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Abstract

In this chapter, we introduce Gromov-Witten invariant, quantum cohomology, Gromov-
Witten potential, and Floer cohomology on symplectic manifolds, and in connection
with these, we describe Gromov-Witten type invariant, quantum type cohomology,
Gromov-Witten type potential and Floer type cohomology on almost contact metric
manifolds. On the product of a symplectic manifold and an almost contact metric
manifold, we induce some relations between Gromov-Witten type invariant and quan-
tum cohomology and quantum type invariant. We show that the quantum type coho-
mology is isomorphic to the Floer type cohomology.

Keywords: symplectic manifold, Gromov-Witten invariant, quantum cohomology,
Gromov-Witten potential, Floer cohomology, almost contact metric manifold, Gromov-
Witten type invariant, quantum type cohomology, Gromov-Witten type potential, Floer
type cohomology

1. Introduction

The symplectic structures of symplectic manifolds (M, w,]) are, by Darboux’s theorem 2.1,
locally equivalent to the standard symplectic structure on Euclidean space.

In Section 2, we introduce basic definitions on symplectic manifolds [1-5, 10-13] and flux
homomorphism. In Section 2.1, we recall J-holomorphic curve, moduli space of J-holomorphic
curves, Gromov-Witten invariant and Gromov-Witten potential, quantum product and quan-
tum cohomology, and in Section 2.2, symplectic action functional and its gradient flow line,
Maslov type index of critical loop, Floer cochain complex and Floer cohomology, and theorem
of Arnold conjecture.

In Section 3, we introduce almost contact metric manifolds (M, g,®,1n,&,¢) with a closed
fundamental 2-form ¢ and their product [4, 7, 8]. In Section 3.1, we study ¢-coholomorphic
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map, moduli space of ¢-coholomorphic maps which represent a homology class of dimension
two, Gromov-Witten type cohomology, quantum type product and quantum type cohomol-
ogy, Gromov-Witten type potentials on the product of a symplectic manifold, and an almost
contact metric manifold [5, 6, 13]. In Section 3.2, we investigate the symplectic type action
functional on the universal covering space of the contractible loops, its gradient flow line, the
moduli space of the connecting flow orbits between critical loops, Floer type cochain complex,
and Floer type cohomology with coefficients in a Novikov ring [7, 9, 13].

In Section 4, as conclusions we show that the Floer type cohomology and the quantum type
cohomology of an almost contact metric manifold with a closed fundamental 2-form are
isomorphic [7, 13], and present some examples of almost contact metric manifolds with a
closed fundamental 2-form.

2. Symplectic manifolds

By a symplectic manifold, we mean an even dimensional smooth manifold M*" together with a
global 2-form @ which is closed and nondegenerate, that is, the exterior derivative dw = 0 and
the n-fold wedge product w" never vanishes.

Examples: (1) The 2n-dimensional Euclidean space R?" with coordinates (X15 ees X, Yy -0 Y)y)

admits symplectic form wy = ) dx;Ady,.
i=1

(2) Let M be a smooth manifold. Then its cotangent bundle T*M has a natural symplectic form
as follows. Let 7w : T*"M — M be the projection map and xi, ...,x, are local coordinates of M.
Then g; = xjem,i = 1,2, ...,n together with fiber coordinates p,, ...,p, give local coordinates of
T*M. The natural symplectic form on T*M is given by

w = Zidqi/\dq].. (1)

(3) Every Kahler manifold is symplectic.

Darboux’s Theorem 2.1 ([6]). Every symplectic form w on M is locally diffeomorphic to the standard
form wg on R,

A symplectomorphism of (M,w) is a diffeomorphism ¢eDiff(M) which preserves the
symplectic form ¢*w = w. Denote by Sym(M) the group of symplectomorphims of M. Since
@ is nondegenerate, there is a bijection between the vector fields Xe€I'(TM) and 1-forms
w(X,)eQ! (M). A vector field XeI' (TM) is called symplectic if w(X, ) is closed.

