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Abstract

Numerical analysis has been carried out on the problem of three-dimensional magneto-
hydrodynamic boundary layer flow of a nanofluid over a stretching sheet with
convictive boundary conditions through a porous medium. Suitable similarity trans-
formations were used to transform the governing partial differential equations into a
system of ordinary differential equations. We then solved the resultant ordinary differ-
ential equation by using the spectral relaxation method. Effects of the dimensionless
parameters on velocity, temperature and concentration profiles together with the friction
coefficients, Nusselt and Sherwood numbers were discussed with the assistance of
graphs and tables. The velocity was found to decrease with increasing values of the
magnetic, stretching and permeability parameters. The local temperature was observed
to rise as the Brownian motion, thermophoresis and Biot numbers increased. The con-
centration profiles diminish with increasing values of the Lewis number and chemical
reaction parameter.

Keywords: numerical analysis, MHD nanofluid, stretching sheet, convective boundary
conditions, porous medium

1. Introduction

Many researchers have over the past few years paid significant attention to the study of

boundary layer flow heat and mass transfer over a stretching sheet due to its industrial and

engineering applications. These applications include cooling of papers, glass-fibre production,

plastic sheets and polymer extrusion, hot rolling wire drawing, metal spinning, stretching of

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



rubber sheets and crystal growing. The quality and final product formation in these processes

are dependent on the rate of stretching and cooling.

Since the pioneering study by Crane [1] who presented an exact analytical solution for the

steady two-dimensional flow due to a stretching surface in a quiescent fluid many studies on

stretched surfaces have been done [1–5].

Thermal conductivity of nanoparticles has been shown in recent research on nanofluid to

change the fluid characteristics. The thermal conductivity of the base liquid with the enhanced

conductivity of nanofluid and the turbulence induced by their motion contribute to a remark-

able improvement in the convective heat transfer coefficient. This feature of nanofluid makes

them attractive to a wide variety of industries, ranging from transportation to energy produc-

tion and supply to electronics. They can be used in welding equipment, high heat flux and to

cool car engines, among other applications. Many researchers [6–10] have studied the bound-

ary layer flow of a nanofluid caused by a stretching surface.

Shateyi and Prakash [11] carried out a numerical analysis on the problem of magneto hydro-

dynamic boundary layer flow of a nanofluid over a moving surface in the presence of thermal

radiation. Kuznetsov and Nield [12] examined the influence of nanoparticles on natural con-

vection boundary layer flow past a vertical plate, using a model in which Brownian motion

and thermophoresis are accounted for. Aziz and Khan [13] investigated using a similarity

analysis of the transport equations by their numerical computations to the natural convective

flow of a nanofluid over a convectively heated vertical plate.

Makinde and Aziz [14] numerically studied the boundary layer flow induced in a nanofluid due

to a linearly stretching sheet. Hayat et al. [15] addressed the MHD flow of second grade

nanofluid over a nonlinear stretching sheet. Zhao et al. [16] studied the three-dimensional

nanofluid bio-convection near a stagnation attachment. Sheikholeslami and Ganji [17] studied

two-dimensional laminar-forced convection nanofluids over a stretching surface in a porous

medium. The study used different models of nanofluid based on different formulas for thermal

conductivity and dynamic viscosity. Nayak et al. [18] did a numerical study on the mixed

convection of copper-water nanofluid inside a differentially heated skew enclosure. Recently,

Mabood and Das [19] analysed MHD flow and melting heat transfer of a nanofluid over a

stretching surface. Naramgari and Sulochana [20] analysed the momentum and heat transfer of

MHD nanofluid embedded with conducting dust particles past a stretching surface in the

presence of volume fraction of dust particles. Sandeep et al. [21] analysed the unsteady MHD

radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially per-

meable stretching in the presence of volume fraction of dust and nanoparticles. Sheikholeslami

et al. [22] computationally investigated nanofluid flow and heat transfer in a square heated

rectangular body. Sheikholeslami and Ganji [23] provided a review of researches on nanofluid

flow and heat transfer via semi-analytical and numerical methods. Lastly, Naramgari and

Sulochana [20] analysed the three-dimensional MHD Newtonian and non-Newtonian fluid flow

over a stretching surface in the presence of thermophoresis and Brownian motion.

