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Abstract

Nowadays the world economy is based mainly on petrol as an energy source and raw
material for chemical products. The global economic growth in the past century has led
to high energy consumption, mainly from fossil fuels, such as coal, oil, and natural gas.
The extensive use of fossil fuels formed and stored underground for millions of years has
made impossible for the present vegetation on Earth to treat the emitted carbon dioxide
by photosynthesis, leading to strong emissions of carbon dioxide and greenhouse effect
with the consequent climate changes. One of the ways to cope with this global problem
is to close the carbon cycle in nature by the use of renewable biofuels enabling recycling
the sources of biological origin by energy production and consumption of the resulting
carbon by photosynthesis. Some of these biofuels are biogas (a mixture of methane and
carbon dioxide) generated from organic waste; ethanol, produced by fermentation of
carbohydrates; and biodiesel, produced by transesterification of lipids. Another feature
of this approach is the utilization of organic waste as energy, thus leading to multiple
benefits for the environment: waste treatment with energy production, closing the natural
carbon cycle, and saving of fossil fuels. Biofuels with their feedstock also serve as raw
materials for new technologies for chemicals being now produced from petrol, natural
gas, and coal.

Keywords: biomass, renewable fuels, biogas, biodiesel, ethanol, carbon dioxide recy‐
cling

1. Introduction

During the twentieth century, the world economy was mainly based on petrol as an energy
source and raw material for chemical products. Energy consumption has increased steadily
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over the last century due to the world population growth and the technical progress devel‐
opment. The enormous economic growth on a global scale in the past century has led to the
extensive use of fossil fuels, such as coal, oil, and natural gas.

A reason of concern was the extensive use of fossil fuels formed and stored underground for
millions of years. It has made impossible for the present vegetation on Earth to treat the emitted
carbon dioxide by photosynthesis. The result was greenhouse effect with the consequent
climate changes. The climate changes assigned to the increased emissions of greenhouse gases
forced humanity to develop alternative energy sources, one of them being biomass, either fresh
or residual.

Another reason for humanity to turn to the renewable energy resources is the concern of
depletion of the overall oil reserves [1], because the eight great economies (except Brazil) and
many other nations depend on oil, the consequences of inadequate oil availability could be
severe. Therefore, there are great incentives in exploring alternative energy sources.

One of the ways to cope with this global problem is to close the carbon cycle in nature by the
use of renewable fuels enabling recycling the sources of biological origin by energy production
and consumption of the resulting carbon by photosynthesis. Such biofuels are biogas (a
mixture of methane and carbon dioxide) generated by anaerobic digestion of organic waste,
ethanol, produced by fermentation of carbohydrates, and biodiesel, produced by transesteri‐
fication of lipids.

The main feature of these approaches is the utilization of organic waste as energy, thus leading
to multiple benefits for the environment: waste treatment with energy production, closing the
natural carbon cycle, and saving of fossil fuels. Moreover, there are options to utilize the
biofuels and their derivatives and residues as sources for chemical production.

2. Biogas

The anaerobic digestion of organic waste is a well spread process in nature. The huge amounts
of natural gas collected underground are formed by this process during millions of years. The
result is gas, containing about 95% methane with some contaminations. Nowadays, this
process is used for agricultural waste treatment producing biogas with satisfactory heating
capacity. Biogas is a mixture of methane and carbon dioxide with some contaminations of
hydrogen sulfide, mercaptans, ethane, etc. The methane content varies from 55 to 90% volume
depending on the substrate nature and content, the method of digestion, etc. The gas contain‐
ing less than 50% methane is not combustible.

Biogas is broadly distributed in countries with developed agriculture (like India, China, Brazil,
etc.), being a cheap and environmentally friendly option for the simultaneous solution of waste
treatment problems and energy demand. Anaerobic digestion is also a convenient technology
for activated sludge utilization and waste treatment in the food industry, pulp and paper
industry, in household waste treatment, etc.
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The anaerobic digestion with biogas production is a complicated process of consequent
hydrolysis of organic macromolecules (carbohydrates and proteins) to oligosaccharides and
peptides, acidogenesis to volatile fatty acids (mainly formic, acetic, and propionic), acetogen‐
esis, and methanogenesis [2]. The overall process is shown in the scheme in Figure 1.

