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Abstract

In recent years, an increasing number of publications have shown the negative effects 
of anesthetics on the developing brain and have made inquiries about anesthesia for 
pediatric patients in practice. Anesthesia is applied to millions of children for surgery, 
imaging, and other invasive procedures; the issue is very serious and concerns. In this 
chapter, experimental and clinical studies about the issue have been summarized. As a 
result, anesthetic drugs except alpha-2 adrenergic agonist anesthetic (NMDA antagonist 
or a GABA agonist) used in pediatric patients (especially if there is no painful situation) 
have potential neurotoxicity. Particularly, if anesthesia exposure was applied in the frag-
ile period (the first 4 years) and if used at higher concentrations or repeated anesthesia 
application, adverse effects of anesthesia exposure on the developing brain have been 
claimed. But, the issue is not fully clarified yet.

Keywords: anesthesia, neurotoxicity, neonatal, developing brain

1. Introduction

Since the beginning of the modern anesthesia (nearly 170 years), millions of people have 

received inhalation anesthetics, intravenous anesthetics, or a combination in order to create 

general anesthesia. These drugs have been applied in all age groups, from newborns who 

may be only a few hours old to geriatric patients. In fact, pediatric patients comprise a signifi-

cant proportion of the total number of patients treated with general anesthesia, a trend that 

will continue well into the future.

Pediatric patients are not miniature versions of adult physiology. Pediatric patients differ 
significantly from adults and among other pediatric patients in anatomical, physiologi-
cal, and pharmacological characteristics. Many centers have established a separate pedi-

atric anesthesia subspecialty in order to meet the appropriate anesthetic requirements of 
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 newborns, premature infants, infants, children, and adolescents. In particular, neonates 

carry 10 times more mortality and morbidity risk compared to other pediatric age groups. 

The most common complications in this age group involve the cardiovascular and respira-

tory system [1]. Holzman [2] noted that the practitioner’s experience and the presence of 

existing respiratory, cardiac, or muscular disease are the key factors that determine the risk 

of mortality and morbidity. Hemodynamic disturbances due to hypotension, hyperten-

sion, tachycardia, bradycardia, asystole, or other arrhythmias arising in the cardiovascular 

system and respiratory system issues such as hypopnea, apnea, hypoxia, hypocapnia, or 

hypercapnia can lead to disturbances in microcirculation to the central nervous system 

(CNS). Although the rate of complications has been reduced through improved under-

standing of the anatomical, physiological, and pharmacological characteristics of pediatric 

patients, advances in monitoring methods, and practitioner specialization, the risks are 

never completely eliminated.

Despite recent advances in the field of pediatric anesthesia, an increasing number of recent 
reports point to the adverse effects of anesthetics on the developing brain, raising con-

cerns about the application of anesthesia in pediatric patients. As early as 1965, Sir Austin 

Bradford Hill recognized this issue at a meeting of the Royal Society of Medicine, stating: 

“How do we determine what are physical, chemical and psychologic hazards of occupa-

tion and in particular those that are rare and not easily recognized?” and “… the available 

human studies … cannot exclude the possibility that the anesthesia- induced neurotoxicity 

observed in many animal studies may also occur in children” [3]. Although it has been 

nearly 50 years from that meeting of the Royal Society of Medicine, the short- and long-term 

effects of anesthesia applications in pediatric patients remain poorly understood. In this 
chapter, the acute and long-term effects of anesthesia and anesthetics on the developing 
brain are summarized.

2. Definitions

Neurotoxicity of anesthetic substances on the developing brain is determined by a reduc-

tion in neural density and apoptosis in experimental studies and by disturbances in memory, 

attention, learning, and motor activity in clinical studies [4–6]. Although anesthetic agents 

used in neonates have known neurotoxic effects, there are valid reasons for using these agents 
even in vulnerable patients. Because pain itself has a neurotoxic effect, anesthesia-analgesia 
application in painful conditions may have a net neuroprotective effect [7, 8]. It should also be 

noted that in cases of hypoxia-ischemia or trauma, administration of anesthetics reduces the 

infarct volume by reducing the metabolic rate, decreasing intracranial pressure, eliminating 

free oxygen radicals, and reducing secondary injury [9–11]. Another positive effect is neuro-

plasticities. These are described as the neurophysical and neurochemical ability to improve 

compliance against environmental changes and damage when used in depressive disorders 

and diseases. Neuroplasticity refers to the increase in intercellular connections. Agents that 

enhance neuroplasticity have raised new hope for the treatment of neurodegenerative dis-

eases [12–14].
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3. Other factors that may cause neurotoxicity