The main objective of this chapter is to numerically analyse the influence of convective bound-

ary conditions on the model of three-dimensional magnetohydrodynamic, nanofluid flow over

a stretching sheet through a porous medium in the presence of thermophoresis and Brownian
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motion as well as thermal radiation. The governing partial differential equations use suitable

similarity transformations. The transformed governing equations are solved numerically using

the spectral relaxation method (SRM). The effects of dimensionless parameters on velocity

components, temperature and concentration profiles together with the skin friction coeffi-

cients, local Nusselt and Sherwood numbers are discussed with the aid of tables and graphs.

2. Mathematical formulation

We consider a three-dimensional steady incompressible MHD nanofluid flow, heat and mass

transfer over a linearly stretching sheet through a porous medium. The sheet is assumed to be

stretched along the xy -plane while the fluid is placed along the z-axis. A uniform magnetic

field B0 is applied normally to the stretched sheet and the induced magnetic field is neglected

by assuming very small Reynolds number. We assume that the sheet is stretched with linear

velocities u ¼ ax and v ¼ by along the xy-plane, respectively, with constants a and b. Under the

above assumptions and the boundary approximation, the governing equations for the current

study are given by:

∂u

∂x
þ
∂v

∂y
þ
∂w

∂z
¼ 0; (1)

u
∂u

∂x
þ v

∂u

∂y
þ w

∂u

∂z
¼ v

∂2u

∂z2
−
σB2

0

ρ
u−

v

k1
u, (2)

u
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v
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, (4)

u
∂C

∂x
þ v

∂C

∂y
þ w

∂C

∂z
¼ DB

∂
2C

∂z2
þ
DT

T∞

∂
2T

∂z2
, (5)

where u, v and w are the velocity components in the x, y and z- directions, respectively, T is the

fluid temperature, C is the fluid concentration, k1 is the permeability, v is kinematic viscosity, ρ

is the fluid density, τ is the ratio of the heat capacitances, DB and DT are the Brownian motion

and thermopheric diffusion coefficients and cp is the specific heat capacity.

The corresponding boundary conditions for the flow model are:

u ¼ ax, v ¼ by,w ¼ 0, −k
∂T

∂z
¼ hf ðTf −TÞ, −DB

∂C

∂z
¼ hsðCs−CÞ at z ¼ 0, (6)

u ! 0, v ! 0,w ! 0,T ! T
∞
,C ! C

∞
, asz ! ∞: (7)

We have hf as the convective heat transfer coefficient, hs is the convective mass transfer

coefficient and Tf and Cf are the convective fluid temperature and concentration below the

moving sheet.
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3. Similarity transformation

In order to non-dimensionalise the governing equations, we introduce the following similarity

equations [24]. These transformations also transform the partial differential equations into a system

of ordinary differential equations which is then solved using the spectral relaxation method:

η ¼
ffiffiffi

a

v

r

z, u ¼ axf
0ðηÞ, v ¼ byg

0ðηÞ,w ¼ −

ffiffiffiffiffi

av
p

½f ðηÞ þ cgðηÞ�,θðηÞ ¼ T−T
∞

Tf −T∞
,φðηÞ ¼ C−C

∞

Cs−C∞
: (8)

Upon substituting the similarity variables into Eqs. (2)–(5), we obtain the following system of

ordinary equations

f
000 þ ðf þ cgÞf 00−f 02−ðMþ KÞf 0 ¼ 0, (9)

g
000 þ ðf þ cgÞg00

−g
02
−ðMþ KÞg0 ¼ 0, (10)

3þ 4R

3PrR

� �

θ
00 þ ðf þ cgÞθ0 þNbθ

0
∅

0 þNtðθ0Þ2 ¼ 0, (11)

∅
00 þ Leðf þ cgÞ∅0 þ Nt

Nb
θ

00 ¼ 0: (12)

The corresponding boundary conditions are

f ¼ 0, f
0 ¼ 1, g ¼ 0, g

0 ¼ 1,θ
0 ¼ −Bitð1−θÞ,∅

0 ¼ −Bicð1−∅Þ, at η ¼ 0, (13)

f
0ð∞Þ ! 0, g

0ð∞Þ ! 0,θð∞Þ ! 0,∅ð∞Þ ! 0: (14)

Primes denote differentiation with respect to η and parameters appearing in Eqs (9)–(14) are

defined as: Pr ¼ v=α is the Prandtl number, Le ¼ v=DB is the Lewis number,

Nb ¼ τDBðCs−C∞Þ=v is the Brownian motion parameter, Nt = τDTðTf −T∞Þ=vT∞ is the

thermophoresis parameter, Bit ¼ hf
k

ffiffiffiffiffiffiffi

v=a
p

,Bic ¼ hs
DB

ffiffiffiffiffiffiffi

v=a
p

are the Biot numbers and c ¼ b=a is

the stretching parameter. The quantities of engineering interest are the skin-friction coefficient

Cf along the x- and y-direction (Cf x and Cf y), the Nusselt number and Sherwood number.

