FOs as anti-inflammatory effect on Crohn’s disease and ulcerative 
colitis, antimicrobial activity against gut flora pathogens, and prevention of colon cancer [21].

A β-fructofuranosidase from Penicillium oxalicum was able to produce neokestose from a 500 
g/L sucrose solution, giving 94.2 and 224.7 g/L of neokestose and total FOs, respectively [22]. 
An invertase produced by Aspergillus niger using salt-deoiled cake as substrate was able to 
form kestose during enzymatic hydrolysis using glucose (50%) [23]. Penicillium sizovae and 

Cladosporium cladosporioides were used to produce FOs from a 600 g/L of sucrose solution with 
maximum yield of 184 and 339 g/L, respectively [24]. The filamentous fungus Gliocladium 

virens was able to produce 6-kestose with a yield of 3in media containing 150 g/L sucrose after 
4–5 days of culture [25]. An extracellular β-fructofuranosidase from Rhodotorula  dairenensis 

produced a varied type of FOs containing β(2→1)- and β(2→6)-linked fructose oligomers 
with a maximum concentration of 87.9 g/L (75% sucrose conversion) [26]. A fructosyltransfer-

ase from Aureobasidium pullulans presented maximum transfructosylation rate at 600 g/L [27].

2.3. Cyclomaltodextrin glucanotransferase

Cyclomaltodextrin glucanotranferase (CGTase, EC 2.4.1.19) catalyze the cyclization of oli-
gosaccharides composed of D-glucose monomers joined by α(1-4) glycosidic linkages. This 
enzyme catalyzes mainly transglycosylation reactions leading to the formation of nonreducing 

cyclic oligosaccharides, named cyclodextrins. The main types are α-, β-, and γ-cyclodextrins 
consisting of six, seven, and eight glucose monomers in cycles, respectively. The majority of 
the CGTases usually produce a mixture of α-, β-, and γ-cyclodextrins, and the product ratio 
can vary depending on condition and reaction time [28].

The CGTase can produce cyclodextrins from starch, amylose, and other polysaccharides by 
catalyzing different transglycosylation steps: intermolecular coupling and disproportionation 
and modification of the length of noncyclic dextrins [29]. Between main microbial sources of 
CGTases, the Bacillus, Geobacillus, and Paenibacillus species are highlighted. The optimum tem-

perature and pH for this enzyme range from 4 to 10.3°C and 10 to 85°C, respectively, whereas 
the molecular weight ranges from 33 to 200 kDa.

The products of the CGTases α, β, and γ-cyclodextrins are not completely digested in the 
gastrointestinal tract, rising to the colon where they are fermented by the intestinal micro-

flora and for this reason are considered prebiotics. The microbial degradation results in  linear 
malto-oligosaccharides, which are further hydrolyzed and fermented to absorbable and 

metabolize short-chain fatty acids. Several studies showed that CDs reduce the digestion of 
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starch and the glycemic index of food. Other bioactivities include hypocholesterolemic and 
antithrombotic activity [30].

The most frequently used raw material for CDs production is starch. The product inhibi-
tion effect of cyclodextrins on CGTases, make the complete conversion of starch a challenge. 
Strategies to decrease this effect involve the continual removal of CDs by filtration or the 
precipitation using agents that forms a specific insoluble complex with CDs. Filtration devices 
can be coupled to the production systems, hollow fiber and [31]. Table 1 shows the yields or 

concentration of CDs obtained through the action of microbial CGTase on different substrates.

Enzyme source Substrate Conditions Yield (%) Concentration 

(g/L)

Reference

α-cyclodextrin

 B. circulans STB01 5% maltodextrin 9 h; 50°C 25 4.3 [32]

 B. lehensis Cassava starch 55°C; 35 h – 0.32 [33]

 P. macerans 5% soluble starch 10 h; 45°C; pH 5.5 – 10.3 [34]

 T. thermosulfurigenes 10% paselli SA2 0.1 U/mL; pH5.9; 60°C;8 h 33 13.0* [35]

β-cyclodextrin

 B. lehensis Cassava starch 55°C; 35 h – 6.33 [33]

 Bacillus sp. C26 Starch 26.5 10.6 [36]

 B. firmus strain 37 5% starch 24 h – 15.3 [37]

 B. firmus strain 37 10% maltodextrin 24 h – 21.6 [37]

 Bacillus sp. C26 4% starch 72 h; 50 – 8.2 [38]