Anesthetics are just one of many potential sources of perioperative neurotoxicities. Patient-

related factors, such as genetic anomalies, prematurity, sepsis, infection, and vascular dis-

eases, can cause perioperative toxicity. Additionally, hormonal, metabolic, inflammatory, or 
cardiovascular changes caused by trauma or surgery, hemodynamic disturbances, hypoxia, 

hypo-/hypercapnia, hypo-/hyperglycemia, electrolyte imbalances, and temperature varia-

tions that occur due to anesthesia can also contribute to the development of perioperative 

neurotoxicity [15–18].

4. Experimental studies

4.1. Inhalation anesthetics

In an experimental study by Shen et al. [4], sevoflurane was applied to neonatal (PND3, 
PND7, and PND14) and adult rats (PNW7) at concentrations ranging from 1% to 4%. Spatial 
memory was then assessed in adulthood using the Morris water maze (MWM) test. The 
PNW7 rats were less sensitive to sevoflurane than neonatal rats. Memory defects were appar-

ent in groups treated with repeated low doses or a single high-dose anesthetic. The authors 

concluded that neonatal exposure to sevoflurane can result in memory defects in adulthood, 
with greater deficits seen in animals treated with multiple doses in a short period of time. As a 
result, the authors recommend that exposure to anesthesia during the neonatal period should 

be limited in dose and duration. Another study has shown that 4-hour sevoflurane exposure 
(2.5%) resulted in reduced hippocampal postsynaptic density protein-95 expression without 
causing any neuronal loss and was associated with learning and memory disturbances [19].

Another experimental study reported that 0.5% minimum alveolar concentration (MAC) sevo-

flurane applied for 6 hours had no significant effect on apoptosis and S100β levels. Conversely, 
isoflurane, which is given in the same circumstances, was shown to increase the level of 
apoptosis and S100β levels [20]. In another study, which evaluated the effects of inhalation 
anesthetics in neonatal rats, it was demonstrated that sevoflurane, isoflurane, and desflurane 
increased caspase-3 levels. Interestingly, nitrous oxide application (up to 150% concentration) 
for 6 hours did not cause neuroapoptosis; however, apoptosis was increased when nitrous 

oxide was applied with isoflurane [21]. Halothane administered during the prenatal period 

was associated with neurodegeneration and behavioral changes [22, 23]. Xenon, the currently 

preferred anesthetic, does not cause neuroapoptosis when used alone; on the contrary, xenon 

reduced the effects of other inhalation anesthetics when administered first [24].

4.2. Intravenous anesthetics

Zou et al. [5] have examined the effect of ketamine anesthesia duration in newborn rhesus 
monkeys (PND5, PND6) through silver and Fluoro-Jade C stains and caspase-3 immunos-

tain. Three hours exposure to ketamine did not produce any significant histochemical change, 
whereas profound brain cell death was observed in the frontal cortex among subjects that 
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were under the effect of ketamine for 9 or 24 hours. In cell culture study of Bosnjak et al. [25], 

they demonstrated that ketamine decreases neuronal viability time and dose dependently, 

leads to neuronal ultrastructural abnormalities, causes depolarization of mitochondrial mem-

brane potential, induces apoptotic pathway, causes cytochrome c release from mitochondria 

into cytosol, and induces free oxygen radical production.

Yu et al. examined neuroapoptosis and long-term behavioral changes in PND7 rats that were 

given single and repetitive doses of propofol. Their findings included reduction in neuron 
density, morphological changes in pyramidal cells, apoptosis, and suppressed release of 

excitatory neurotransmitters. Additionally, these effects were more pronounced among the 
group that was subject to repeated doses of propofol [26].