Let M be closed, i.e., compact and without boundary. Let ¢ : R — Diff(M), t—¢, be a smooth
family of diffeomorphisms generated by a family of vector fields X;eI'(TM) via,
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d .
d_t(Pt = Xiopy, y = id. 2)

Then ¢,€Symp(M) if and only if X;€l'(TM,w) the space of symplectic vector fields on M.
Moreover, if X, Yel'(TM,w), then [X,Y|e[(TM,w) and w([X,Y],:)=dH, where
H=w(X,Y): M — R. Let H: M — R be a smooth function. Then the vector field Xy on M
determined by w(Xp,-) = dH is called the Hamiltonian vector field associated with H. If M is
closed, then Xy generates a smooth 1-parameter group of diffeomorphisms ¢},€Diff(M) such
that

d -
d—tCP;{ = Xuedp, ¢fy = id. 3)

This {(j)tH} is called the Hamiltonian flow associated with H. The flux homomorphism Flux is
defined by

1
Flux{¢',} = { w (X, -)dt. 4)

Theorem 2.2 ([6]). peSym (M) is a Hamiltonian symplectomorphism if and only if there is a homotopy
[0,1] — Sym(M), t—, such that ¢, = id, ¢, = ¢, and Flux({¢,}) = 0.

2.1. Quantum cohomology

Let (M,w) be a compact symplectic manifold. An almost complex structure is an automor-
phism of TM such that J? = -I. The form w is said to tame ] if w (v, Jv) > 0 for every v#(. The set
J:(M,w) of almost complex structures tamed by @ is nonempty and contractible. Thus the
Chern classes of TM are independent of the choice J€J;(M,w). A smooth map
¢ : (M1,];) — (Ma,],) from M; to M, is (J1,],)-holomorphic if and only if

A o]y = Jrodep, ©)

Hereafter, we denote by H,(M) the image of Hurewicz homomorphism m,M — H,(M,Z). A
(i,])-holomorphic map u : (X, z1, ...,zx) — M from a reduced Riemann surface (X, ) of genus g
with k marked points to (M, ]) is said to be stable if every component of T of genus 0 (resp. 1),
which is contracted by u, has at least 3 (resp. 1) marked or singular points on its component,
and the k marked points are distinct and nonsingular on X. For a two-dimensional homology
class AeH(M) let Mg (M, A;]) be the moduli space of (j, ])-holomorphic stable maps which

represent A.
Let B := C™(X,M; A) be the space of smooth maps
u:2—M (6)

which represent AeH,(M).
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Let us consider infinite dimensional vector bundle E — B whose fiber at u is the space
E, = Q" (X,u*TM) of smooth J-antilinear 1-forms on Y with values in u*TM. The map
0 : B— E given by

B)(u) = 5 (du -+ Jous) 7)

is a section of the bundle. The zero set of the section 9; is the moduli space Mg (M, A;]).

For an element ue M (M, A;]) we denote by

D, : Q"(Z,u*TM) = T,B — Q"' (X, u*TM) (8)

the composition of the derivative

d(9)), : TuB — T(u0)E 9)

with the projection to fiber T(,oE — Q%'(Z,u*TM). Then the virtual dimension of
M (M, Aj]) is

dimM, (M, A;]) = indexD, : Q°(Z,u*TM) — Q"' (L, u*TM)

= 20, (TM)A + n(2-2g) + (63-6) + 2k. (10)

Theorem 2.1.1. For a generic almost complex structure J€J. (M, ) the moduli space Mg (M, A;]) is
a compact stratified manifold of virtual dimension,

dimMg (M, A;]) = 2¢1(TM)A + n(2-2g) + (6g-8) + 2k. (11)
For some technical reasons, we assume that c1(A)>0 if ©(A) > 0 and A is represented by some

J-holomorphic curves. In this case, we call the symplectic manifold M semipositive. We define
the evaluation map by

ev Mg (M,A;]) — M, ev([usz1, ... zi]) = (u(z1), ..., u(zi)). (12)
Then the image Im(ev) is well defined, up to cobordism on ], as a dimM, (M, A;]) : =m-
dimensional homology class in M*.

Definition. The Gromov-Witten invariant CD]gVI;{A is defined by

OV HY (M) - Q@ (@)= [ eviea (13)
Mg,k (M, AS])
where & = PD(a)€Hyn(M*) and e is the intersection number of ev and « in M.