 B. circulans STB01 5% maltodextrin 9 h; 50°C 58 10.1 [32]

 B. firmus strain 37 5% corn starch 3 days; 60°C – 15.0 [39]

 B. firmus strain 37 5% maltodextrin 3 days; 60°C – 10.1 [39]

 Bacillus sp. 10% dextrin 90 min; 50°C; pH 8 – 6.0 [40]

 Thermoanaerobacter sp. 4% soluble starch 30 s; 60°C; pH 6 7.9 1.3 [41]

 A. gottschalkii 10% starch 24 h; 40°C; pH 8 45 [42]

 B. macerans Soluble starch 24 4.7 [43]

 P. macerans 5% soluble starch 10 h; 45°C; pH 5.5 – 4.1 [34]

 T. thermosulfurigenes 10% paselli SA2 0.1 U/mL; pH 5.9; 60°C; 8 h 54 20.0* [35]

γ-cyclodextrin

 B. lehensis Cassava starch 55°C; 35 h – 1.02 [33]

 B. cereus 5% starch 1 h; 20% CGTase 81.9 1.6 [44]

 B. circulans STB01 5% maltodextrin 9 h; 50°C 17 3.0 [32]

 Bacillus sp. 10% dextrin 90 min; 50°C; pH 8 – 1.5 [40]
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Bacillus sp. species are the main microbial source of CGTase, in some cases thermophiles 
are used to obtain enzymes with unusual characteristics. Most of studies are focused on 
the β-cyclodextrin or mixture production and higher concentrations are usually obtained 
for β-and γ-cyclodextrins. The substrate is usually corn starch, although tapioca, cassava, 

Table 1. Production of cyclodextrins by microbial CGTases.

Enzyme source Substrate Conditions Yield (%) Concentration 

(g/L)

Reference

 B. clarkii 7364 Potato starch 10 h; 50°C; pH 7 72.5 [45]

 P. macerans 5% soluble starch 10 h; 45°C; pH 5.5 – 1.8 [34]

 B. clarkii 7364 15% soluble starch 55°C; pH 12 47 [46]

 T. thermosulfurigenes 10% paselli SA2 0.1 U/mL; pH 5.9; 60°C; 8 h 13 5.0* [35]

Mixture (α, β, and γ)

 B. macerans Glucans 24 h; 40°C 21.1 15.1 [47]

 P. macerans 5% soluble starch 22 h 36.9 [34]

 B. circulans DF 9R 5% cassava starch 4 h; 56°C 55.6 99.5a [48]

 Toruzyme 3.0 l Tapioca starch 4 h; 60°C 85 23.0 [49]

 T. fusca 15% potato starch 24 h; 30°C; pH 5.6 84 [50]

 B. cereus 6% sago starch 8 h; 55°C – 13.7 [51]

 Toruzyme 3.0 l 8% tapioca starch 2 h; 70°C;pH 5 – 12.1 [52]

 Toruzyme 3.0 l 8% tapioca starch 3 h; 60°C 25 40.0 [49]

 B. megaterium 50 g/L corn starch pH 7; 45°C; 12 h; 2 U/g CGTase 30 –

 B. macerans 30% potato starch pH 5.5–8.5; 40–55°C; 
120 h;1000 U/g CGTase

30–35 – [53]

 B. macerans 7.5% corn starch 48 U/g CGTase; pH 6; 60°C;  
24 h

25 – [54]

 B. circulans 251 10% potato starch pH 6; 50°C; 45–50 h 40 – [55]

 Bacillus sp. 277 10% potato starch 400 U/g CGTase; pH 8; 60°C; 
12 h

34 – [56]

 B. clausii E16 1% soluble starch 10 U/g; pH 5.5; 55°C; 24 h 80 – [28]

 B. macerans 10% tapioca starch 0.4 mmol cyclodecanone; pH 7; 
25°C; 5–10 days

91–93 – [57]

 Mutant CGTase H43T 1% tapioca starch 1% toluene; pH 6; 60°C; 18 h 15.2 – [58]

 K. pneumoneae 12.5% wheat starch 20 U/g CGTase; 2% butanol; 
pH 7.5; 40°C; 6 h

42.5 – [59]

 Thermoanaerobacter sp. 5% soluble starch 60°C; pH 6 29 74.0 [60]

 B. stearothermophilus 5% soluble starch 500U/g; 65°C; pH 6; 24 h 22 – [61]

 E. coli NV601 5% soluble starch 60°C; pH 6 30 75.0 [60]
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wheat, and potato starches are also observed. The conditions for cyclodextrin production are 
usually 40–60°C, pH 6–7, and aqueous media, however, depending on the microbial source 
of the CGTase some unusual condition may be observed, as 25°C or pH 12. In some cases, 
the organic media is used to decrease the inhibition of the CD. The highest productivity is 
reported to the production of a mixture by a recombinant CGTase of Thermoanaerobacter using 

soluble starch that yielded 75 g/L.

