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Abstract

The design of ultra-low-noise seismic piezoelectric accelerometers (PEs) with integral
electronics (IEPE) is presented. They feature probably the lowest noise floor (for their
size and weight) and the lowest operating frequencies (near-dc) ever reported to date
among these types of vibration sensors. These highly sensitive sensors can be used for
earthquake monitoring and in the earthquake prediction system by detecting and mon-
itoring microseismic fluctuations. The warning system using these sensors would be
fundamentally different from current warning systems using the network of hundreds
of seismometers across seismically active regions and recording only seismic events.
Two Meggitt (OC) IEPE seismic accelerometers, models 86 and 87-10 having sensitivity
of 10 V/G, are described. The model 86 has a weight of about 770 g and a frequency
range from 0.003 to 200 Hz at the ±3 dB level. Its noise floor in terms of the equivalent

input noise acceleration spectral density is about 37, 7, and 3 nG/
ffiffiffiffiffiffiffi

Hz
p

at at frequencies 1,
10, and 100 Hz, respectively. The model 87-10 is a compact sensor with a weight of about
170 g and a frequency range from 0.02 to 500 Hz at the ±3 dB level. It has noise of about

90, 25, and 10 nG/
ffiffiffiffiffiffiffi

Hz
p

at at frequencies 1, 10, and 100 Hz, respectively.

Keywords: seismic, microseismic, earthquake prediction, earthquake monitoring,
accelerometer, low-noise accelerometer, amplifier, low-noise amplifier, piezoelectric

1. Introduction

During an earthquake, the forces and the motion of a point on the ground vary a lot and keep

changing. Earthquakes can be so small or distant (for example, in the ocean), that only low-

noise or ultra-low-noise sensors are capable of measuring and monitoring small acceleration

signals generated by such earthquakes [1–5]. In addition, such sensors can be used for the

warning prediction system by detecting and monitoring of “preseismic” small changes on the

ground that indicate that a significant quake is imminent [1, 5–9]. Ultra-low-noise seismic

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



piezoelectric accelerometers with integral electronic (IEPE), also called integral electronic pie-

zoelectric accelerometers or integrated circuit piezoelectric (ICP) accelerometers, are the best

candidates for such purposes [10–17]. The advantages of the IEPE accelerometers include high

sensitivity, wide dynamic, frequency, and temperature ranges, low output impedance, low

noise, and availability of miniature designs. In addition to seismology and earthquake-related

measurements, they are used in many applications such as aircraft and automobiles, structure

monitoring, seismic isolation and stabilization platforms, homeland security, and oil and

mineral exploration.

The earthquake prediction experiments led by the Rice University (Houston, Texas, USA) team

and conducted along the San Andreas Fault in Southern California is an example of the use of

the ultra-low-noise seismic IEPE accelerometers [1]. Specifically, in one of these experiments,

they placed a device that produced seismic waves in rocks located near accelerometers. The

waves caused small changes in the rocks that were detected by accelerometers. Those changes

were followed by small earthquakes on two occasions. One of these earthquakes occurred

about 10 h later. These experiments suggest that low-noise accelerometers located in the right

place can pick up potentially worrisome movements in a fault. The study indicated that the

stresses measured by such sensors preceded the temblor itself. As a result, a warning system

using these sensors can be more effective, in comparison to the warning system with network

of hundreds of seismometers across active seismic region such as Southern California. These

networks record only seismic events; they cannot identify “preseismic” changes on the ground

signaling that a significant quake is imminent. IEPE seismic accelerometers can be used in the

seismic network similar to high-resolution seismic network (HRSN) capable of detecting

microseismic fluctuations [3, 5–9].

An accelerometer is a vibration sensor that measures acceleration directly proportional to the

force applied to an object that causes it to change its position or speed. In seismology, the most

common sensor is the seismometer, which measures the velocity of a point on the ground

during earthquake. Accelerometers, in contrast to the seismometers, give information about

forces that a subject experiences during a seismic activity. Also, they are handy sensors having

small size, usually <100 mm on a side, so they can be easily placed at key locations in a

structure. Acceleration signals can be integrated by an integrator or by a computer to obtain

the velocity and displacement signals. Low-noise accelerometers can be used both for the

measurement of small acceleration signals directly and, as the first, low-noise stage of the

instruments measuring low-noise velocity signals.