These quantities are defined as follows:

Cf x ¼
τwx
ρu2w

,Cf y ¼
τwx

ρu2w
,Nu ¼ x

qw
kðTf −TwÞ

, Sh ¼ x
qw

DBðCf −CwÞ
, (15)

where τwx, τwy are the wall shear along x- and y-directions, respectively, and qw and qm are the

heat flux and mass flux at the surface, respectively.Upon using the similarity variables into the

above expressions, we obtain the following:

Re2Cf x ¼ f
00ð0Þ,Re12Cf y ¼ g

00 ð0Þ,Re−12Nu ¼ −θ
0ð0Þ,Re−12 Sh ¼ −∅ð0Þ: (16)
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4. Method

To solve the set of ordinary differential Eqs. (9)–(12) together with the boundary conditions

(13) and (14), we employ the Chebyshev pseudo-spectral method known as spectral relaxation

method. This is a recently developed method, and the details of the method are found in Motsa

et al. [25]. This method transforms sets of non-linear ordinary differential into sets of linear

ordinary differential equations. The entire computational procedure is implemented using a

program written in MATLAB computer language. The nanofluid velocity, temperature, the

local skin-friction coefficient and the local Nusselt and Sherwood numbers are determined

from these numerical computations.

To apply the SRM to the non-linear ordinary differential equations, we first set f
0

ðηÞ ¼ pðηÞ and

g
0
ðηÞ ¼ qðηÞ. We then write the equations as follows:

f
0

¼ p; (17)

p
00

þ ðf þ cgÞp
0

−p2−ðMþ KÞp ¼ 0; (18)

g
0

¼ q; (19)

q
00

þ ðf þ cgÞq
0

−q2−ðMþ KÞq ¼ 0; (20)

3þ 4R

3PrR

� �

θ
00

þ ðf þ cgÞθ
0

þNbθ
0

∅
0

þNtθ
0 2 ¼ 0; (21)

∅
00

þ Leðf þ cgÞ∅
0

þ
Nt

Nb
θ

00

¼ 0: (22)

The boundary conditions become

f ð0Þ ¼ 0, gð0Þ ¼ 0, pð0Þ ¼ 1, qð0Þ ¼ 1, (23)

θ
0

ð0Þ ¼ −Bitð1−θÞ,∅
0

ð0Þ ¼ −Bicð1−φÞ; (24)

pð∞Þ ¼ 0, qð∞Þ ¼ 0,∅ð∞Þ ¼ 0,θð∞Þ ¼ 0, (25)

In view of the SRM, we then obtain the following iterative scheme:

f
0

rþ1 ¼ pr, f rþ1ð0Þ ¼ 0; (26)

p
00

rþ1 þ ðf rþ1 þ cgrþ1Þprþ1−ðMþ KÞprþ1 ¼ p2r , prþ1ð0Þ ¼ 1, prþ1ð∞Þ ¼ 0; (27)

g
0

rþ1 ¼ qr, grþ1ð0Þ ¼ 0; (28)

q
00

rþ1 þ ðf rþ1 þ cgrþ1Þq
0

rþ1−ðMþ KÞqrþ1 ¼ q2r , qrþ1ð0Þ ¼ 1, qrþ1ð∞Þ ¼ 0; (29)

3þ 4R

3PrR

� �

θ
00

rþ1 þ ðf rþ1 þ cgrþ1Þθ
0

rþ1 ¼ −Nbθ
0

r∅
0

r−Ntθ
0

r
2,θ

0

rþ1ð0Þ ¼ −Bitð1−θrþ1ð0ÞÞ,∅rþ1ð∞Þ ¼ 0;

(30)
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∅
00

rþ1 þ Leðf rþ1 þ cgrþ1Þ∅
0

rþ1 ¼ −

Nt

Nb
∅

00

rþ1,φ
0

rþ1ð0Þ ¼ −Bicð1−φrþ1ð0ÞÞ,∅rþ1ð∞Þ ¼ 0: (31)