2.4. Alpha-glucan acting enzymes

Alpha-glucans are polysaccharides consisting of glucose units connected by α(1-4) or α(1-6) 
glycosidic linkages. Pullulan, a glucan produced by the fungus A. pullulans of α(1-4) linked 
maltotriose repeats connected by α(1-6) linkages, amylopectin, formed by shorter α(1-4) 
glucan chains connected by α(1-6) branch points, and dextran are some examples of alpha- 
glucans [62].

Enzymes that act as hydrolyzing or debranching alpha-glucans are suitable for nondigest-
ible oligosaccharides production. Pullulanase, dextransucrase, and starch acting enzymes 
can be used in the preparation of maltooligosaccharides and isomalto-oligosaccharides. 
Maltooligosaccharides contain α-D-glucose residues linked by α(1-4) glycosidic linkages, 
while isomaltooligosaccharides (IMOs) contain two to five glucose units with one or more 
α(1-6) linkages. While MO may exhibit immunoregulatory activity [63], the intake of IMO 
decreases serum cholesterol concentrations and improve bowel movement, stool output, and 

microbial fermentation in the colon [64]. IMOs also upregulate the Th1 response that play a 
triggering role in allergic diseases, such as rhinitis, asthma, and eczema [65].

Dextransucrases (EC 2.4.1.5) catalyze the synthesis of high molecular weight D-glucose 
 polymers from sucrose to form a glucan called dextran. The synthesis of dextran occurs by 
successive transfer of glucosyl units to the polymer, while the presence of acceptor molecules 

in the reaction medium, the transfer of glucosyl units is made onto these molecules, leading 

to oligosaccharide synthesis. They can also transfer glucosyl units onto water molecules and 
simply hydrolyze sucrose [66]. Leuconostoc citreum KACC 91035 produced  panose (8.63 mM), 
isomaltosyl maltose (6.56 mM), and isomaltotriosyl maltose (1.74 mM) after 12 days (10°C), 
using glucose (29 mM) as donor and maltose (28 mM) as acceptor through the transglycosyl-
ation activity of the dextransucrase [67]. An endodextranase D8144 from Penicillium sp. immo-

bilized on epoxy produced IMOs (DPs 8–10) from dextran T40 in an enzymatic reactor [68]. 
A productivity of 42.95 mmol/L.h was obtained using 100 mmol/L of sucrose and 200 mmol/L 
of maltose, using dextransucrase (1 U/mL) from Leuconostoc mesenteroides NRRL B-512F [69]. 
A productivity of 7.26 mmol/L.h of IMOs was obtained a using an immobilized mixture of 
dextransucrase and dextranase [70], while a purified dextransucrase yielded 35 mmol/L.h of 
panose [71]. A productivity of 55.6 mmol/L of oligosaccharides was obtained by fermenta-

tion with L. mesenteroides B-742 [72]. Higher yields (70–90%) of IMOs were obtained from 
maltose/sucrose solutions using dextransucrase of L. mesenteroides B-512F [73]. Isomalto-
oligosaccharides of controlled molecular weight were produced using an L.  mesenteroides 

NRRL B-512F dextransucrase with a yield of 58% by the acceptor reaction with glucose, and 
reached a degree of polymerization of at least 27 glucosyl units [74]. The use of dextransucrase 
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associated with dextranase in the production of IMOs lead to oligosaccharide mixtures con-

taining mainly sugars (up to 36%) with DP varying between 10 and 60 together lower and 
higher molecular weight sugars [75].