IEPE accelerometers represent the class of dynamic vibration sensors incorporating a pie-

zoelectric (PE) transducer, as a mechanical part, and integral electronics (typically, voltage

or charge amplifier), as an electrical part, into one shielded package. Figure 1 shows the

block diagram of the typical IEPE accelerometer and signal conditioning circuit (SCC)

connected to the accelerometer with a coaxial cable and typically located outside of the

accelerometer [16].

The PE transducer is comprised of a mass m and piezoelectric element often called a crystal.

When the input acceleration signal a is applied to the sensor, the mass m imposes a force F on

the crystal element, which transforms the input acceleration signal into a charge electrical

signal at the output of the PE transducer. The charge signal is amplified by the IEPE sensor
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electrical circuit and is converted to a voltage electrical signal at the sensor's output. The sensor

measures acceleration signal in accordance with the Newton's second law of motion: F = ma.

The integral electronics of the IEPE accelerometer is comprised of a built-in charge or voltage

amplifier which transfers the PE transducer's high impedance into the amplifier's low output

impedance allowing transmission of the signal over long cable lengths. The amplifier input

stage is based on a field effect transistor (FET) having high input impedance matching the PE

transducer's high output impedance. FET type can be typically of n-channel JFET, n-channel

MOSFET, or p-channel MOSFET. The output stage is built based on a bipolar junction transis-

tor (BJT) providing low output impedance. BJT can be of PNP or NPN type. Some IEPE sensors

have amplifiers containing additional stages between input and output stages.

The signal condoning circuit (SCC) provides power for the accelerometer, additional amplifi-

cation of the signal coming from accelerometer, and its processing dictated by the sensor

applications. Specifically, it can contain an integrator which transforms an acceleration signal

into a velocity signal. The integrator can also be placed inside the IEPE sensor if its dimensions

allow. Typical voltage supply is from +22 to +30 Vdc and current supply is from 2 to 20 mA. The

current supply is provided by a constant current source (CCS), which, for example, can be

created by a current-regulating diode. A decoupling capacitor Cd eliminates any influence of

the IEPE sensor's output dc bias voltage on the SCC input amplifier's stage. This construction

allows to have only two wires (signal output and signal ground) for connection of the IEPE

accelerometer with the SCC. These wires carry both the accelerometer output signal and

voltage supply at the same time.

Figure 1. The block diagram of the typical IEPE accelerometer and signal conditioning circuit [16].
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The sensor operation frequencies, typically from 1 Hz to 10 kHz, are located below the PE

transducer's resonant frequency. At these frequencies, the PE transducer-simplified equivalent

schematic can be represented as a capacitive signal source having high impedance. Figure 2

shows the PE transducer-simplified equivalent electrical schematic comprising the signal

source electromotive force (EMF), ePE connected in series with capacitor CPE [16]. CPE is the

PE transducer's electrical capacitance. ePE represents the output voltage of the open-circuit PE

transducer:

ePE ¼ as·VPE,VPE ¼ QPE

CPE
, qPE ¼ ePE·CPE: (1)

In Eq. (1), VPE and QPE are the PE transducer's voltage sensitivity and charge sensitivity,

respectively. qPE is the charge at the output of the PE transducer and as is the inputacceleration.

The IEPE seismic accelerometers are specially designed to measure ultra-low level vibrations

at low frequencies (often including frequencies below 1 Hz). These frequencies are associated

with earth tremors, large structures, and foundation [10–16]. Some of these accelerometers

have frequency response from very low frequency f ≤ 0.01 Hz. They feature very low noise

floor (i.e., estimated at a few dozen nG=
ffiffiffiffiffiffiffi

Hz
p

at frequency 1 Hz and a few nG=
ffiffiffiffiffiffiffi

Hz
p

at

frequencies f ≥100HzÞ, and high sensitivity (often 1 and 10 V/G), in comparison to other IEPE

sensors [15–17]. There are several types of seismic accelerometers that vary in the construction

and operating principle. In addition to the IEPE type mentioned above, they can be designed

as variable capacitance MEMS [18, 19], and folded pendulum accelerometers [20, 21]. The IEPE

and MEMS seismic accelerometers are the types that are most widely used in the industry.