The minimal Chern number N of (M, w) is the integer N := min }7BA|c;(A) = A20, A€H,(M)).
We define the quantum product a * b of a€H*(M) and beH (M) as the formal sum
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axb= ) (axb),qWN (14)
AEHz(M)

where ¢ is an auxiliary variable of degree 2N and (a * b) ,€ H**"214) (M) is defined by

J(axb), = o) (a@b®r) (15)
C

for CEHjy12c,(4) (M), r = PD(C). Hereafter, we use the Gromov-Witten invariants of ¢ = 0 and
k = 3. Then the quantum product a * b is an element of

QH" := H"(M)®Q[q] (16)

where Qlg] is the ring of Laureut polynomials of the auxiliary variable g.

Extending * by linearity, we get a product called quantum product
* : QH*(M)®QH" (M) — QH*(M). (17)

It turns out that * is distributive over addition, skew-commutative, and associative.

Theorem 2.1.2. Let (M, w) be a compact semipositive symplectic manifold. Then the quantum coho-
mology (QH" (M), + , %) is a ring.

Remark. For A = 0€H;,(M), the all J-holomorphic maps in the class A are constant. Thus
(a*b), = aUb. The constant term of a * b is the usual cup product aUb.

We defined the Novikov ring /A, by the set of functions A : Hy(M) — Q that satisfy the
finiteness condition

#{A€H,(M)|A(A)#0, w(A) < ¢} < o0 (18)

for every ceR. The grading is given by deg(A) = 2c;(A).

Examples ([5]). (1) Let p€H?*(CP") and A€H,(CP") be the standard generators. There is a
unique complex line through two distinct points in CP" and so p * p" = 4. The quantum
cohomology of CP" is

o (e Qi) = — . (19)

(2) Let G(k, n) be the Grassmannian of complex k-planes in C". There are two natural complex
vector bundles C* — E — G(k,n) and C"* — F — G(k,n). Let x; = ¢;(E*) and y, = ¢;(F") be
Chern classes of the dual bundles E* and F*, respectively. Since E@®F is trivial,
Zizoxiyj—i =0,j=1,...,n. By computation x; xy, , = (—1)”_kq. The quantum cohomology of
G(k,n) is
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* . . Q[X1, ...,.Xk,q]
QH" (Gk,m);Qlg]) = e (S (20)

Let {ey, ..., e,} be an integral basis of H*(M) such that ¢y = 1€H’(M) and each ¢; has pure
degree. We introduce n + 1 formal variables ty, ...,t, and the linear polynomial a; in to, ..., t,
with coefficients in H* (M) by a; = foep + -+ + t,e,. The Gromov-Witten potential of (M, w) is a
formal power series in variables ty, ..., t, with coefficients in the Novikov ring /,,

cq(A)
;3; OO @1y s 80) T
>
21)
(ko’ .”’k ) n C1 (
T Zk 3;W®8?@A(ego®"'®eﬁ”) (ko (") g1 AN
0+ k2 e Kyt

Examples ([4]). (1) @7 (£) = L1t2t; + (etl_l_tl_%)_

@O (1) =L Y ttt+ Y Z Na(ks...k) - 2=retigf

i+j-+k=n d>0k, ..

where Ny(ky...k,) = @gi"’,dA(P2~~-P2, Lpteph).
We define a nonsingular matrix (g;) by g;; = feU ¢ and denote by (g”) its inverse matrix.
M

Theorem 2.1.3 ([4, 51). The Gromov-Witten potential ®' of (M, w) satisfies the WDV V-equations:

20,010, @M (1)g70;, 0,0 PM(E) = ey - Zatjatkat”@M(t)g“#atpatiat oM (1), (22)
v, it v, 1

where e = (_1)deg(el)(deg(e/-)+deg(ek))‘

2.2. Floer cohomology

Let a compact symplectic manifold (M, w) be semipositive. Let H;11 : M — R be a smooth 1-
periodic family of Hamiltonian functions. The Hamiltonian vector field X; is defined by
@(Xt,-) = dH;. The solutions of the Hamiltonian differential equation x () = X;(x(t)) generate
a family of Hamiltonian symplectomorphisms ¢, : M — M satisfying 4 ¢, = X;e¢, and ¢, = id
For every contractible loop x : R/Z — M, there is a smooth map u : D := }7BzeC||z|<1} — M
such that u(e*™) = x(t). Two such maps u; and u, are called equivalent if their boundary
sum(uq)#(-uy) is homologus to zero in Hy(M). Denote by (x, [u1]) = (x, [u2]) for equivalent
pairs, LM the space of contractible loops and LM the space of equivalence classes. Then
LM — LM is a covering space whose covering transformation group is H»(M) via,

A(x, [u]) = (x, [A#u]) for each A€H,(M) and (x, [u])ELM.

Definition. The symplectic action functional ay is defined by



Symplectic Manifolds: Gromov-Witten Invariants on Symplectic and Almost Contact Metric Manifolds
http://dx.doi.org/10.5772/65663

ar - LM — R, ap(x, [u]) = —ju a)—th( 1)) dt. (23)

For each element x := (x, [u])em and €Ty LM, we have

day (x fw( —Xt( )) 5)dt. (24)

Thus the critical points of ay are one-to-one correspondence with the periodic solutions of
x(1)-X; (x(t)) = 0. Denote by PHCLM the critical points of ay and by PHCLM the set of

periodic solutions.

The gradient flow lines of ay are the solutions u : R? — M of the partial differential equation

du + () <6tu—Xt(u)> —0

with conditions u(s,t + 1) = u(s, t),
lim u(s, t) = x*(t) (25)

§—skoo

for some x"€PH.

Let M(x~,x") be the space of such solutions u with x* = X #u. This space is invariant under
the shift u(s,t)—u(s +so,f) for each speR. For a generic Hamiltonian function, the space
M(x7,x") is a manifold of dimension

dimM(x7,x") = p(x7)-pE™). (26)
Here i : PH — Z is a version of Maslov index defined by the path of symplectic matrices
generated by the linearized Hamiltonian flow along x(¢).
Let p(x)-u(y) = 1. Then M(x,y) is a one-dimensional manifold and the quotient by shift
M(x,y)/R is finite. In this case, we denote by n(x,y) = #(%@) the number of connecting
orbits from x to y counted with appropriate signs.

We define the Floer cochain group FC*(M, H) as the set of all functions & : PH — Q that satisfy
the finiteness condition,

#HxePH |&(%)#0, ay (X )<c) < o (27)
for every ceR. The complex FC* (M, H) is a /A,-module with action

(A% &)(x Z/\ E(A#X). (28)

The degree k part FC*(M, H) consists of all EEFC*(M, H) that are nonzero only on elements
x€PH with p(x) = k. Thus the dimension of FC*(M, H) as a /A,-module is the number #(PH).
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We define a coboundary operator 6 : FC*(M, H) — FC*™'(M, H) by

S(E)X) = ), n(®.H)E®G). (29)
u(Y)=k

The coefficients of 6(6(&)(x)) are given by counting the numbers of pairs of connecting orbits
from x to y where p(x)-p(y) = 2 = dimM(x,y). The quotient M(X,y)/R is a one-dimensional
oriented manifold that consists of pairs counted by 6(6(£)(x)). Thus the numbers cancel out in
pairs, so that 6(6(5)) =0.
Definition. The cochain complex (FC* (M, H), 0) induces its cohomology groups
.k Pk

FrE M, H) = KO FCk (1M H) — FC : (M, H)

Imo : FC""(M,H) — FC*(M, H)

(30)

which are called the Floer cohomology groups of (M, w,H,]).

Remark. By the usual cobordism argument, the Floer cohomology groups FH*(M,H) are
independent to the generic choices of H and |. Let f : M — R be a Morse function such that
the negative gradient flow of f with respect to the metric g(-,-) = w(-,]-) is Morse-Smale. Let
H =-¢f : M — R be the time-independent Hamiltonian. If ¢ is small, then the 1-periodic

solutions of x(f)-Xpy (x(t)) =0 are one-to-one correspondence with the critical points of f.