Alpha-amylase (EC 3.2.1.1) also can be used to obtain maltooligosaccharides. This enzyme 
hydrolyses the internal α(1,4) linkages in starch in a random fashion, leading to the forma-

tion of soluble maltooligosaccharides, maltose, and glucose. A protein engineering approach 
of the amylase from Bacillus lehensis G1-produced mutated proteins with an increase in the 
transglycosylation to hydrolysis ratio of up to 4.0-fold and reduction in the concentration of 
maltotriose required for use as a donor/acceptor for transglycosylation. A reduction of  steric 
interference and hydrolysis suppression introduced a synergistic effect to produce MOs with 
a higher degree of polymerization [76]. Amylases from Streptomyces sp. were able to produce 
mainly maltotriose (55–75%) from soluble starch at 20–30°C pH 6.5 [77]. The Bacillus  subtilis 

strain SDP1 amylase hydrolyses starch to produce maltotriose and maltotetraose along with 
maltose after prolonged reactions of 5 h [78]. A recombinant alpha-amylase (145 mg/mL) 
from Streptomyces avermitilis was able to yield maltose (4.49) and maltotriose (1.77 g/L) from 
10.0 g/L of soluble starch [79]. An amylase from Bacillus megaterium produced a maltool-
igomer mixture with high proportion of maltopentaose (G5) and maltotriose (G3) during 
hydrolysis of starch, amylopectin, and amylose [80]. Malto-oligosaccharide production by 
commercial α-amylase (liquefying amylase 6 T) using freeze-thaw infusion resulted in a max-

imum production of 6.5 g/L after 60 min at 1.0% (w/v) enzyme [81]. A productivity of 8.9 g/L 
of maltopentaose was achieved using a Bacillus sp. AIR-5 amylase and a 40 g/L solution of 
soluble starch [82]. A S. solfataricus KM1 amylase was able to give an 80% yield of trealose 
from a 10% amylose solution [83].

Pullulanase (EC 3.2.1.41), a debranching enzyme, hydrolyses the α(1-6) linkage in pullulan 
and branched polysaccharides, producing maltotriose. An amylopullulanase from the hyper-

thermophilic archaeon Caldivirga maquilingensis was able to act on a wide range of substrates. 
Assays with the enzyme produced linear MOs (≤G8–G1) from cyclodextrins, amylodextrins 
(DP6-96) from amylose, and amylodextrins (DP1-76) from amylopectin and potato starch [84]. 
A one-step method using neopullulanase and α-amylase for the bioconversion of purified rice 
starch slurry (30% w/w) resulted in a syrup containing 59.2% of IMO (dry basis) after 72 h of 
bioconversion (Lin et al. 2011).

Alpha-glucosidase (EC 3.2.1.20), an exo-acting hydrolase, attacks the substrates from the non-
reducing end producing α-D-glucose and presents some transglycosylation activity that can 
be used in the production of oligosaccharides [85]. Liquefied banana slurries were used for 
IMO synthesis by Transglucosidase L, producing after 12 h of transglucosylation, a yield of 
76.6% with a concentration of 70.74 g/L. The IMOs mixture was composed of 53 isomaltot-
riose, 21 isomaltotetraose, and 26% maltooligoheptaose and larger oligomers [86]. A yield 
of 58.1% with a concentration of 93 g/L was obtained for IMOs production from a immobi-
lized glucosidase using as substrate a maltose solution (160 mg/mL) in a membrane reactor 
system [87]. Partially purified a-glucosidase from Aspergillus carbonarious, immobilized on 

glutaraldehyde-activated chitosan beads in a packed bed reactor, produced isomaltooligo-

saccharides at a yield of 60% (w/w) using 30% (w/v) maltose solution. Using intact mycelia 
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attached with polyethyleneimine-glutaraldehyde, a yield of 46% (w/w) was obtained using 
30% (w/v) maltose solution [88]. A high yield of IMOs (67%) with concentration of 2 g/L was 
obtained when 30% (w/v) of soluble tapioca starch was incubated with amylomaltase (120 U) 
for 0.5 h (pH 7.0; 40°C). While a yield of 53% and concentration of 1.63 g/L was obtained 
using transglucosidase (6 U) in the same condition for 1 h [89]. When amylomaltase (1.5 U) 
and transglucosidase (8 U) of were incubated with 20% (w/v) maltotriose for 30 min at 40°C, 
9.9 mg/mL of IMOs were produced to with DP 2–7 [90].