Besides seismology and earthquake-related measurements, the applications where they are

Figure 2. Simplified equivalent schematic of the PE transducer [16].
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used, include isolation and stabilization platforms [15, 16, 20], large structure monitoring

[20], spacecraft environmental noise measurement [22], and large antenna dynamic mea-

surement [23]. Specifically, the Meggitt (OC) model 86 described below is used in the

National Institute of Standards and Technology (NIST) for the stabilization platform carry-

ing the world's most frequency stable laser system used for the atomic clock research

conducted by NIST [17].

2. Block diagram, schematic, and construction of the designed IEPE seismic

accelerometers

2.1. Block diagram and schematic of the designed accelerometers

Figure 3 shows photographs of the designed accelerometers, models 86 and 87 [10, 13]. They

have cylindrical shape and two-pin connectors. The larger sensor model 86 has a weight of

about 770 g, a diameter of about 65 mm, and a height of about 56 mm [10]. The model 87 is

compact in weight and dimensions. It has a weight of about 170 g, diameter of about 30 mm,

and height of about 37 mm [13].

Figure 3. Photographs of the designed accelerometers [10, 13].
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Schematic solution of the designed accelerometers was made from a standpoint of providing

ultra-low noise, operating frequency range including very low frequencies f<<1 Hz, tempera-

ture range from –20 to +100°C, low output impedance Rout ≤ 10 Ω, and protection of the circuit

against input transients and shocks.

Figure 4 shows the block diagram and schematic of each of the designed accelerometers and

signal conditioning circuit (SCC) connected to them with a coaxial cable [15, 16]. The sensors

incorporate the high-sensitivity PE transducer and ultra-low-noise charge amplifier.

The charge amplifier amplifies a charge signal coming from the PE transducer and converts it

into a voltage output signal. The input stage has high input impedance and the output stage

has low output impedance which allows transmission of the voltage signal over long coaxial

cable lengths.

In Figure 4, the signal source ePE represents the output voltage of the open-circuit PE

transducer: CPE is the PE transducer electrical capacitance. The resistive divider R1/R2 and

the biasing resistor Rb form the negative dc feedback circuit providing the circuit stable

operation and the dc bias voltage for the JFET. Cf is the charge amplifier's feedback capaci-

tance. The value of Cf is selected to provide the necessary charge gain of the amplifier and

corresponding sensitivity of the whole sensor.

The charge amplifier is comprised of two direct-coupling stages: the input stage based on low-

noise JFET and the output stage based on the bipolar transistor BJT. The latter is arranged in

the Darlington configuration that makes it possible to provide the sensor's output impedance

Rout ≤ 10Ω: This value is approximately one order of magnitude less, in comparison to the best

existing IEPE seismic accelerometers [11, 12]. We can see that the charge amplifier is based on

the two discrete transistors, FET and BJT, in comparison to the typical charge amplifier based

Figure 4. Block diagram and schematic of the designed IEPE seismic accelerometers and signal conditioning circuit [15, 16].
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on op-amp with a feedback capacitor. Contrary to an op-amp charge amplifier, a FET-BJT

charge amplifier can provide lower noise, higher temperature range, smaller size, and two

wires output configuration.

The resistors R1 and R2 and diode D3 having negative temperature coefficient form negative

feedback circuit for the JFET stage that provides temperature compensation for the JFET temper-

ature drift [15]. It is known that JFET gate current leakage IGSS flowing through the biasing

resistor Rb of high value grows exponentially with temperature. As a result, the JFET gate-source

voltage VGS increases with temperature as well. This may cause unstable operation of the

amplifier. When the temperature changes, the circuit mentioned above changes VGS in the

direction opposite to that caused by the JFET leakage current. This schematic solution made

possible extending the temperature range of the sensors up to 100°C. In comparison, the current

state-of-the-art IEPE seismic accelerometers have operating temperature of ≤65°C [11, 12].