Figure 1. Four steps in biogas production [2].

The gross chemical reaction describing the first step, i.e., hydrolysis is:

6 10 5 2 6 12 6C H O n + nH O = nC H( O)  (1)

In the second step, acidogenic bacteria convert the products of hydrolysis into simple organic
compounds, mostly short‐chain carboxylic acids, ketones and alcohols.

The chemical reactions are shown below. Glucose is parallely converted into ethanol and
propionic acid:

6 12 6 3 2 2C H O 2CH CH OH 2CO« + (2)
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6 12 6 2 3 2 2C H O 2H 2CH CH COOH 2H O+ « + (3)

The acetogenic reactions are

3 2 2 3 3 2CH CH COO 3H O CH COO H HCO 3H- - + -+ « + + + (4)

6 12 6 2 3 2 2C H O 2H O=2CH COOH 2CO 4H+ + + (5)

3 2 2 3 2CH CH OH O =CH COOH H O+ + (6)

2 3 23 =2HCO 4H H CH COO 4H O-
+ -+ + + (7)

In the last step, methanogenic bacteria convert acetic acid into CH4 and CO2:

3 4 2CH COOH CH CO= + (8)

There is another parallel pathway to produce methane by reduction of carbon dioxide resulting
from formic acid degradation:

2 2HCOOH CO H« + (9)

2 2 4 2CO 4H CH 2H O+ « + (10)

The activity of the digesting bacteria and biogas production of gas is most rapid in two
temperature ranges: between 29°C and 41°C (fermentation is known as mesophilic) or between
49°C and 60°C (the thermophilic range). The mesophilic regime between 32°C and 35°C is more
reliable for stable and continuous production of methane. Biogas produced outside this
temperature range is rich of carbon dioxide, it is not combustible and that is why it has no
calorific value. The thermophilic regime gives higher yield of biogas, but with less net energy
efficiency because of the energy losses for high temperature maintenance.

Different methanogenic strains are responsible for these parallel and competitive processes.
The bacteria from the genus Methanosarcina are capable to grow during the catabolism of
acetate to CO2 and CH4 [3], whereas the strains Methanobacterium and Methanobrevibacter
convert carbon dioxide by reduction of hydrogen to methane [4–8].

The balance between decarboxylation of acetic acid and carbon dioxide reduction is important
for the methane content in the resulting biogas. If only decarboxylation of acetic acid occurs,
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methane content will be 50% only. The high methane content in the biogas means that carbon
dioxide reduction prevails.

Anyway, all methanogenic strain are vital in neutral media, i.e., for pH values between 6 and
8. Big deviations either in the acid domain or in the alkaline one lead to strong inhibition and
even to death. Acidogenesis is one of the inevitable steps in biogas production. On one hand,
methanogenesis is favorized by fatty acid formation, but on the other hand, it could be strongly
inhibited by their accumulation due to the pH drop. In such cases, the produced gas is very
rich in carbon dioxide and it is not combustible. That is why, one must be very careful in the
feeding strategy by substrate and in the selection of bioreactor and flow organization.

One suitable way to minimize the effect of acid accumulation on the biogas formation is to
distribute spatially the consecutive processes of biogas formation and to carry them out
simultaneously. Such a construction is the baffled bioreactor separated into consecutive
compartments fed from the one end with outflow at the other one, cf. Figure 2. It is known
that such reactors are stable toward disturbances in feed, pH oscillations, temperature
variations, etc. [9].

Figure 2. Multistage bioreactor for biogas production.

The main advantage of this type of reactor in the considered case is the distribution of the
different consecutive processes (hydrolysis, acidogenesis, acetogenesis, and methanogenesis)
in different reactor compartments. Due to its one‐way feeding, the intermediate products in
one compartment passed as substrates to the next one. Because of this feeding organization,
different bacteria are spontaneously cultivated, specialized to transform different intermedi‐
ates of the overall methanogenesis.