3. Productions of NDOs through polysaccharide hydrolysis

3.1. Inulinase

Fructooligosaccharides can be produced by the controlled hydrolysis of fructans. Fructans 
are fructose-based polysaccharides, representing the major reserve carbohydrates in about 

15% of flowering plant species [91]. According to differences in glycosidic linkages they 
can be classified in many types, being linear inulin the most studied and best-characterized 
fructan. Inulin consists of β(2-1)-linked fructose units terminating at the reducing end with 
a glucose residue attached through a sucrose-type linkage [92]. Inulinases can hydrolyze 
the β(2-1) linkages in inulin and can present endo- or exo-activity. Exo-acting inulinases 
(EC 3.2.1.80) produce fructose as the main end product, whereas endoinulinases (EC 3.2.1.7) 
act randomly and hydrolyze internal linkages of inulin to yield FOs and minor amounts of 
monosaccharides [93].

The highest yield (92%) for the conversion of chicory inulin (50 g/L) in to FOs was reported by 
the application of a dual system of Xanthomonas sp. and Pseudomonas sp. endoinulinases [94]. 
On another approach, an endoinulinase from Xanthomonas sp. yielded 86% of FOs from dahlia 
tubers inulin (10 g/L) after 10 h [95]. A production of 78% and 79% of FOs was achieved from 
a solution (100 g/L) of chicory inulin and chicory juice, respectively [96]. An endoinulinase 
produced by Streptomyces rochei E87 yielded 70% of FOs after 3 days of incubation with inulin 
producing mainly inulotriose [97]. A maximum yield of 75.6% in total of FOs was obtained by 
hydrolysis of a solution containing 50 g/L of inulin by Pseudomonas sp. inulinase, producing 
a mixture of oligosaccharides with DP2-7 [98]. A commercial inulinase preparation yielded 
96% of FOs from dahlia tubers inulin (pH 6.0; 100 g/L). The product presented FOs with DP 
ranging from 1 to 6 but the major products were DP3 (23%) and DP4 (24%) [99].

The production of FOs by a inulinase from A. niger immobilized in montmorillonite lead to 

a yield of 18.32% on aqueous media and 16.03% in organic media [100], while high yields of 
DP3 (70.3 mM), DP4 (38.8 mM), and DP5 (3.5 mM) FOs were obtained through the  enzymatic 
hydrolysis of inulin (150 mg/ml; 60°C; pH 6.0; 48 h) by other A. niger inulinase (60 U/mL) 
[101]. When a commercial endoinulinase preparation (Novozym®960) from A. niger was 

used in the production of FOs from inulin (60°C; pH 6.0), a productivity of F3 (70.3mM), F4 
(38.8mM), and F5 (12.43 mM) was achieved [102]. Inulinases from K. marxianus NRRL Y 7571 
produced DP2 (11.89%) and DP3 (20.83%) oligomers using inulin (20%) as substrate at 24 h 
at 50°C [103]. A maximum FOs production of 11.9 g/L.h and specific productivity of 72 g/g.h 
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were observed when a mutant X. campestris pv. phaseoli grown in a 5 L fermenter containing 
3%inulin and 2.5% tryptone [104]. A continuous production of FOs from inulin was carried 
in a bioreactor packed with immobilized cells of Escherichia. coli expressing a Pseudomonas sp. 
endoinulinase. Under the optimal operation conditions, continuous production of FOs was 
achieved by 150 g/L.h (17 days; 50°C) [105]. Continuous production of FOs from chicory juice 
(100 g/L) was carried out using the polystyrene-bound endoinulinase in an enzymatic reac-

tor achieving an oligosaccharide yield of 82% [106]. Aspergillus ficuum endoinulinase (10 U/g) 
yielded 50% of FOs from Jerusalem artichoke inulin (50 g/L; 45°C; pH 6.0) after 72 h. With 
Jerusalem artichoke the yield reached 89% and the maximum IOS production was up to 80% 
after 72 h [107].

3.2. Xylanases

Xylan is also a heteropolysaccharide with a backbone formed by xylose homopolymer sub-

units linked through β(1-4) linkages. This polymer can be found in the hemicellulose frac-

tion of lignocellulosic materials associated with lignin and cellulose. Through the hydrolysis 
of xylan with xylanases, xylooligosaccharides (XOs) can be produced. The intake of XOs is 
associated with many health benefits as improvement of bowel function, immunomodula-

tory, and anti-inflammatory activities, preventive effects on cancer and inhibitory effects on 
carcinogenesis, antimicrobial, antiallergic, and antioxidant activities [108].