Benzodiazepines (clonazepam, diazepam, and midazolam), which are intravenous anesthet-

ics, have controversial effects on apoptosis; however, barbiturates (pentobarbital, phenobar-

bital) clearly increase apoptosis. The few studies that have examined the effects of sodium 
thiopental reported that exposure did not result in increased apoptosis [27–33]. Thompson 

[34] has suggested high-dose narcotic anesthetic for neonatal and infant. But, fetal and neo-

natal chronic exposure to opioids has been associated with neuronal changes. Although 

opioid-based anesthesia and opioids coadministered with inhalation anesthetics have been 

shown to reduce apoptosis, safety has not been demonstrated with these preparations [35, 

36]. However, these studies are controversial and their safety has been in question. Another 

study has demonstrated that dexmedetomidine, the current intravenous anesthetic, reduces 

prenatal toxicity caused by propofol [37].

5. Pathogenesis

The molecular pathogenesis of anesthesia-induced neurotoxicity has also been investigated 

in experimental studies.

Neonates are born with approximately 100 billion neurons, and the number of neurons 

does not increase over time. The neonatal brains weigh approximately 300–400 g. Increased 
myelination, synapse formation, neuron maturation, and proliferation of glial cells increase 

the weight of the brain to 1100 g at 3 years of age and 1300–1400 g at adulthood. A newborn 
infant has approximately 50 trillion synapses, increasing to 1000 trillion within the first year 
of life and decreasing to 500 trillion in adulthood. Critical periods for brain development are 

the intrauterine period, the first 3 years of life and puberty [38–40].

Thus, brain maturation is not complete at birth, and there is a heterogeneous maturation 

process in the brain following birth. Maturation is particularly slow in the cortex and in the 

limbic system [38–40]. Alteration of neurotransmission in the immature brain due to anesthe-

sia exposure may lead to future impairments.

Synaptogenesis has been defined as the most important period of brain development, also 
described as the “fragile period” or “critical period.” Synaptogenesis consists of five phases. 
The greatest leap in synapse formation occurs in phase 3, which is sometimes referred to as 
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the “big bang.” Phase 3 corresponds to the neonatal period. Following phase 3, synaptogen-

esis continues with the same speed during phase 4. This phase is referred to as the plateau 
phase, corresponding to infancy and adolescence. During phase 5, which occurs during adult-

hood, synaptogenesis continues, but it is limited and localized [41]. The initiation, duration, 

and end of these critical periods (phase 3 and phase 4) are controlled by multiple genetic and 
epigenetic mechanisms. The brain’s sensitivity to environmental stimuli is at maximum dur-

ing the neonatal and infancy period when synaptogenesis is also maximized [41].

Anesthetics elicit their effects by enhancing the activity of major inhibitory neurotransmitters 
gamma-aminobutyric acid (GABA) and glycine or antagonizing the N-methyl-D-aspartate 

(NMDA) receptors of the major excitatory neurotransmitter glutamate. During brain devel-
opment, GABA facilitates cell proliferation, neuroblast migration, and dendritic maturation, 

and unlike in adults, it acts as an excitatory neurotransmitter during infancy rather than an 
inhibitory neurotransmitter [42, 43]. This is because these two mediators increase the per-

meability of the cell membrane to chloride ions through intrinsic chloride-conducting ion 

pores. After the permeability of the GABA, ligand-gated ion channel to chloride is increased, 

KCC2 K+/Cl-2 cotransporter aids in influx of chloride ion. Thus, the neuron is hyperpolar-

ized and its activity is suppressed. However, because KCC2 expression is low during the 

early period of development, the chloride action potential is reversed by GABA
A
 and glycine 

receptor activity, leading to neuronal depolarization and increased permeability to chloride. 

Clinical studies have shown that sevoflurane, isoflurane, and propofol cause excitability in 
electroencephalogram in neonates [44–46]. The major excitatory neurotransmitters glutamate 
and aspartate are present in the brain at very high concentrations (glutamate 10 mmol/L and 

aspartate 4 mmol/L). Glutamate and aspartate direct synaptic signaling at nerve terminals 
and control ion intake to neurons. They have been found to influence synaptogenesis, neuro-

nal plasticity, learning, and memory [47–49]. Although the excitatory neurotransmitters are 
normally responsible for nerve conduction, they are also potential sources of neurotoxicity. 