The frequency response lower corner f L for the charge amplifier and the whole accelerometer

at the level of –3 dB is determined by the high-pass one-pole filter formed by the feedback

capacitor Cf and the input resistance of the charge amplifier Rin [15, 16]:

f L ¼
1

2πRinCf
: (2)

.From the schematic shown in Figure 4,

Rin ¼ Rb·
R1þ R2

R2
: (3)

Using Eq. (3), the Eq. (2) can be rewritten as

f L ¼
1

2π Rb·
R1þR2
R2

� �

Cf

: (4)

To provide f L≪1Hz, resistor Rb needs to be a high value. But, on the other hand, the value of

Rb is restricted by the leakage current IGSS of JFET. Thus, it is necessary to choose the optimum

value of Rb. The sensor's frequency response in the upper corner is determined by the PE

transducer's resonant frequency.

Diodes D1, D2, and capacitor C1 at the input of the JFET stage create the circuit, which

provides protection of JFET against shocks and transients coming from the vibration input

[15]. Why is it needed to have such protection, even though, typically, JFETs can withstand

transient signal of high level? In the IEPE seismic accelerometers, a PE transducer features very

high sensitivity. As a result, input vibration transient signals can cause the high magnitude of

the voltage transient signals coming to the charge amplifier's input. Such signals may damage

JFET. With the purpose to prevent this, the JFET protection circuit mentioned above is included

in the amplifier design. One of the diodes D1 and D2 becomes open, when a transient signal of

any polarity is applied to the circuit's input. Then the capacitors C1 and CPE create a capacitive

divider C1/CPE at the input of the amplifier:
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G1 ¼
1

1þ C1
CPE

, G1 < 1: (5)

In Eq. (5),G1 is the protection circuit's gain (or rather coefficient of transmission, sinceG1 < 1 < 1).

Capacitor C1 value is selected so that C1= nCPE. For example, if n = 9, G1 ¼ 0:1 =0.1, and the

input transient or shock signal will be reduced by a factor 10. In the designed sensors, the

protection circuit allowed providing the shock limit of 250 G pk for the accelerometer model 86

and 400 G pk for the accelerometer model 87. These shock limit values exceed the similar

parameter of the existing state-of-the-art IEPE seismic sensors [11, 12].

The SCC is connected with the sensor using a coaxial cable and may be located far from the

sensor. The SCC is comprised of an additional amplifier, possibly integrated to convert accel-

eration signal into velocity, and other stages used for the signal processing. Also, SCC provides

the power supply for the charge amplifier. The voltage supply VS can be of any value from 24

to 30 Vdc. The current supply is formed by the constant current source CCS and can be from 2

to 10 mA. With the purpose to decrease noise contribution from the power supply, the

rechargeable nickel-cadmium (NiCd) battery is used as VS and a current-regulating diode

(such as the 1N5312 with the nominal value of 3.9 mA) is used as CCS. The low-noise op-amp

(e.g., the OPA27A) is recommended for the SCC amplifier. The time constant τ of the circuit

Cd - RinSCC formed by the decoupling capacitor Cd and the input resistor RinSCC of the SCC

amplifier should be chosen high enough to provide a flat frequency response and negligible

contribution of the thermal noise caused by RinSCC:

τ ¼ Cd·RinSCC≫
1

2πf L
: (6)

2.2. Construction of the designed accelerometers

Figure 5 shows the construction of the designed accelerometers [15, 16].

The PE transducer is comprised of a crystal support, mass, case, and PE elements (crystals)

made of lead zirconate titanate (PZT) piezoceramic material. The mass is built as one piece and

consists of two sections: crossbeam section and cylindrical section. The crossbeam section is

bonded to the crystals in its center. The sensor's vibration axis coincides with the cylinder axis.

The PE transducer operates in circular bender, flexural mode typical for the IEPE seismic

accelerometers featuring high sensitivity, low resonant frequency, and low pyroelectric effect

[24]. When a vibration signal is applied to the sensor's case, the mass and crystals are bending

that causes the latters to generate electrical signals. The bender mode construction leads to the

motion mechanical amplification resulting in the PE transducer's high values of charge sensi-

tivity QPE and voltage sensitivity VPE. High values of QPE and VPE are the key factors in

providing the sensors’ ultra-low-noise floor [15, 16].