The xylanase (β-1,4-d xylan xylanohydrolase, EC 3.2.1.8) is the main enzyme applied for xylan 
hydrolysis and XOs production, due its action on the main chain of xylan and release of 
 oligosaccharides. Before the enzymatic hydrolysis of xylan, the hemicellulosic materials can 
be submitted to a pretreatment to enhance the xylan availability. Many types of pretreat-
ments that can be performed, one approach uses NaOH or H2SO

4
 solutions associate with 

high temperatures to disrupt the hemicellulose structure. Between the substrates used for 
XOs production agroresidues and food by-products are highlighted due to their high con-

tends of hemicellulose [109].

Hydrolysis of alkali pretreated corncob powder using a commercial endoxylanase produced 
81 ± 1.5% of XOs in the hydrolysate equivalent to 5.8 ± 0.14 mg/mL of XOs. Reaction param-

eters for the production of XOs from corncob using endoxylanase from A. oryzae MTCC 
5154 were optimized and an XOs yield of 10.2 ± 0.14 mg/mL corresponding to 81 ± 3.9% 
with 73.5% xylobiose [110]. The optimization of the XOs production from corncob using 
the thermostable endoxylanase from Streptomyces thermovulgaris TISTR1948, showed that for 
an enzyme concentration of 129.43 U/g of substrate, 53.80°C, and pH 6.17, the yield of XOs 
reached 162.97 mg/g of substrate or 752.15 mg/g of hemicellulose in KOH-pretreated corn-

cob [111]. When corncob was hydrolyzed with a xylanase from Aspergillus foetidus MTCC 
4898 a yield of 6.73 ± 0.23 mg/mL was obtained after 8 h of reaction time using 20 U of xyla-

nase at 45°C [112]. A commercial xylanase produced 1.208 mg/mL of xylobiose and 0.715 
mg/mL of xylotriose, using 5.83 U for 16.59 h of incubation (pH 5.91; 40.8°C) [113]. Steam-
exploded liquor of corncobs was treated using a thermostable xylanase from Paecilomyces 

themophila J18 resulting in a XOs yield of 28.6 g/100 g xylan [114]. After a pretreatment with 
H2SO

4
 (60°C; 12 h), the corncob was hydrolyzed by xylanase, yielding 67.7% of XOs with 
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70% of purity [115]. Three commercial xylanase preparations (Rapidase Pomaliq, Clarex ML, 
and Validase) were evaluated for the enzymatic production of pentoses from the hemicel-

lulose fraction of corn husks and corn cobs. Rapidase Pomaliq produced 104.1 g of XOs for 
each kg of corn husks or 133 g of XOs for each kg of corn cobs (480 min of reaction at pH 5.0 
and 50°C) [116].

The application of agroresidues as a source of xylan for XOs production is a strategy that 
has been produced excellent results. The xylan obtained by alkali extraction from cotton 
stalk, was hydrolyzed using a commercial xylanase preparation produced XOs in the DP 
range of 2–7 (X6 ≈ X5 > X2 > X3) and also minor quantities of xylose, yielding 53% (40°C; 
24 h) [117]. Tobacco stalks were hydrolyzed by xylanase producing a XOs yield of 8.2%after 
8 h and 11.4% after 24 h reaction period [118]. Another process yielded 7.28 and 4.52 g/L 
of XOs from wheat straw and rice straw xylan, respectively, after hydrolysis with a from 
A. foetidus MTCC 4898 [119]. Using xylanases from two glycoside hydrolase families, yields 
of 60% and 40% were obtained for rye bran arabinoxylan hydrolysis by GH10 and GH11, 
respectively [120]. Wheat straw xylan was hydrolyzed using a variant of the alkali-tolerant 
Bacillus halodurans S7 endoxylanase A, resulting in 36% conversion of the xylan to predomi-
nantly xylobiose [121]. The XOs produced from garlic straw hemicelluloses hydrolyzed with 
xylanase secreted by B. mojavensis were composed of xylobiose, xylotriose, and xylotetrose, 
together with a small amount of xylopentaose and xylohexose yielding 29 ± 1.74% after 8 h 
[122]. Xylan extracted of Mikania micrantha was hydrolyzed by a recombinant Paenibacillus 

xylanase, yielding 68% of XOs [123]. Oil palm empty fruit bunch fiber was hydrolyzed by 
Aspergillus terreus xylanase with a maximum 262 mg of xylobiose was produced from 1.0 g 
of pretreated fiber [124]. Several crop by-products were subjected to an enzymatic treatment 
to obtain a XOs through the action of a Buzyme 2511 (R). The hydrolysis lead to a concen-

tration of 5.3 (apple pomace), 1.3 (white poplar), 2.9 (giant cane), and 6.5 g/L (grape stalk) 
[125]. The enzymatic hydrolysis of hard shell almond yielded 34.0% of XOs with 70% of 
purity [126]. A process for producing XOs from Sehima nervosum grass through enzymatic 

hydrolysis yielded 11 g/100 g xylan of xylobiose [127]. The treatment of wheat bran with 
the commercial xylanase preparation enzymes, produced a yield of approximately 31.2% 
of XOs, with a purity of 95% (w/w) and degree of polymerization of 2–7 [128]. Viscose fiber 
mills were used as substrate in the production of XOs yielding 68.9% after enzymatic hydro-

lysis [129].

