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Abstract

Thin  films  have  a  great  impact  on  the  modern  era  of  technology.  Thin  films  are
considered as backbone for advanced applications in the various fields such as optical
devices,  environmental  applications,  telecommunications  devices,  energy  storage
devices, and so on . The crucial issue for all applications of thin films depends on their
morphology and the stability. The morphology of the thin films strongly hinges on
deposition techniques. Thin films can be deposited by the physical and chemical routes.
In  this  chapter,  we  discuss  some  advance  techniques  and  principles  of  thin-film
depositions. The vacuum thermal evaporation technique, electron beam evaporation,
pulsed-layer  deposition,  direct  current/radio  frequency  magnetron  sputtering,  and
chemical route deposition systems will be discussed in detail.

Keywords: thin films, coatings, physical deposition, sol-gel, chemical bath deposition,
chemical route

1. Introduction

Nowadays, most of the technologies are used for minimizing the materials into nano-size as
well as nano-thickness leading to the emergence of new and unique behaviors of such materials
in optical, electrical, optoelectronic, dielectric applications, and so on. Hence, a new branch of
science/materials science is called thin films or coatings. Thin film can be defined as a thin layer
of material, where the thickness is varied from several nanometers to few micrometers. Like all
materials, the structure of thin films is divided into amorphous and polycrystalline structure
depending on the preparation conditions as well as the material nature. Thin films comprise
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two parts: the layer and the substrate where the films are deposited on it. Also, thin films can be
composed of different layers such as thin-film solar cells, electrochromic cells, and so on.

In order to obtain thin films with good quality, there are two common deposition techniques:
physical and chemical depositions. It can be summarized as shown in Table 1.

Physical deposition Chemical deposition

1. Evaporation techniques

a. Vacuum thermal evaporation.

b. Electron beam evaporation.

c. Laser beam evaporation.

d. Arc evaporation.

e. Molecular beam epitaxy.

f. Ion plating evaporation.

2. Sputtering techniques

a. Direct current sputtering (DC sputtering).

b. Radio frequency sputtering (RF sputtering).

1. Sol-gel technique

2. Chemical bath deposition

3. Spray pyrolysis technique

4. Plating

a. Electroplating technique.

b. Electroless deposition.

5. Chemical vapor deposition (CVD)

a. Low pressure (LPCVD)

b. Plasma enhanced (PECVD)

c. Atomic layer deposition (ALD)

Table 1. Methods of thin films deposition.

This chapter describes some common deposition techniques for thin films in detail to give some
confidential and important points of view for readers on how thin films can be formed.

2. Physical deposition techniques

2.1. Evaporation techniques

Evaporation methods are considered as the common deposition of materials in the form of
thin-layer films. The general mechanism of these methods is obtained by changing the phase
of the material from solid phase to vapor phase and converting again to solid phase on the
specific substrate. It takes place under vacuum or controlled atmospheric condition.

2.1.1. Vacuum thermal evaporation technique

Vacuum evaporation technique is the simplest technique used to prepare amorphous thin films
especially chalcogenide films such as CdSSe [1], MnS [2], Ge-Te-Ga [3], and so on. In general,
chalcogenide materials can be used for memory-switching applications [4, 5], phase-change
materials [6, 7], and solar applications [8].
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The technique of thermal evaporation is strongly dependent on two parameters: thermally
vaporized material and applying a potential difference to the substrate under medium- or
higher-vacuum level ranging from 10−5 to 10−9 mbar. The schematic diagram for thermal
evaporation is shown in Figure 1 taken from elsewhere [9].

Figure 1. Schematic of thermal evaporation system with substrate holder on a planetary rotation system and directly
above the evaporating source.

2.1.2. Electron beam evaporation

This type of evaporation is another method of physical deposition where the intensive beam
of electrons is generated from a filament and steered through both electric and magnetic fields
to hit the target and vaporize it under vacuum environment as shown in Figure 2. Thin films
prepared by electron beam evaporation are of good quality and purity [10].

Figure 2. Schematic diagram of electron beam evaporation.
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Large categories of materials can be prepared by electron beam evaporation technique [11]
such as amorphous and crystalline semiconductors [12], metals [13], oxides [14], and molecular
materials [15].