The above equations form a system of linear decoupled equations which can be solved itera-

tively for r ¼ 1, 2,…. Starting from initial guesses
�

p0ðηÞ, q0ðηÞ,θðηÞ,∅ðηÞ
�

. Applying the

Chebyshev pseudo-spectral method to the above equations, we obtain

A1f rþ1 ¼ B1, f rþ1ðτNÞ ¼ 0; (32)

A2prþ1 ¼ B2, prþ1ðτNÞ ¼ 1, prþ1ðτ0Þ ¼ 0; (33)

A3grþ1 ¼ B3, grþ1ðτNÞ ¼ 0; (34)

A4qrþ1 ¼ B4, qrþ1ðτNÞ ¼ 1, qrþ1ðτ0Þ ¼ 0; (35)

A5θrþ1 ¼ B4,θrþ1ðτNÞ ¼
Bit

1þ Bit
,θrþ1ðτ0Þ ¼ 0; (36)

A6∅rþ1 ¼ B6,∅rþ1ðτNÞ ¼
Bit

1þ Bit
,∅rþ1ðτ0Þ ¼ 0: (37)

where, A1 ¼ D,B1 ¼ pr, A2 ¼ D2 þ diagðf rþ1 þ cgrþ1ÞD−ðMþ KÞI, B2 ¼ q2rþ1, A3 ¼ D,B3 ¼ qr,

A4 ¼ D2 þ diagðf rþ1 þ cgrþ1ÞD−ðMþ KÞI, A5 ¼
3þ4R
3PrR

� �

D2 þ diagðf rþ1 þ cgrþ1ÞD, B5 ¼ −N6θ
0

r∅
0

r

−Ntθ
0

r
2, A6 ¼ D2 þ diag½Lef rþ1 þ cLegrþ1�D, B6 ¼ −

Nt
Nb∅

00

rþ1,

where I is the identity matrix of size ðN þ 1Þ×ðN þ 1Þ. The initial guesses are obtained as:

p0ðηÞ ¼ e
−n, q0ðηÞ ¼ e

−n,θ0ðηÞ ¼
Bite−n

1þ Bit
,∅0ðηÞ ¼

Bice−n

1þ Bic
: (38)

5. Results and discussion

The system of ordinary differential Eqs. (9)–(12) subject to the boundary conditions (13) and

(14) is numerically solved by applying the spectral relaxation method. The SRM results

presented in this chapter were obtained using N ¼ 40 collocation points, and also the conver-

gence was achieved after as few as six iterations. We also use these default values for the

parameters Pr ¼ 0:71,Nt ¼ Nb ¼ 0:3, Le ¼ 2,R ¼ 1,M ¼ 1,K ¼ 0:5,C ¼ 0:1,Bit ¼ 0:2 ¼ Bic.

Table 1 displays the validation of the present results with those obtained by the bvp4c results.

As can be clearly observed from this table, there is an excellent agreement between the results

obtained by bvp4c method giving confidence in the findings of this study. Table 1 also shows

the influence of the magnetic, permeability and stretching parameters on the skin friction

coefficients. It is noticed that the skin friction coefficient increase with the increasing values of

the parameters.

Table 2 depicts the influence of Brownian motion thermophoresis, parameters and the Biot

numbers on the Nusselt and Sherwood numbers. Both the rates of heat transfer and mass

Nanofluid Heat and Mass Transfer in Engineering Problems8



transfer are increasing functions of the Brownian motion parameter. By definition,

thermophoresis is the migration of a colloidal particle in a solution in response to a micro-

scopic temperature gradient. The heat transfer is reduced while the mass transfer increases

〈i〉−f ″ð0Þ〈=i〉 〈i〉−g
00
ð0Þ〈=i〉

M K C Bvp4c SRM Bvp4c SRM

0 0.1 0.1 1.22690 1.22690 0.09495 0.09495

1 0.1 0.1 1.52270 1.52270 0.137834 0.197854

3 0.1 0.1 2.12214 2.12214 0.19750 0.197520

5 0.1 0.1 2.55018 2.55018 0.24290 0.24290

1 0.0 0.1 1.415504 1.415504 0.118270 0.118270

1 0.5 0.1 1.582270 1.582270 0.137834 0.137834

1 1.5 0.1 1.871764 1.871764 0.170320 0.170320

1 3.0 0.1 2.236839 2.236839 0.209800 0.209800

1 0.2 0.2 1.585645 1.585645 0.280922 0.28022

1 0.2 0.4 1.599025 1.599025 0.585064 0.585064

1 0.2 0.6 1.610701 1.610701 0.916198 0.916198

1 0.2 0.8 1.647760 1.647760 0.927968 0.927968

Table 1. Variation of the magnetic, permeability and stretching parameters on the skin friction coefficients.