When sugarcane bagasse was hydrolyzed with a crude xylanase secreted by Pichia stipites, 

XOS accumulated with a maximum yield of 31.8% of the total xylan was achieved at 12 h, 
which contained 29.8% xylobiose, 47.1% xylotriose, and 18.4% xylotetraose [130]. The hydro-

lysis of sugarcane bagasse with a B. subtilis xylanase produced xylotriose (X3), xylotetraose 
(X4), and xylopentaose (X5) and also is less amounts xylooligomers (X11). The process yielded 
was 113 and 119 mg/g sugarcane bagasse for 7 and 8 h, respectively [131]. In another approach 
using sugarcane bagasse treated with hydrogen peroxide, the enzymatic hydrolysis by crude 
extracts from Thermoascus aurantiacus produced a maximum yield of 37.1 with 2.6% of sub-

strate and xylanase load of 60 U/g [132]. A productivity of 2.36, 2.76, 2.03, and 2.17 mg/mL 
of X2, X3, X4, and X5, respectively, was obtained after hydrolysis of sugarcane bagasse by 
Streptomyces rameus L2001 xylanase [133]. A maximum yield of 5.96% was obtained for the 
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conversion of sugarcane bagasse being xylobiose and xylotriose the main products [134]). 
The enzymatic hydrolysis of Camellia oleifera shell pretreated with NaOH produced 1.76 g/L 
of xylooligosaccharides (DP 2–6) [135].

3.3. Pectinases

Pectins are components of the cell walls of most higher plants, this heteropolysaccharide is 

characterized by a high content of galacturonic acid (GalA) monomers bonded together by 
α(1-4) linkages, showing acetylatilation or esterification with methyl groups. They are com-

posed of homogalacturonans, xylogalacturonanes, rhamnogalacturonans, arabinans galac-

tans, and arabinogalactans. Depending on how these polysaccharides are associated, pectin 
can be classified as homogalacturonan and rhamnogalacturonans I and II [136].

Studies using piglets showed that POs can modulate the grown of microbial communities in 
the ileum increasing, for example, the Lactobacillus counts [137, 138]. POs were also able to 
interfere with the toxicity of Shiga-like toxins from E. coli O157:H7, which play a key hole in 
diarrhea and hemorrhagic colitis, hemolytic uremic syndrome (HUS), and thrombotic throm-

bocytopenic purpura [139].

Enzymes that act on pectins with a hydrolyzing or debranching activity have the potential 
to produce nondigestible oligosaccharides. The pectinolytic enzymes can be divided into: 
pectinesterases, pectin-methylesterases, and depolymerases being this last one more suit-

able for POs production. Endopolygalacturonases are depolymerases produced by various 
microorganisms such as bacteria, yeasts, and molds. They are also found in some plants and 
especially in fruits. In general, they release mono-, di-, and tri-galacturonic acid by a mul-
tiple attack mechanism single chain. Rhamnogalacturonases produce linear oligomeric com-

pounds of alternating rhamnose and galacturonic acid (4–6 residues) with galactose residues 
connected to some or all the rhamnose residues. Galactanases can be divided in to endo-β-1,4-
galactanases and exo-β-1,3-galactanases. The difference between these enzymes lies in their 
ability to hydrolyze the β(1-3), β(1-4), or β(1-6) linkages between the galactose residues [136].