There are successful applications of such bioreactor for biogas production by residual stillage
from ethanol distillation as a feed [10]. The intermediate profile and the microbial distribution
in eight compartment bioreactor for this process are illustrated in Figure 3 by author’s
experimental data. Acetic and propionic acids prevail in the first three compartments where
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reducing sugars are present, due to the hydrolysis of carbohydrates. Obviously, the first three
steps of biogas production, i.e., hydrolysis, acidogenesis, and acetogenesis predominantly take
place in the first three compartments where sugars are present and the concentration of
methanogenic bacteria is very low or negligible. Methanogenics prevails in the next compart‐
ments 5–7, which corresponds to the very low acid concentration. There are few methanogenic
bacteria in compartment 8 which corresponds to the negligible acid concentration. The biogas
productivity rate for those experiments was ca. 4 vol.biogas/vol.reactor/day.

Figure 3. Acid and microbial profiles along the compartments in the bioreactor (own data).

The biogas produced by anaerobic digestion finds applications in different area. First, it could
be used directly for heating purposes. Next, after some processing to remove carbon dioxide
and sulfur‐containing compounds the biogas could replace partially the natural gas for local
applications. This biogas could be supplied directly in the pipelines, it could be used for the
public transport and for electricity production by cogeneration.

Another promising application is the direct electricity production in fuel cells [11]. For this
purpose, biogas should be scrubbed for carbon dioxide and sulfur compounds removal and
then the purified methane could be fed to solid oxide fuel cells (SOFC) and molten carbonate
fuel cells (MCFC). In this case, methane is directly converted to hydrogen and carbon monoxide
by a catalyst in the anodic space. Another approach is to convert methane into carbon mon‐
oxide by steam reforming (SR) or partial oxidation reforming (POX) and consequent water‐
gas shift reaction to isolate hydrogen, supplied to a fuel cell:

4 2 2CH H O CO S )3H R(+ = + (11)

4 2 2CH ½O CO (2H OX)P+ = + (12)
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2.1. Biogas as a source of organic fuels

There are some papers claiming to utilize biogas as a source for other organic fuel production
by catalytic auto‐thermal reforming [12, 13]. Another approach is to use biogas being a mixture
of methane and carbon dioxide to produce synthesis gas (mixture of carbon monoxide and
hydrogen) [14]:

4 2 2CH CO 2CO 2H+ = + (13)

Furthermore, the synthesis gas could be converted into light hydrocarbons by the Fischer‐
Tropsch process.

3. Biodiesel

Biodiesel consists of methyl or ethyl esters of fatty acids produced by transesterification of
natural lipids. Different natural fats are used as raw materials, namely, rapeseed, soybean,
processed residual sunflower oil, animal fats, and some kinds of algae. The latter are attractive
because they can utilize the carbon dioxide from flue gases by photosynthesis thus reducing
the emissions of greenhouse gases [15].

The energy content of biodiesel is within 37 and 40 MJ/L compared to 46 MJ/L of the traditional
diesel fuel. Biodiesel does not contain sulfur compounds.

The idea for the use of vegetable oils as fuel for diesel engines is more than 100 years old [16,
17]. Just in the 1970s, the petrol crises and the enhanced environmental conscience in the
modern societies have led to the secondary discovery of this possible alternative to the
hydrocarbon‐based fossil fuels. However, the direct use of vegetable oil as a fuel is not
convenient, because of its very high viscosity, high flame point, trend to polymerization, etc.,
all leading to engine damage [18].

Transesterification with low alcohols is the best modification of natural oil for the biodiesel
purposes.

Today, biodiesel is in commercial use throughout the world. It is used as a single fuel or blended
with traditional diesel (with 30–36%).

Biodiesel is produced in the European Union since 1992. The world production attained 3.8
mln tons in 2005 to reach 3.7 mln tons only in the USA in 2007. The total world production for
2016 is about 15 mln tons.