Nb Nt Bit Bic 〈i〉−θ
0

ð0Þ〈=i〉 〈i〉∅′ð0Þ〈=i〉

0.2 0.1 0.2 0.2 0.528756 0.272081

0.4 0.1 0.2 0.2 0.540153 0.283370

0.6 0.1 0.2 0.2 0.627812 0.370495

0.8 0.1 0.2 0.2 0.685700 0.428392

0.1 0.2 0.2 0.2 0.484629 0.277618

0.1 0.4 0.2 0.2 0.418686 0.299623

0.1 0.6 0.2 0.2 0.364816 0.321133

0.1 0.8 0.2 0.2 0.320526 0.342009

0.1 0.1 0.2 0.2 0.523097 0.266480

0.1 0.1 0.4 0.2 0.868307 0.633407

0.1 0.1 0.6 0.2 1.114143 0.926920

0.1 0.1 0.2 0.2 0.523097 0.266480

0.1 0.1 0.2 0.4 0.516229 0.115364

0.1 0.1 0.2 0.6 0.511106 0.002054

Table 2. The influence of the Brownian motion and thermophoresis parameters as well as that of the Biot numbers on the

Nusselt and Sherwood numbers.

Numerical Analysis of Three‐Dimensional MHD Nanofluid Flow over a Stretching Sheet with Convective Boundary...
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with increasing values of the thermophoresis parameter. Lastly, Table 2 shows the influence of

the Biot numbers on the heat transfer and mass transfer rates and they both increase with

increasing values of the thermal Biot number. But we noticed opposite effects when the solutal

Biot number increases.

Figures 1 and 2 display the effect of permeability parameter on the velocity profiles. We

observe that the tangential velocity profiles decrease as the values of the permeability param-

eter. Also, the transverse velocity (f
0

ðηÞ) is reduced by the increasing values of the permeability

parameter as more nanofluid is taken away from the boundary layer. This explains the thin-

ning of the velocity boundary layers as the values of K increases (Figure 1). Figures 3 and 4

depict the effect of the magnetic field parameter on the velocity profiles. As expected, we

observe that both velocity components are greatly reduced as the values of the magnetic

parameter increase. This is because physically increasing the values of magnetic field strength

produces a drag-like force known as the Lorentz force. This force acts against the flow when

the magnetic field is applied in the normal direction, as in this chapter. Figures 5 and 6 display

the influence of the stretching parameter on the velocity fields. It is seen from Figure 5 that the

tangential velocity profiles f
0

ðηÞ are reduced by increasing values of the stretching parameter c.

The transverse velocity is enhanced with the increasing values of the stretching parameter.

Figure 7 displays the influence of the Biot number Bi, on the temperature profiles. It is clearly

observed on this figure that the nanofluid temperature field rapidly increases near the bound-

ary with increasing values of the Biot number, Bit, . It is also observed that as the Biot number

increases the convective heating of the sheet also increases.

Figures 8 and 9 reveal the effect of the stretching ratio parameter c on the temperature and

concentration profile. It is observed that the temperature and concentration profiles are

Figure 1. Effect of permeability parameter on the tangential velocity profiles.

Nanofluid Heat and Mass Transfer in Engineering Problems10



reduced with increasing values of the stretching ration parameter. Figures 10 and 11 display

the effects of thermophoresis parameter on the dimensionless temperature and concentration

profiles. It is observed that the temperature and concentration profiles increase as the values of

Figure 2. Effect of permeability parameter on the transverse velocity profiles.

Figure 3. Influence of the magnetic parameter on the tangential velocity.

Numerical Analysis of Three‐Dimensional MHD Nanofluid Flow over a Stretching Sheet with Convective Boundary...
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the thermophoresis Nt increase. Figure 12 depicts the influence of the Brownian motion

parameter Nb on the temperature profiles. Increasing the values of the Brownian motion

parameter Nb results in thicking of the thermal boundary layer, thus enhancing the

Figure 4. Influence of the magnetic parameter on the transverse velocity.