Because of its high pectin content, potato, sugar beet, and apple by-products are often used as 
substrate for POs production. The hydrolysis of sugar beet pectin by combining endopolyga-

lacturonase and pectinmethylesterase produced POs with a DP 1–9, with a maximum yield of 
trigalacturonic acid of 3.7% [140]. POs were obtained by the action of commercial enzymes on 
the potato rhamnogalacturonan, with a yield of 93.9 and 66.2% using Depol 670L and endo-
β-1,4-galactanase, respectively. The hydrolysates yielded up to 50.6% of oligomers with DP of 
13–70. Major oligosaccharides obtained with Depol 670L were DP 5 (26.3%) and DP6 (24.9%), 
whereas the endo-β-1,4-galactanase were DP3 (19.0%), DP5 (10.6%), and DP8 (12.6%) [141]. 
A high yield (93.9%) of POs was achieved using multienzymatic preparation (Depol 670 L) 
to hydrolyze a potato pulp by-product rich in galactan-rich rhamnogalacturonan I. Main 
products were oligosaccharides with DP of 2–12 (79.8–100%), whereas the oligomers with DP 
of 13–70 comprised smaller proportion (0.0–20.2%) [142]. A pool of pectinases was used to 
produce POs with degree of polymerization from 2 to 8 and six different rhamnogalacturo-

nide structures. Total recoveries were 200 (homogalacturonides) and 67 mg/g (rhamnogalact-
uronides) [143]. The use of commercial pectinase preparations (Endopolygalacturonase M2, 
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Pectinase, Viscozyme L, Pectinex Ultra SP-L, Pectinase 62 L, and Macer8 FJ) to produce POs from 
polygalacturonic acid. Best results were obtained with endopolygalacturonase M2 after 2 h of 
reaction, yielding 58, 18, and 13% of DP3 > DP2 > DP1, respectively [144].

In some cases, other food by-products were applied in the production of POs. A initial amount 
of 100 kg of orange peel can yield 7.5 kg of gluco-oligosaccharides, 4.5 kg of galacto-oligosac-

charides, 6.3 kg of arabino-oligosaccharides, and 13 kg of oligogalacturonides [145]. Through 
the action commercial enzymes (EPG-M2, Viscozyme, and Pectinase) on onion skins a yield 
5.6% of pectic oligosaccharides (POS) was obtained [146].

3.4. Chitosanase

Chitin is a polysaccharide formed by N-acetyl-glucosamine monomers, joined by β(1-4) 
linkages and chitosan is the N-deacetylated form of chitin. Chitosanases (EC 3.2.1.132) are 
 glycosyl hydrolases that catalyze the hydrolysis of β(1-4) glycosidic bond in chitosan to pro-

duce glucosamine oligosaccharides [147]. Studies using pigs indicated a modulating effect 
of chito-oligosaccharide (COs) inhibiting growth of harmful bacteria in the gut [67]. Strong 
antibacterial activity was also reported with complete inhibition of E. coli growth with a 0.5% 
solution [148]. They can also inhibit the growth of tumor cells by exerting immunoenhancing 
effect [149] and stimulate the growth of Lactobacillus sp. and B. bifidium KCTC 3440 indicating 
considerable bifidogenic potential [150].

A chitosanase (EC 3.2.1.132) from Aspergillus sp. Y2K showed preference for higher deacet-
ylated chitosan as substrate, producing chitotriose, chitotetraose, and chitopentaose as the 

major products after hydrolysis with a total yield of 115% [151]. The chitosanolytic enzymes 
of Metarhizium anisopliae produced dimers (0.2 g/L), trimers (0.19 g/L), tetramers (0.06 g/L), and 
pentamers (0.04 g/L) from chitosan hydrolysis [147]. The enzymatic hydrolysis of chitosan by 
a chitosanase from Bacillus sp. yielded 60% of COs with 95% of purity [152], whereas Bacillus 

pumilus BN-262 chitosanase yielded above 80% in a UF membrane reactor [148]. Through the 
action of a B. pumilus BN-262 chitosanase, a COs productivity of 20 and 15 g/L was obtained in 
a batch and membrane reactor, respectively [153]. The hydrolysis with B. pumilus chitosanase 

yielded 52% of COs, producing mainly pentameric and hexameric chitosan oligosaccharides 
was steadily produced at 2.3 g/L (46% yield) for a month [154].

4. Concluding remarks

Glycosidases are widely applied in the production of nondigestible oligosaccharides present-
ing easy-handed processes with high efficiency. The application of molecular biology tools to 
produce enzymes with new characteristics has increased the yield and productivity of NDOs. 
The immobilization of the enzymes and application of membrane and batch reactors are also 

highlighted for improvements in the production processes. Nowadays alternative substrates 
have been used frequently in co-products and by-products from food and agroindustry. This 
approach can lead to a decrease in the cost of the process and help in the correct management 

of these residues.
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