3.1. Benefits of biodiesel use

Biodiesel does not contain sulfur and aromatic compounds and its use in the conventional
engines leads to reduction of emissions of noncombusted hydrocarbons and carbon monoxide.
Comparison of the emissions resulting by the use of biodiesel and traditional one is shown in
Table 1.
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Emission type Biodiesel Traditional diesel

(% of EU standards from 1993)

Carbon monoxide 60 180

Hydrocarbon total 90 150

Nitrogen oxides 65 60

Fine particulates 95 190

Table 1. Comparison of emissions released by biodiesel and conventional diesel fuel [19].

3.2. Problems in biodiesel production and use

The main disadvantage at biodiesel production and use is the uncertain standardization
depending on the source of lipids. It reflects the different cetane number and the variable
temperature of gelatinization depending on the esters and the raw material type.

Another severe problem is crude glycerol, released as byproduct after transesterification of
lipids. Its amount is about 10% of the substrate and it is almost equal of the methanol used.
This residual glycerol is contaminated by potassium hydroxide, water, some nonreacted lipids,
some soaps, and monoglycerides and diglycerides. The low quality of this product makes it
impossible for direct practical application.

Provided the annual world production of biodiesel is about 15 mln metric tons, one could
expect that 1.5 mln metric tons of crude glycerol would be released. It is an enormous amount
and it poses the necessity for its application and processing.

Pure glycerol has various practical applications but it could be hardly replaced by the residual
crude glycerol after biodiesel production. That is why new application should be sought.

Recent studies show the opportunity for crude glycerol utilization as syngas by steam re‐
forming [20–22], cf. Eq. (9). Other applications are proposed, for example, hydrogen produc‐
tion by photo‐fermentation [23, 24], or as a fuel in fuel cells and microbial fuel cells [25, 26].
However, in these cases the contamination by methanol is not recommended [27, 28].

3.3. Glycerol utilization for hydrogen and other chemicals production

The large amounts of residual crude glycerol prompted to the search of simultaneous waste
treatment and for new applications as a raw material, alternative to the petrol for the traditional
organic synthesis [29–31]. Such efforts are directed toward production of chemicals of broad
industrial importance, e.g., polyols as precursors of plastics (2, 3‐butanediol, 1, 3‐propandiol)
[32–35], propionic acid [36, 37], succinic acid [38], or hydrocarbons by catalytic reforming [39],
for epichlorohydrin, some ethers [40], polyesters, etc.

Among the potential applications of waste glycerol are the production of biodegradable
polymers for packaging [31, 32, 41, 42], as antifreezing agents [43] as substrate for microbial
syntheses, etc. Crude glycerol has been used as carbon source in the nutrition media for
biopolymer production by the species Bacillus and Pseudomonas [44–46].
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3.4. Microbial conversion of glycerol into chemical products

The bacterium Rhodopseudomonas palustris is capable for photo‐fermentative conversion of
crude glycerol to hydrogen [23]. The conversion rates and the yields depend on the concen‐
trations of the added nitrogen containing compounds. Higher yields of hydrogen and also
ethanol are registered at the use of Enterobacter aerogenes HU‐101 [47]. There are works on the
production of different chemicals from glycerol in microbial processes. Different bacteria (from
the genera Klebsiella, Clostridium, and Enterobacter) are capable to convert glycerol, producing
basic chemicals, differing by the intermediate reactions and products [30]. The metabolic
pathway of glycerol conversion by bacteria from the genus Klebsiella was proposed and
discussed by Saxena et al. [48] and Zhang et al. [49]. It is shown in Figure 4. It is seen that two
diols (1,3‐propandiol and 2,3‐butanediol) are produced by two competitive mechanisms.
Those two diols are interesting as precursors for polymer production, e.g., polypropylene and
butadiene. Besides succinic and lactic acids are produced, ethanol too.