2.1.3. Laser beam evaporation (pulsed-laser deposition)

Pulsed-laser deposition (PLD) is another physical deposition technique to deposit the thin-
film-coating system [16]. During the thin-film deposition process, the laser beam is used to
ablate the material for depositing the thin films inside a vacuum chamber as shown in Figure 3.

Figure 3. Schematic of pulsed-laser deposition taken from Ref. [17].

Different kinds of laser sources are being used to ablate the target. The most common sources
are Nd-YAG laser, KrF (248 nm), and XeCl (308 nm). When the laser beam strikes the target
material, it produces the plume which could deposit on the various substrates. The created
plume may contain neural- and ground-state atoms and ionized species. In the case of metal
oxide thin films, oxygen is used to deposit the oxides of metals [18]. The thin-film quality from
the PLD depends on the various parameters such as wavelength of the laser, energy, ambient
gas pressure, pulsed duration, and the distance of the target to the substrate [19]. The ablation
process during the deposition may control and monitor by using laser-induced fluorescence
[20], laser ablation molecular isotopic spectroscopy [21], and optical emission spectroscopy
[22]. The morphology of the deposited thin films is also affected by the substrate temperature.
The coating of thin films through PLD follows three modes: Frank–-van der Merwe, Stranski–-
Krastanov, and Volmer–-Weber [23, 24]. PLD has some advantages over other physical
deposition systems because of its fast deposition time and its compatibility to oxygen and other
inert gases.

2.2. Sputtering technique

Sputtering technique is mostly used for depositing metal and oxide films by controlling the
crystalline structure and surface roughness [11, 25]. The simple form of the sputtering system
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consists of an evacuated chamber containing metallic anode and cathode [25] in order to obtain
a glow discharge in the residual gas in the chamber. Also, an applied voltage in the order of
several KeV with pressure more than 0.01 mbar is sufficient for film deposition. The sputtering
process depends on the bombardment of the ions released from the discharge to the molecules
in the cathode leading to the liberation of the molecules from the cathode with higher kinetic
energy. The atomic weight of the bombarding ions should be nearly to that of the target material
in order to maximize the momentum transfer. These molecules move in straight lines and strike
on the anode or on the substrate to form a dense thin film [25]. The diagram of the sputtering
system is shown in Figure 4.

Figure 4. Sputtering system diagram.

The process of sputtering has several advantages. High-melting point materials can be easily
formed by sputtering. The deposited films have composition similar to the composition of the
starting materials. Sputtering technique is available to use for ultrahigh vacuum applications.
The sputtering sources are compatible with reactive gases such as oxygen. Contrarily,’ thick
coatings cannot be obtained and there is a difficulty to deposit uniformly on complex shapes.

There are two common types of sputtering process: direct current (DC) and radio frequency
(RF) sputtering. The first one depends on DC power, which is generally used with electrically
conductive target materials. It is easy to control with low-cost option. The RF sputtering uses
RF power for most dielectric materials. A common example for sputtered films is aluminum
nitride films. These films were prepared by both DC- and RF-sputtering technique, and their
structure and optical properties were compared [26, 27].

3. Chemical deposition techniques

Although the production of thin films via physical methods as previously described gives good
quality and functionalizes properties, it is highly expensive and perhaps requires a large
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amount of material target. Since the need to produce good-quality thin films with low
economical cost is necessary, chemical deposition techniques are widely used globally. These
techniques are cheap producing good-quality films. Most of them do not require expensive
equipment. The chemical deposition is strongly dependent on the chemistry of solutions, pH
value, viscosity, and so on. The most common chemical deposition has been obtained via sol-
gel route, chemical bath deposition, electrodeposition, chemical vapor deposition (CVD), and
spray pyrolysis technique. This section is concerned only on sol-gel and chemical bath
deposition techniques because they can form good film quality with low equipment require-
ment.

3.1. Sol-gel technique

The sol-gel technique is broadly used for the synthesis of oxide materials [28]. Sol-gel process
is one of the famous wet-chemical methods. It works under lower-temperature processing and
gives better homogeneity for multicomponent materials. The word “‘sol”’ means the formation
of a colloidal suspension and ‘gel’ means the conversion of ‘sol’ to viscous gels or solid
materials. Two routes are used to prepare transition metal oxides (TMOs) as follows:

a. Preparing of inorganic precursors via inorganic salts in aqueous solution.

b. Preparing of metal alkoxide precursors via metal alkoxides in nonaqueous solvents.