The charge amplifier is built on a ceramic hybrid substrate with gold metallization on the

conductors. Figure 6 shows a photograph of the charge amplifier hybrid substrate [15, 16].

The substrate has the shape of a disk and is placed into the inner shielded case. The inner case

is isolated from the sensor's outer case to prevent ground loops that can occur when the sensor
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is connected to the remotely distant SCC. The components have either surface mount technol-

ogy (SMT) package or die (chip) form used for the wirebond connection. All components are

attached to the substrate using conductive and insulative epoxies.

Figure 5. Construction of the designed accelerometers [15, 16].

Figure 6. Photograph of the charge amplifier hybrid substrate [15, 16].
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The gold wirebonds are used for connecting the die components with the substrate gold

conductors. Both wirebonds and die components are coated by an isolative coating epoxy to

protect them against possible damage during sensor assembly. Connections between the

hybrid substrate, the output two-pin connector, and the PE transducer are made with the help

of three gold wires attached to the substrate and covered with an isolation material.

3. Performance characteristics of the designed accelerometers

Table 1 shows the typical performance characteristics of the designed accelerometers, models

86 and 87 [10, 13].

Performance characteristics Units Model 86 Model 87

87-1 87-10

Voltage sensitivity V/G 10 1 10

Range (max level measured) G ±0.5 ±5 ±0.5

Frequency response at level of the ±1 dB Hz 0.005– 100 0.02–380 0.05–380

Frequency response at level of the ±3 dB Hz 0.003–200 0.01–500 0.02–500

Resonant frequency Hz 370 1220 1220

Output bias voltage Vdc +8–+13 +8–+13 +8–+13

Temperature range °C –20–+100 –20–+100 –20–+100

Full scale output voltage V ±5 ±5 ±5

Output impedance, Rout Ω ≤10 ≤10 ≤10

Noise (equivalent input noise acceleration):

Broadband (1 Hz–1 kHz) noise nGrms 100 1500 300

Spectral noise: nG=
ffiffiffiffiffiffiffi

Hz
p

0.1 Hz 600 1000 800

1 Hz 37 170 90

10 Hz 7 36 25

100 Hz 3 20 10

Voltage supply Vdc +24–+30 +24–+30 +24–+30

Current supply mA 2–10 2–10 2–10

Shock limit G pk 250 400 400

Dimensions: diameter mm (in) 64.8 (2.55) 28.6 (1.125) 28.6 (1.125)

Height mm (in) 55.5 (2.18) 37.3 (1.47) 37.3 (1.47)

Weight g (lb) 771 (1.7) 170 (6.0) 170 (6.0)

Table 1. Typical performance characteristics of the designed accelerometers [10, 13].
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Model 86 has sensitivity 10 V/G and range (max g-level measured) 0.5 G pk. Model 87 has two

modifications: 87-1 and 87-10 having sensitivities of 1 and 10 V/G and ranges between 5 and

0.5 G pk, respectively. Figures 7 and 8 show frequency response curves of the models 86 and

87-10, respectively [16].

For the accelerometer model 86, the lower and upper corners of frequency response at the level

of ±3 dB are 0.003 and 200 Hz, respectively. For the accelerometers 87-10 and 87-1, those

corners are 0.02 and 500 Hz and 0.01 and 500 Hz, respectively. The –3 dB frequency response

lower corners are determined by the expression (2). At high frequencies, the sensor's resonance

is the main factor for the frequency response rise.

The accelerometers operate over a temperature range from –20°C to +100°C. Figure 9 shows

the typical temperature response which shows the deviation of an accelerometers’ sensitivity

over operating temperature range [15]. We can see that the temperature response is from –15%

at −20°C to +10% at +100°C relatively to 25°C.

In Table 1, the spectral noise an is shown in terms of equivalent input noise acceleration

spectral density (in nG=
ffiffiffiffiffiffiffi

Hz
p

Þ: For the model 86, having the lowest noise, an was estimated

(theoretical noise) as a result of the noise analysis made in [15] and briefly presented below.