Figure 4. Metabolic pathway for glycerol digestion by bacteria from the genus Klebsiella [48, 49].
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The studies of glycerol conversion at the metabolism of bacteria from the genus Clostridium
show similar processes like in the previous case [50–52]. At Clostridium mainly 1,3-propanediol,
organic acids (formic, acetic, butyric, and lactic) as well as n-butanol are produced.

Additionally, formic and acetic acids are also produced. These two carboxylic acids are very
important for the consequent production of biogas being a mixture of methane and carbon
dioxide.

The studies of the metabolism of Enterobacter bacteria show predominant formation of ethanol
and hydrogen [53–55].

3.5. Glycerol for biogas production

The microbial production of acetic and formic acids from glycerol is interesting with the
relationship of biogas production by anaerobic digestion. The two main pathways for biogas
production by methanogenic bacteria are based on acetate decarboxylation, or carbon dioxide
reduction by hydrogen, both produced from formic acid decomposition, cf. Eqs. (8) and (10).

Conversion of glycerol into biogas by anaerobic fermentation is an interesting option to
produce renewable energy together with waste glycerol treatment [56–58]. It is reported that
glycerol considerably enhances biogas formation by properly selected microbial population
[59]. There are also many studies for the glycerol impact on biogas yield from various sub-
strates, such as cattle dung [60–62], pig manure [57, 62, 63], activated sludge [64–66], as well
as at more complicated mixtures of cellulose and household waste [57, 58, 67].

In any case, the results are considerable enhancement of biogas yield from 180 to 400% with
respect to the reference substrate. It is typical, however, that the amounts of the added glycerol
are restricted to 1–4% wt. from the main substrate. Addition of bigger amounts of glycerol
leads to strong acidification of the broth and inhibition of methanogenesis [39, 56]. It means
that no considerable amounts of crude glycerol could be utilized as biogas.

However, it was reported recently that crude glycerol may serve as a single substrate for biogas
production with pretty high yield, i.e., 0.345 L biogas/g COD [68].

For attainment of maximum efficient biogas production different schemes of bioreactor feed
are studied, as well as choice of the reactor construction, flow organization, etc.

4. Ethanol

Ethanol is a renewable energy source produced through fermentation of sugars. Ethanol is
widely used as a partial gasoline replacement worldwide. Fuel ethanol that is produced from
corn has been used in gasohol or oxygenated fuels since the 1980s. These gasoline fuels contain
up to 10% ethanol by volume. As a result, the US transportation sector now consumes about
4540 million liters of ethanol annually, about 1% of the total consumption of gasoline. Recently,
US automobile manufacturers have announced plans to produce significant numbers of
flexible-fueled vehicles that can use an ethanol blend with 85% ethanol and 15% gasoline by

Frontiers in Bioenergy and Biofuels194



volume—alone or in combination with gasoline. Using ethanol‐blended fuel for automobiles
can significantly reduce petroleum use and exhaust greenhouse gas emission.

Ethanol is also a safer alternative to methyl tertiary butyl ether (MTBE), the most common
additive to gasoline used to provide cleaner combustion.

However, the cost of ethanol as an energy source is relatively high compared to fossil fuels. A
dramatic increase in ethanol production using the current corn starch‐based technology (or
other cereals) may not be practical for small countries because corn production for ethanol will
compete for the limited agricultural land needed for food and feed production. Additional
drawback is the increasing prices of cereals used extensively as substrate for ethanol produc‐
tion by fermentation due to the enhanced demand and thus putting the third‐world countries
in disadvantaged position.

An alternative potential source for low‐cost ethanol production is to utilize lignocellulosic
biomass (LCB) such as straw, stems, cobs, grass, sawdust, wood chips, and forestry waste. This
approach is known as “second‐generation” ethanol production. Extensive research has been
completed on conversion of lingo‐cellulose to ethanol in the past two decades [69–74].

The conversion includes two main steps: pretreatment with hydrolysis of cellulose in the LCB
to fermentable reducing sugars and fermentation of the sugars to ethanol [75].