An abnormal decrease in glutamate may disturb normal excitation, and abnormal increases 

may cause excitotoxicity and cell death by disturbing calcium homeostasis. Glutamate and 

similar amino acids have been shown to cause acute swelling in the neuron body, dendrites, 

and glia and also promote neuronal degeneration over extended periods of time. For this 

reason, there is a delicate mechanism acting in normal conditions to regulate glutamate levels 

in the synaptic gap involving reuptake of excess glutamate from the synaptic gap through 

receptors present in presynaptic end of nerve terminal and glial cells. Although glutamate is 

a strong and rapid-acting toxin under physiological conditions, this mechanism ensures that 

even direct application to the brain does not cause damage [47]. Nevertheless, pathological 
conditions that result in insufficiency of this system or cause release of large amounts of glu-

tamate would lead to neuronal loss. For these reasons, anesthesia applications are believed 

to disrupt the balance between excitatory and inhibitory neurotransmission and thus cause 

neuronal injury [47–49].

Regarding neuronal viability and development, one of the most studied neurotropins in 

neonatal subjects is brain-derived neurotrophic factor (BDNF). Mature BDNF is formed by 

destruction of proBDNF in the synaptic gap by the action of plasmin. Mature BDNF binds to 

the TrkB receptors present on the postsynaptic membrane and enhances viability of the target 
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cell. However, in conditions where plasmin release is reduced or blocked, such as when anes-

thesia is applied, proBDNF cannot be converted to the mature form, and it stimulates p75NTR 

instead of the TrkB receptor. Activation of p75NTR receptor, also called the “death receptor,” 

leads to actin depolymerization and apoptosis. Head et al. [50] demonstrated that isoflurane 
causes apoptosis in the neonatal mice brain through this pathway.

Apoptosis is a programmed cell death that can occur in both physiological and pathological 

conditions. Apoptosis is physiologically present in the developing brain, occurring at a rate 

of approximately 1%. However, apoptosis that occurs following pathological processes like 
hypoxia and ischemia is typically problematic. Several experimental studies have shown that 

apoptosis is increased following anesthesia exposure. However, it is not possible to conduct 

such studies in humans. Therefore, it is difficult to estimate the rate of apoptosis following 
anesthesia exposure in humans to what extent this apoptosis affects maturation of the devel-
oping brain. Experimental studies have shown that anesthesia induces apoptosis via intrinsic 

and extrinsic pathways. Anesthesia application causes leakage of cytochrome c and trans-

location of Bax protein to the mitochondria, leading to activation of the apaf-1 and caspase 

pathways, respectively. This in turn results in lipid peroxidation via release of free oxygen 

radicals. Apoptosis occurs not only in intrinsic pathway but also in extrinsic pathway which 

activates Fas protein [51–53].

There are three publications that demonstrate the relationship between microRNA and anes-

thetic-induced developmental neurotoxicity; according to these publications, while propo-

fol downregulates microRNA-21, ketamine upregulates microRNA-34a, microRNA-34c, and 
microRNA-124 and downregulates microRNA-137 [54–56].

In cell culture models, it has been demonstrated that neuron development is highly depen-

dent on the actin cytoskeleton, and anesthetics are dangerous for actin regulation [57–59].

Tau protein hyperphosphorylation at serine 404 demonstrates neurodegeneration and is 
induced by ketamine. Therefore, microtubules are disrupted and damaged [60].

Translocator protein (TSPO, 18 kDa) is a biomarker that could be used for evaluation of reac-

tive gliosis and microglia activity and has the potential for use in noninvasive imaging using 

positron emission tomography and single photon emission computed tomography [61]. The 

relationship between anesthesia-associated neurotoxicity and DNA methylation and gene 

expression has been investigated [62].

Treatment strategies to reduce neurodegeneration induced by anesthetics have also been 

widely investigated. Lithium, melatonin, estradiol, pilocarpine, dexmedetomidine, xenon, 

erythropoietin, L-carnitine, hydrogen gas, and pramipexole are among the leading candi-

dates for this emerging therapy [63, 64].