Figure 5. Influence of the stretching parameter on the tangential velocity.

Nanofluid Heat and Mass Transfer in Engineering Problems12



temperature of the nanofluid. Figures 13 and 14 are plotted to depict the influence of the

permeability K and magnetic M, parameters on the temperature profiles. The temperature of

Figure 6. Variation of the stretching parameter on the velocity.

Figure 7. Effect of the Biot number on the temperature.

Numerical Analysis of Three‐Dimensional MHD Nanofluid Flow over a Stretching Sheet with Convective Boundary...
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Figure 8. Effect of varying the stretching parameter on the temperature.

Figure 9. Effect of varying the stretching parameter on the temperature.

Nanofluid Heat and Mass Transfer in Engineering Problems14



Figure 10. Effect of thermophoresis parameter on the temperature profiles.

Figure 11. Effect of thermophoresis parameter on the concentration profiles.
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the nanofluid increases with increases values of the permeability parameter. From Figure 14,

we observe that the temperature profiles increase with the increasing values of the magnetic

field parameter. Figure 15 displays the effect of thermal radiation parameter R on the

Figure 12. Effect of Brownian motion parameter on the temperature profiles.

Figure 13. Effect of magnetic parameter on the temperature profiles.

Nanofluid Heat and Mass Transfer in Engineering Problems16



Figure 14. Influence of the permeability parameter on the nanofluid temperature.

Figure 15. Influence of thermal radiation on the temperature.
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temperature profiles. We observe in this figure that increasing the values of the thermal

radiation produces a significant reduction in the thermal condition of the fluid flow.

Lastly, the effect of the Lewis number on the concentration profiles is depicted on Figure 16.

Large values of the Lewis number implies increased values of the Schmidt number which

results in the thinning of the solutal boundary layer.

6. Conclusion

A three-dimensional magnetohydrodynamic nanofluid, heat and mass transfer over a

stretching surface with convective boundary conditions through a porous medium. The

transformed governing equations are solved numerically using the spectral relaxation method.

The accuracy of the SRMwas validated against the MATLAB in-built bvp4c routine for solving

boundary value problems. The following conclusions are driven from this study:

• The effect of increasing the magnetic field parameter is to reduce the momentum boundary

layer there and to increase the thermal and solutal boundary layer thickness. The same

effect on the flow characteristics is also experienced by increasing values of the stretching

parameter (c).

• We observed that the local temperature rises as the Brownian motion, thermophoresis,

permeability parameter and Biot numbers intensify. But opposite influences are observed

when the values of the thermal radiation and stretching parameters increase.

Figure 16. Influence of the Lewis number on the concentration.

Nanofluid Heat and Mass Transfer in Engineering Problems18



• Increasing values of the Lewis number (Le) dimishes the concentration of the nanoparticles.

• The rise in the stretching ratio parameter increases the Nusselt and Sherwood number.

• Lastly, the Nusselt number decreases, while the Sherwood number increases as the

Brownian motion and thermophoresis effects increase.

Nomenclature

a, b positive constants

B0 uniform magnetic field strength

Bit ,Bic Biot numbers

c stretching parameter

C fluid concentration

Cf skin friction coefficient

Cs convective fluid concentration below the moving sheet

Cw concentration on the wall

C∞ free stream concentration

DB Brownian motion coefficient

DT thermopheric diffusion coefficient

f dimensionless stream function

g acceleration due to gravity

hf convective heat transfer coefficient

hs convective mass transfer

k1 permeability of the porous medium

k thermal conductivity

K permeability parameter

Le Lewis number

M magnetic parameter

Nb Brownian motion parameter

Nt thermophoresis parameter

Nu Nusselt number
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Pr Prandtl number

qw, qm heat and mass fluxes at the surface

qr radiative heat flux

R thermal radiation

Re Reynolds number

Sh Sherwood number

T fluid temperature

T f convective fluid temperature

Tw temperature

u,v,w velocity components

x, y, z Cartesian coordinates

Greek symbols

α thermal expansion coefficient

ρ fluid density

ν kinematic viscosity

σ electrical conductivity

θ dimensionless temperature

φ dimensionless concentration

τ ratio of heat capacities

τwx, τwy wall shears
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