Theoretical values of an for the model 86 were verified by the direct measurement of its noise in

NIST (experimental noise) [15, 16].

Figure 7. Frequency response of the accelerometer 86 [16].
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Figure 8. Frequency response of the accelerometer 87-10 [16].

Figure 9. Typical temperature response of the designed accelerometers [15].
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4. Noise analysis of the designed accelerometers and the noise

measurement results

Spectral noise an is a critical parameter of any seismic sensor, because it defines the lowest level

of acceleration signal that can be measured at different frequencies of the accelerometer

frequency range. Noise analysis of the designed accelerometers was made in [15] based on

the equivalent noise circuit of the IEPE accelerometer [16, 25]. For the reader's convenience, we

have presented here the basic considerations and the final expression for an.

an is determined as a sum of the noise contributions of the PE transducer anPE and the charge

amplifier anamp which are not correlated to each other by definition [15, 16]:

an2 ¼ anPE2 þ anamp
2: (7)

.Noise of the PE transducer anPE is supposed as a combination of its electrical-thermal noise

ane and mechanical-thermal noise anm, which are not correlated to each other by definition

[25, 26]:

anPE2 ¼ ane2 þ anm2 ¼ 4kT
ηCPE

ωQPE
2
þ
0:01ω0

mQ

� �

: (8)

In Eq. (8), k is the Boltzmann's constant (1.38 × 10-23 J/K), T is the absolute temperature in K,

ω ¼ 2πf , ω0 ¼ 2πf 0, f is a frequency, f 0 is the PE transducer's resonant frequency: η, Q, and m

are the PE transducer's loss factor, quality factor, and mass, respectively. In Eq. (8), anPE2 is

presented in terms of G2/Hz.

The main noise sources of the FET-input charge amplifier anamp include the noise anFET gener-

ated by FET and the thermal noise anRb
caused by the biasing resistor Rb [16, 25]

anamp
2 ¼ anFET2 þ anRb

2 : (9)

.anFET is comprised of the FET noise sources: the channel thermal ant, 1/f noise an1=f , and the shot

noise ans in the gate circuit caused by the gate leakage current IGSS:

anFET2 ¼ ant2 þ an1=f 2 þ ans2: (10)

The expression for the total equivalent input noise acceleration spectral density anamp contrib-

uted by amplifier is [16]

anamp
2 ¼

1

VPE
2

4kT
Γ

gf s
þ
αqVG

�

2Cinf
þ

2qIGSS

ðωCPEÞ
2
þ

4kTRb

½1þ ðωRbCf Þ
2�

Cf

CPE

� �2
( )

: (11)
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In Eq. (11), Γ is a constant, for most FETs, Γ ≈ 2/3 [27]. gf s is the FET forward transconductance

and α is 1/f parameter used as a figure of merit for the FET 1/f noise. q is the electron charge of

1.6 × 10-19 coulomb, VG
� is the effective gate voltage, and Cin is the FET input capacitance.

In Eq. (11), the first term represents the FET channel thermal noise ant, the second term

corresponds to the FET 1/f noise an1=f , the third and fourth terms define the FET shot noise ans

in the gate circuit and the thermal noise generated by the biasing resistor Rb, respectively.

By substituting noise items in Eq. (7) with Eqs. (8) and (11), we will obtain the expression for

the accelerometer's overall input noise acceleration spectral density an [16]:

an2 ¼ 4kT
ηCPE

ωQPE
2
þ
0:01ω0

mQ
þ

Γ

gf sVPE
2
þ

RbCf
2

½1þ ðωRbCf Þ
2�QPE

2

( )

þ
αqVG

�

2Cinf VPE
2
þ

2qIGSS

ðωQPEÞ
2
: (12)

.In Eq. (12), the first two terms correspond to the PE transducer's electrical-thermal noise and

mechanical-thermal noise, respectively. The third and fourth terms represent the amplifier's FET

thermal noise of and the noise generated by the resistor Rb, respectively. The fifth and sixth terms

define the amplifier's FET 1/f noise and the shot noise in the input gate circuit, respectively.