6. Clinical studies

Although many experimental studies have been conducted, this alone is not sufficient evi-
dence to conclude that general anesthetics have a neurotoxic effect on the developing human 
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brain. Even within mammals, species vary widely in the rate and timing of brain develop-

ment. Total maturation of the brain takes only a few weeks in the rat, while maturation of 

the human brain occurs over many years. In addition, the dose and duration of anesthetics 

used in experimental models is not directly proportional to the procedures used in patients. 

In some cases, experimental doses may be as much as 20 times the standard clinical dose. 

Adjusted for the life span of a rat, 6 hours of anesthesia may correspond to 1 month of a 

human life span. Again, some observations from these studies, such as lactic acidosis, hyper-

carbia, and hypoglycemia, have mostly been ignored. Learning ability is also disturbed in 

subjects that are fasted for the duration of the anesthesia treatment [43, 65, 66].

In one retrospective birth cohort study that used New York State Medicaid data collected 

between the years 1999 and 2002, 383 children who underwent inguinal hernia repair with 

anesthesia before the age of 3 were evaluated along with 5050 children who did not undergo 

an operation. Hazard ratios regarding behavioral and developmental disorders were reported 

to be 2.3 with exposure to anesthesia, 1.0 for age, 2.7 for gender, 1.2 for race, and 1.6 for birth 

complications [6]. Considering that elective surgeries can be postponed, exposure to anesthe-

sia is an avoidable risk for most infants.

In another report, patients that had been overexposed to anesthesia had more learning dif-

ficulties than those who were treated with appropriate doses. The risk of learning difficul-
ties was progressively increased with repeated exposure to anesthesia [67, 68]. The effects of 
anesthesia used during cesarean procedures were examined in children. Infants born under 

regional anesthesia exhibited fewer learning difficulties in the later stages of their life [69, 70].

One retrospective study examined 10,450 siblings born between the years 1999 and 2005 and 
evaluated developmental and behavioral disorders among those who did and did not receive 

anesthesia prior to the age of 3. The incidence of developmental and behavioral disorder 

was 128.2/1000/year among those who were exposed to anesthesia and 56.3/1000/year among 

those who were not exposed to anesthesia. Therefore, behavioral disorders were 60% more 
frequent among those who received anesthesia in comparison to those who did not. The 

estimated hazard ratio for developmental and behavioral disorders was 1:1 for those who 

received anesthesia once before the age of 3, 2:9 for those exposed twice, and 4 for those who 
had been exposed to anesthesia three or more times [71].

Meyer et al. observed development of convulsion with similar clinical characteristics in three 

infants under the age of 2 months, occurring after 23–30 hours of anesthesia induced and 

maintained using propofol. They reported that the seizures did not recur; however, two 

infants had progressive microcephaly and cognitive and behavioral disorder. Magnetic reso-

nance imaging also showed white matter abnormalities [72]. The manufacturer of propofol 

does not recommend the use of propofol as a general anesthetic agent for children under the 

age of 3 [73].

Clinical studies in the literature are often retrospective, and even strong correlations are not 

evidence of causality. Therefore, the Mayo Anesthesia Safety in Kids (MASK) study was 

launched by Mayo Clinic at the suggestion of the FDA to evaluate neurotoxicity in children 

exposed to anesthesia. The study included children born in Olmsted County between 1997 

and 2007 and who still lived there when they reached 8 years old. Those who received general 
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anesthesia before the age of 3 were excluded from the study. Children classified as having 
single, multiple, or no anesthesia exposure were evaluated between the years 2007 and 2016, 

when they were at the age of 8–12 or 15–19 with a single session that lasted for 4 hours using 
the National Center for Toxicological Research-Operant Test Battery (NCTR-OTB). The NCTR-
OTB test evaluates processing speed; cognitive/intellectual memory; attention, language, 
motor and visual-spatial, and cognitive processing; and executive functions [74].