Thus we have PH = Crit(f) and the Maslov type index can be normalized as
p(x, [u]) = indy(x)n (31)
where 1 : D — M is the constant map u(D) = x.

We define a cochain complex MC*(M; /) as the graded A,-module of all functions

£ : Crit(f)Ha(M) — Q (32)

that satisfy the finiteness condition

#(x, A)|E(x, A)#0, w(A)2c} < oo (33)

for every ceR. The A,-module structure is given by (A * &)(x,A) = )| A(B)&(x, A + B) and the
grading deg(x, A) = inds(x)—2c1(A). The gradient flow lines u : R — M of f are the solutions of
u(s) = =Vf(u(s)). These solutions determine coboundary operator

6 : MC*(M; A,) — MCHY(M; A,,) (34)

(E)(x, A) = Yy (x.y)E(y, A) (39)
Y

where n¢(x,y) is the number of connecting orbits u from x to y satisfying limu(s) = x,
§—s—o00

liT u(s) = y, counted with appropriate signs and inds(x)-inds(y) =1 .
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Definition-Theorem 2.2.1. (1) The cochain complex (MC*(M; /), 0) defines a cohomology group
_ Kerd : MC*(M; A,) — MC*"'(M; A,)
~ Im6 : MCTY (M; Ay,) — MC*(M; A)

MH*(M; Ay) : (36)

which is called the Morse-Witten cohomology of M.
(2) MH*(M; A) is naturally isomorphic to the quantum cohomology QH" (M; /).
Theorem 2.2.2 ([5]). Let a compact symplectic manifold (M, w) be semipositive. There is an isomor-
phism

®: FH*(M,H) — QH"(M; /A,) (37)
which is linear over the Novikov ring /.

Let H : M — R be a generic Hamiltonian function and ¢ : M — M the Hamiltonian symplecto-
morphism of H. By Theorems 2.2.1 and 2.2.2

FH* (M, H)~QH" (M; A, )~H"* (M)®A,, (38)

The rank of FC*(M, H) as a /A,-module must be at least equal to the dimension of H*(M). The
rank is the number #(PH) which is the number of the fixed points of ¢.

Theorem 2.2.3 (Arnold conjecture). Let a compact symplectic manifold (M, @) be semipositive. If a
Hamiltonian symplectomorphism ¢ : M — M has only nondegenerate fixed points, then

2n
#(Fix(qb))zzobj(M) (39)
]:

where bj(M) is the jth Betti number of M.

3. Almost contact metric manifolds

Let be a real (21 + 1)-dimensional smooth manifold. An almost cocomplex structure on M is
defined by a smooth (1, 1) type tensor ¢, a smooth vector field &, and a smooth 1-form 1 on M
such that for each point xeM,

(Pazc = _I + 17x®5x’ nx(éx) = 1’ (40)

where [ : TyM — TM is the identity map of the tangent space T, M.

A Riemannian manifold M with a metric tensor ¢ and with an almost co-complex structure
(p, &,n) such that

8(X,Y) = g(pX, pY) + n(X)n(Y), X, YEI(TM), (41)

is called an almost contact metric manifold.
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The fundamental 2-form ¢ of an almost contact metric manifold (M, g, ¢, &, 1) is defined by
(X, Y) = g(X, pY) (42)
for all X, YeI'(TM). The (2n + 1)-form ¢"An does not vanish on M, and so M is orientable. The
Nijehuis tensor [8, 11] of the (1,1) type tensor ¢ is the (1,2) type tensor field N, defined by
Ny (X, Y) = [pX, pY]-[X, Y]-0[pX, Y]-¢[X, pY] (43)

for all X, YeI'(TM), where [X, Y] is the Lie bracket of X and Y. An almost cocomplex structure
(p,&,m) on M is said to be integrable if the tensor field N, =0, and is normal if

Ny +2dn®¢& = 0.

Definition. An almost contact metric manifold (M, g, ¢, 7, &, @) is said to be

1. almost cosymplectic (or almost co-Kahler) if dp = 0 and dn =0,

2. contact (or almost Sasakian) if ¢ = dn,

3. an almost C-manifold if dp = 0, dn=0, and dn#o,

4. cosymplectic (co-Kéahler) if M is an integrable almost cosymplectic manifold,
5. Sasakian if M is a normal almost Sasakian manifold,

6

a C-manifold if M is a normal almost C-manifold.