Expression (12) identifies the parameters of the accelerometer providing ultra-low-noise operation.

The spectral noise of the Meggitt (OC) accelerometer model 86 was estimated according to the

expression (12). At this estimate, the noise of the PE transducer anPE was calculated using

Eq. (8) and the charge amplifier noise anamp was measured directly with the help of the Hewlett

Packard 3562A dynamic analyzer [15, 16]. At this measurement, the equivalent capacitance

equaled to the PE transducer's capacitance CPE was connected in parallel with the amplifier's

input instead of PE transducer.

It is known that the direct measurement of the designed accelerometers’ noise is not possible in

a typical laboratory condition because of the influence of environmental vibration noise and

the interferences always presented under such conditions. The model 86 estimated values of

noise were verified in the NIST by the direct measurement of its noise using the NIST stabili-

zation platform. Isolation of the sensor from the environmental vibration noise sources was

provided [17]. Figure 10 shows noise curves of the Meggitt (OC) model 86: estimated noise

(curve 1) and experimental noise (curve 2) measured in NIST at frequencies from 0.1 to 100 Hz

[17]. We can see that noise values have a good correlation with each other.

Figure 10. Noise of the Meggitt (OC) model 86: modeled (curve 1) and experimental (curve 2) measured in NIST [17].
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5. Comparison of the designed accelerometers with the state-of-the-art

low-noise seismic accelerometers

Table 2 shows a comparison between performance characteristics of the designed IEPE acceler-

ometers Meggitt (OC) models 86, 87-10, and the state-of-the-art low-noise IEPE and MEMS

accelerometers. These sensors are the IEPE sensors: Meggitt (MD) model 731A, PCB model

393B31, and Dytran model 3191A1 [11, 12, 14]. The MEMS sensor is the Colibrys model SF3000

[19]. Parameters of these sensors were obtained from their respective data sheets [11, 12, 14, 19].

Figure 11 shows curves of the noise floor in terms of the equivalent input acceleration spectral

density (in nG=
ffiffiffiffiffiffiffi

Hz
p

) of the deigned models 86 and 87-10 (curves 1 and 2, respectively) and the

IEPE seismic accelerometers MEMS

Parameters Units

Meggitt

(OC)86

Meggitt (OC)

87-10

Meggitt (MD)

731A

PCB

v393B31

Dytran

3191A1

Colibrys

SF3000L

Sensitivity V/G 10 10 10 10 10 1.2

Range ±G 0.5 0.5 0.5 0.5 0.5 3

Frequency range

(–3 dB)

Hz 0.003–200 0.02–500 0.05–450 0.04–500 0.045–1000 0–1000

Resonant

frequency

Hz 370 1220 750 700 8000

Temperature

range

°C −20– +100 −20– +100 −10– +65 −18– +66 −51–121 −40– +85

Output bias Vdc 9–13 9–13 9 8–14 11–13 ±0.24

Rout Ω ≤10 ≤10 100 500 100

Full scale output ±V 5 5 5 5 5 3.6

Spectral noise nG=
ffiffiffiffiffiffiffi

Hz
p

0.1 Hz 600 800

1 Hz 37 90 60 60 310

10 Hz 7 25 10 10 150 300–500

100 Hz 3 10 4 4 61 300–500

Voltage supply Vdc 24–30 24–30 18–30 24–28 18–30 ±6– ±15

Current supply mA 2–10 2–10 2–10 2–10 2–20 30

Shock limit G pk 250 400 15 40 100 1000

Dimensions: mm

Diameter mm 64.8 28.6 62 57 50

Height mm 55.5 37.3 53 53 92

Weight g 771 170 775 635 760 455

Table 2. Comparison between performance characteristics of the designed accelerometers, Meggitt (OC) models 86, 87-

10, and the state-of-the-art IEPE and MEMS seismic low-noise accelerometers.
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state-of-the-art models mentioned above (curves 3–6). Curve 3 shows the noise of the PCB

model 393B31 and Meggitt (MD) model 731A (these models have about the same noise).