The Pediatric Anesthesia and Neurodevelopmental Assessment (PANDA), which was con-

ducted by the University of Columbia and followed sibling pairs under the age of 3 who 

underwent inguinal operation up to the age of 8–15, published four symposiums in 2-year 

interval. The first meeting in 2008 established the goals of the study. The second meeting in 
2010 was interdisciplinary. The third meeting in 2012 was attended by different disciplines, 
parents, clinicians, FDA workers, and patient’s rights advocates. In this meeting, attendees 
agreed to collaborate on advanced preclinical, clinical, and translational studies [75, 76]. 

Additionally in 2012, pediatric anesthesiologists and pediatric surgeons met to discuss the 

neurotoxicity risk of some elective procedures and anesthesia applications performed in 

children and specifically to discuss questions and concerns of parents. Meeting attendees, 
including pediatric general surgeons, urologists, plastic surgeons, and ophthalmologists, 

reviewed inguinal hernia, hypospadias-undescended testis, cleft lip, craniosynostosis, cat-

aracts, and strabismus applications in early childhood. They emphasized that the amount 

of volatile anesthetics and sedation levels could be reduced by using balanced anesthesia 

methods, regional anesthesia methods, and the use of opioid and non-opioid analgesics, but 

the group was unable to reach a consensus on best practices [77]. At the 2014 meeting, the 
existing clinical studies, General Anesthesia Study (GAS), MASK, and PANDA, were evalu-

ated, and Strategies for Mitigating Anesthesia-Related neuroToxicity in Tots (SmartTots) was 

presented along with the future targets of this organization. SmartTots is a public-private 

partnership that investigates the effects of anesthetic agents on neural development in infants 
and children. All panelists evaluated their anesthesia and clinical practices with the following 

questions [78, 79]:

-- What does anesthesia mean to my patients?

-- What does anesthesia mean to my practice now?

Ordering imaging studies with sedation/anesthesia.

A child requiring multiple procedures under GA overtime.

A child requiring multiple procedures from different subspecialties at the same time.

-- If anesthesia affects neurodevelopment:

How will I discuss this with the parents?

Will I change my practice and how?

The 2014 report indicated that the collected data was insufficient to draw any conclusions. 
However, it stated 2 years later that the results would be considered as a public health prob-

lem, leading to greater awareness [78]. On the other hand, the General Anesthesia Study 
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(GAS), which is currently ongoing and only investigates causality, investigated cases that 

were less than 60 weeks from conception and greater than 26 weeks gestational age and had 

undergone inguinal hernia operations with sevoflurane-based general anesthesia or awake-
regional anesthesia. This study was conducted in 28 hospitals from Australia, Italy, the USA, 

the UK, and Canada. No opioids or nitrous oxide was used. Regional techniques and intrave-

nous acetaminophen were used for postoperative analgesia. Protocols were applied in order 

to prevent development of adverse states that would contribute in neurotoxicity, such as 

hypoglycemia, hypotension, and hypoxia. Children were assessed using the composite cog-

nitive score of the Bayley Scales of Infant and Toddler Development III test at the age of 2 and 

with the Wechsler Preschool and Primary Scale of Intelligence Third Edition (WPPSI-III) Full 
Scale Intelligence Quotient score at the age of 5. During 2007–2013, 363 infants were enrolled 

in the awake-regional group, and 359 infants were enrolled in the general anesthesia group. 

According to the study results, the median general anesthesia duration was 54 minutes. No 
significant difference was found between the groups regarding cognitive composite score at 
2 years of age. This study provides strong evidence that sevoflurane anesthesia lasting <1 
hour in infants does not produce more severe neurotoxicity at the second year of age than 

awake-regional treatment. Nonetheless, the primary outcome of this study is the evaluation 

of neurodevelopmental state at 5 years of age, and this result has not been published yet. It 

was also reported in this study that early-period apnea development (<30 minutes) was less 
frequent in the regional anesthesia group [80].

Other discussed topics are applied anesthesia techniques to mothers during childbirth. Flick 

et al. determined that neuraxial labor analgesia for vaginal delivery did not cause learning 

disabilities in childhood [69, 70].

Another topic of discussion was how parents should be informed and the need to establish a 

protocol. However, since it was not possible to reach a consensus based on the current data, 

it was concluded that it would not be appropriate to inform parents and establish a protocol 

yet [81].
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