The purpose of pretreatment is to remove lignin and hemicellulose, reduce cellulose crystal‐
linity, and increase the porosity of the materials. Physical, physical‐chemical, chemical, and
biological processes have been used for pretreatment of LCB. The hydrolysis is usually
catalyzed by cellulolytic enzymes, and the fermentation is carried out by yeasts or bacteria.
The factors that have been identified to affect the hydrolysis of cellulose include porosity
(accessible surface area) of the waste materials, cellulose fiber crystallinity, and lignin and
hemicellulose content [2, 75]. The presence of lignin and hemicellulose impedes the access of
cellulases to cellulose, thus reducing the efficiency of the hydrolysis. Removal of lignin and
hemicellulose, reduction of cellulose crystallinity, and increase of porosity in pretreatment
processes can significantly improve the hydrolysis [76, 77].

Another disadvantage of the enzymatic hydrolysis of cellulose is the strong product inhibition
of glucose and therefore the low‐product concentrations and the low‐process rate. The easier
but not environmentally friendly way is to use acid hydrolysis by sulfuric acid [78]. In this
case, higher concentrations of fermentable sugars and oligosaccharides are produced. The
usual approach is to employ a two‐step dilute acid hydrolysis, where the hemicellulose is
hydrolyzed to xylose and recovered in the first stage and a more vigorous second‐stage
hydrolysis is employed for conversion of cellulose to glucose [79].

Several different organisms have been proposed for convert fermenting sugars into ethanol.
The mostly spread ones are the yeast, Saccharomyces cerevisiae, due to its robust growth rate
and high ethanol tolerance, up to 23% [80, 81]. The effort to use thermostable yeast has shown
that they suffer from low ethanol tolerance [82].

The bacterium, Zymomonas mobilis, has been shown to produce higher ethanol yields but with
lower ethanol tolerance [82].
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After fermentation ends the “beer” containing 2–12% ethanol is subjected to distillation to
produce the azeotropic mixture of 96% (vol.) ethanol and 4% water. This mixture is not
appropriate for blending with gasoline for the water separation, particularly at low tempera‐
tures. That is why additional drying is required to reach water content of less than 1%.

The classical methods are extractive distillation by adding solvents like benzene, cyclohexane,
or ether to break the azeotrope.

Most advantageous is the molecular sieve drying technology, where the azeotrope is passed
through a bed of synthetic zeolite with uniform pore sizes which preferentially adsorb water
molecules. After the bed becomes saturated, it is regenerated by heating or evacuating the bed
to remove the adsorbed water. The most efficient technology is the vapor‐phase “pressure
swing” adsorption molecular sieve process [83]. Nowadays, this process is preferred to the
classical extractive distillation due to the clean process and the lack of side chemical products
due to extraction and distillation.

The problem to be solved is the stillage processing. Stillage is the waste after ethanol distillation
and it contains a lot of cellulose residues, nonfermented oligosaccharides, proteins, etc., with
COD reaching 70 kg/m3. The stillage amounts are between 1 L/kg feedstock for cereals and 20
L/kg for cellulosic substrate from coniferous origin.

There are different ways to treat this waste. One of them is to use it as animal feed after
evaporation and concentration. Another option is to use it as substrate for single cell protein
production with the subsequent use as animal fed of the residue. The simplest and the
straightforward method is to use stillage for biogas production by anaerobic digestion [84,
85]. According to our experience, the produced biogas has over 70% (vol.) methane content.
The COD was decreased from 70 to 1 g/L (over 98% efficiency) and after some additional
treatment the wastewater could safely discharged or used for irrigation.

There is a relatively new proposal for consolidated bioprocessing (CBP) of lingo‐cellulosic
materials consisting in cellulase production, substrate hydrolysis, and fermentation accom‐
plished in a single process by cellulolytic microbes [86].

CBP offers the potential for lower biofuel production costs due to simpler substrate processing,
low energy inputs, and higher conversion efficiencies compared to separate hydrolysis and
fermentation processes. It is an economically attractive goal for “third‐generation” biofuel
production.