In this section, we are concerned on the famous route “the metal alkoxide precursor solution
by an alcoholic solution.”

3.1.1. Alkoxide precursors in organic solvents

The sol-gel technique is based on the polycondensation of metal alkoxides M (OR)z in which
R represents an alkyl group (R = CH3, C2H5, …) and z is the oxidation state of the metal atom
Mz+ [29]. It can be synthesized via the reaction of metal salt (chloride, acetate, nitrate, etc.) with
alcohol as follows:

( ) ( )3 3z z
CH COO M + zROH  M OR + zCH COOH® (1)

After this process, two important steps should be involved:

1. Hydrolysis: this step is aimed to form reactive M-OH groups [30]:

(2)

2. Condensation: condensation is the second step after hydrolysis leading to the departure of
a water molecule. The process of condensation can be either olation process or oxolation
process.

• Olation: a hydroxyl bridge ("ol" bridge) is formed between two metal centers as shown in
Figure 5.
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• Oxolation: oxolation is a reaction in which an oxo bridge (—O—) is created between two
metal centers. When the metal is coordinately unsaturated, oxolation with rapid kinetics
leads to edge- or face-shared polyhedral as shown in Figure 6.

Figure 5. Several types of OH bridges can be formed by olation condensation process.

Figure 6. Formation of oxo-bridging links between two metal centers.

Hence, olation process occurs mainly for lower oxidation states of cations (z < 4), whereas
oxolation is mainly observed with cations of high oxidation state (z > 4) [29, 31].

The previous description provides the preparation of the precursor solution. In order to make
thin film from the precursor solution, there are two processes for the production of the films,
that is, dip-coating and spin-coating techniques.

3.1.2. Dip-coating technique

Dip-coating technique is almost used to fabricate transparent layers of oxides on a transparent
substrate with a high degree of planarity and surface quality [32]. Other substrates are also
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possible to use. Well-defined film thicknesses up to 1 μm can be deposited. Several additive
layers can be superimposed.

Figure 7. Dip-coating process levels.

Scriven [33] described the dip-coating process in five stages: immersion, start-up, deposition,
drainage, and evaporation. Hence, the evaporation normally accompanies the start-up,
deposition, and drainage steps as shown in Figure 7.

3.1.3. Spin-coating technique

Another technique is also available for usage after the precursor solution is prepared known
as spin coating or spinning. The solution is dripped onto a spinning substrate and spreads
evenly. The spinning process is most suitable for the coating of small disks or lenses but is not
very economical. The process of spinning film can be described as shown in Figure 8.

Figure 8. Spin-coating process.
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3.2. Chemical bath deposition technique

Chemical bath deposition method is also known as solution growth technique or controlled
precipitations [34]. It is the oldest method to deposit films on a substrate. Solution growth
technique is mostly used to prepare chalcogenide films as well as metal oxide films. Also, the
deposition can be performed at lower temperatures. In the solution growth method, the
precursor solution of metal ions must be complexed by ligands. The complex solution is almost
obtained with ammonia solution, triethanol amine, ethylene-diamine-tetraacetic acid (EDTA),
citric acid, and so on. When the complexation is completed, the addition of the anions should
take place. These anions come from the thiourea, thioacetamide, thiosulfate, and sodium
Sulfide solutions [34] as sources of sulfur anions or selenourea and sodium selenosalfate for
selenium anions to deposit the chalcogenides. Substrates are put in vertical, horizontal, or
specific position inside the solution and left until the desired film thickness is obtained. The
deposition of oxide films is quite different than chalcogenides. After making the complexation
by controlling the pH value, the substrate is immersed in the solution under the desired
temperature varied in the range 60°–100 °C to deposit in most cases the metal hydroxide films.
The hydroxide film can then be transferred to oxide by the annealing process. Figure 9
represents the simple chemical bath deposition method taken from Ref. [34]. Indeed, much

Figure 9. Home-made chemical bath deposition technique.
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reviews and literature, which describes the chemical bath deposition for both chalcogenide
and oxide films, are found elsewhere [34–36].
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