Curves 4 and 5 represent noise of the Colibrys model SF3000L and Kistler model 8330A3,

respectively. Curve 6 corresponds to the Dytran IEPE model 3191A1.

The designed sensors, models 86 and 87-10, have probably the lowest noise floor for their size

and weight to date, in comparison to the existing state-of-the-art seismic accelerometers.

Specifically, the model 86, having sensitivity size and weight comparable with the IEPE sen-

sors PCB model 393B31 and Meggitt (MD) model 731A, has noise in terms of nG=
ffiffiffiffiffiffiffi

Hz
p

less

than these sensors by factor of about 1.6 (about 2.6 in terms of power spectral density, nG2=Hz)

at frequency 1 Hz and by factor of about 1.4 in nG=
ffiffiffiffiffiffiffi

Hz
p

(about 2 in terms of nG2=Hz ) at

frequencies 10–100 Hz. We can expect that the noise of the model 86 is less than the noise of

these sensors by a factor > 2 in nG=
ffiffiffiffiffiffiffi

Hz
p

(>4 in nG2=Hz ) at frequencies f < 1 Hz.

The noise of the model 87-10 cannot be compared to any other IEPE seismic accelerometers’

noise because they are not comparable in size and weight.

In addition to ultra-low-noise, the models 86 and 87-10 have lower operating frequencies

(0.003 Hz for the 86 and 0.02 Hz for the 87-10 at the level of –3 dB vs. 0.05 Hz for the 731A

and 0.04 Hz for the 393B31), higher operating temperature (Tmax = 100°C vs. 65°C), less output

Figure 11. Comparison of the noise floor between the designed accelerometers, Meggitt (OC) models 86, 87-10, and the

state-of-the-art low-noise seismic accelerometers. (1) model 86, (2) model 87-10, (3) Meggitt (MD) model 731A and PCB

model 393B31, (4) Colibrys model SF3000L, (5) Kistler model 8330A3, and (6) Dytran model 3191A1. Values of noise in

(3)–(6) are obtained from their respective data sheets [11, 12, 14, 18].
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impedance (Rout ≤ 10Ω vs. 100 and 500Ω), and higher shock limit (250 and 400 G pk vs. 15 and

40 G pk), in comparison to the existing state-of-the-art IEPE accelerometers.

6. Conclusion

Earthquakes can be so small or distant that only ultra-low-noise sensors are capable of mea-

suring and monitoring small acceleration signals generated by such earthquake. In addition,

such sensors can be used for the warning prediction system by detecting and monitoring of

“preseismic” small changes on the ground that indicate that a significant quake is imminent.

The Meggitt (OC) ultra-low-noise IEPE seismic accelerometers models 86 and 87-10 featuring

probably the lowest noise (for its size and weight) and lowest operating frequencies (near dc)

ever reported to date among these types of sensors are the best candidates for such purposes.

The design and characteristics of these sensors are presented. The model 86 has a weight of

about 770 g and a frequency range from 0.003 to 200 Hz at the ±3 dB level. Its noise in terms of

the equivalent input noise acceleration spectral density is about 37, 7, and 3 nG/
ffiffiffiffiffiffiffi

Hz
p

at

frequencies 1, 10, and 100 Hz, respectively. The model 87-10 is a compact sensor with a weight

of about 170 g and a frequency range from 0.02 to 500 Hz at the ±3 dB level. It has noise of

about 90, 25, and 10 nG/
ffiffiffiffiffiffiffi

Hz
p

at frequencies 1, 10, and 100 Hz, respectively. The noise of the

model 86 was directly measured at the National Institute of Standards and Technology (NIST).

The noise measurement results have a good correlation with the sensor's noise theoretical

estimation. In addition to the ultra-low-noise and near-dc frequency response, the designed

accelerometers feature about six times higher shock limit, about 1.5 times higher temperature

range, and one order of magnitude less output impedance, in comparison to the similar IEPE

seismic accelerometers.

These sensors can be used in the seismic network capable of detecting microseismic fluctua-

tions. The warning system using these sensors would be fundamentally different from current

warning systems using the network of hundreds of seismometers across seismically active

regions and recording only seismic events.
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