4.1. Ethanol applications as fuel and raw materials

The use of ethanol as fuel depends on the oil prices on the global market and the local
regulations in the different states. However, they are other options to use the “bioethanol” as
a substrate and a raw material for chemical purposes. Besides the well‐known applications as
commodity product, chemical reactant, and solvent, ethanol may serve as a source of hydrogen
production by steam reforming [87, 88] or chemical products, like ethylacetate [89, 90].
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4.2. Problems and drawbacks

The main problems associated to ethanol production for fuel purposes are either from
economical or environmental point of view. The economic problems are related to the prices
of cereals competing its application as food. Therefore, the extensive use of cereals for
industrial or fuel purposes may be unfavorable for their alimental needs. Next, the demand of
new area for crop growing may lead to deforestation and disturbing the biodiversity and
environmental balance.

The use of second‐generation raw materials for ethanol production (cellulose‐based waste) is
restricted due to environmental reasons. Not all of the waste lingo‐cellulosic biomass could be
safely converted into ethanol without disturbing the natural ecological processes. The
extensive use of lingo‐cellulose for ethanol production could lead to deforestation and threat
on biodiversity in large area of land. That is why decision making on the size and the rate of
lingo‐cellulosic waste use for this and for any other purpose should be very carefully, after
precise and thorough environmental analysis.

5. Carbon dioxide utilization

Unfortunately, each of the described processes of biomass utilization ends with the inevitable
release of carbon dioxide, resulting of the fuel combustion. Next, crops growing in industrial
scale require considerable input of energy, most frequently taken from oil‐based fuels. That is
why abiotic carbon dioxide utilization and conversion is a major task for the future research
and technology of biomass‐based renewable fuels. There are two trends for this challenge:
utilization photosynthesis by vegetation and recycling the biomass by chemical or electro‐
chemical reduction to organic fuels, like methane.

The first one is to pass flue gases containing carbon dioxide through greenhouse area contain‐
ing algae capable to produce lipids and other organics being biofuels. Algae can be grown in
open ponds, closed‐loop systems, and photo‐bioreactors. Algae are capable of much higher
yields with lower resource inputs than other feedstock and that is why they are moved to an
own category. The following biofuels could be produced by algae: biodiesel, butanol, gasoline,
methane, ethanol, and kerosene [91, 92].

There are some problems associated with the efficiency of photosynthesis for industrial
purposes, the utilization rate of carbon dioxide, etc. Another drawback regarding algae is that
biofuel produced from them are less chemically stable than biodiesel produced from other
sources because the biofuels have unsaturated bonds in their molecules and they are subjected
to spontaneous polymerization.

Another approach is to utilize carbon dioxide as a raw material for various chemical products,
like ethers, dimethylcarbonate, as antiknocking additive, monomers for plastics production,
acyl carbonates [93]. All of these products are currently produced from petrol and that is why
carbon dioxide recycling is important to greenhouse emissions but also to the reduced use of
oil as a whole.
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On the other hand, carbon dioxide is irreplaceable tool for supercritical extraction of biologi‐
cally active and thermo‐instable substances from natural products.

An attractive approach is to reduce electrochemically carbon dioxide to methane in presence
of methanogenic bacteria [94–97] or to ethanol and acetic acid [98].

6. Conclusions

The present review demonstrates different options for biomass utilization to replace, at least
partially, the use of fossil fuels and thus to reduce the pressure of greenhouse gases emissions
and to close the carbon cycle in nature within the present times. The biomass and the waste of
biofuel production could be also utilized as raw material for various chemical manufacturing
currently produced from oil. However, in some cases this option may additionally influence
the environment and create secondary pollution. It could happen in cases of bioethanol and
biodiesel production when large area of land is required for crop growth and much energy for
crop production is requested. That is why local solutions about the use of renewable fuels
based on biomass should be made very careful after thorough environmental analysis.

More attractive option is biogas production and utilization, because it is always related to
simultaneous waste processing and energy production with closing the carbon cycle at local
level.

Of course, the most promising research is dedicated to carbon dioxide recycling turning it to
fuels or value‐added chemicals.
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