An example of compact Sasakian manifolds is an odd-dimensional unit sphere $****, and the

one of the co-Kahler (almost cosymplectic) manifolds is a product MS' where M is a compact
Kéhler (symplectic) manifold, respectively.

Let (M3, ¢, 0,,1n,,&1) and (M3, g5, 0,,1,, &) be almost contact metric manifolds. For the
product M := M{M,, Riemannian metric on M is defined by

g (X171, (X2, Y2) ) = 81(X1, Xa) + &, (Y1, Ya). (44)

An almost complex structure on M is defined by

JY) = (93(X) + np(VEr @, (V) (X)E ) (45)

Then J* = -I and the fundamental 2-form ¢ on M is ¢ = ¢, + ¢, + 7,1, If ¢, ¢, and 1, and
1, are closed, then ¢ is closed. Thus we have

Theorem 3.1. Let (M%’“H,gl, @1.11»&1) be almost contact metric manifolds, j = 1,2, and (M, g, ,])
be the product constructed as above.

1. If¢,andn; i=1,2, are closed, then ¢ is closed.

2. ] is an almost complex structure on M.
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3. IfM,; i=1,2, are cosymplectic, then M is Kihler.

Let (M%”l, gy,J1) be a symplectic manifold, and (M%”ZH, 25> Po, 1y, &) be an almost contact
metric manifold. Then & =1, =0, and w1 = ¢, on M;.

Theorem 3.2. Let (M, g, ¢, 1, &) be the product constructed as above.
1. If My is contact, then M is an almost C-manifold.
2. If My is a C-manifold, then M is an almost C-manifold.

3. If My is almost cosymplectic, then M is almost cosymplectic.

3.1. Quantum type cohomology

In [10, 11] we have studied the quantum type cohomology on contact manifolds. In this
section, we want to introduce the quantum type cohomologies on almost cosymplectic, con-
tact, and C-manifolds.

Let (M*',¢,0,n,&) be an almost contact metric manifold. Then the distribution
$ = {XeTM|n(X) = 0} is an n-dimensional complex vector bundle on M.

Now fix the vector bundle $— M. As the symplectic manifolds, a (1,1) type tensor field
¢ : 9 — H with ¢? = I is said to be tamed by ¢ if ¢(X,pX) >0 for XeH\{0} is said to be
compatible if p(pX,pY) = p(X,Y).

Assume that the almost contact metric manifold M has a closed fundamental 2-form ¢, i.e.,
dp = 0. An almost contact metric manifold M with the ¢ is called semipositive if for every
Aemy (M), p(A) >0, c1($)(A)=3-n, then ¢1($)(A) > 0 [13]. A smooth map u : (X,]) — (M, @)
from a Riemann surface (%, ;) into (M, @) is said to be ¢-coholomorphic if duej = @edu.

Let AeH,(M;Z) be a two-dimensional integral homology class in M. Let M 3(M; A, @) be the
moduli space of stable rational ¢-coholomorphic maps with three marked points, which
represent class A.

Lemma 3.1.1. For a generic almost complex structure ¢ on the distribution, C" — H — M, the
moduli space Mo 3(M; A, @) is a compact stratified manifold with virtual dimension 2c1($))[A] + 2n.

Consider the evaluation map given by

ev: Mos3(M;A, ) — M3, (46)

ev(L;z1,20,23,U) = (u(zl),u(zz),u(23)). (47)

We have a Gromov-Witten type invariant given by

s H (M) — Q (48)

oM@ = [ evi(a) = ev.[Mos(M; A, )] - PD() (49)
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which is the number of these intersection points counted with signs according to their orienta-
tions.

We define a quantum type product * on H* (M), for a€H*(M) and peH (M),

axB= ), (axp) gt @AM, (50)

AeH,(M)

where N is called the minimal Chern number defined by

< c1(9),H2(M) >= NZ (51)
The (a * B) ,eH" 214 (M) is defined for each CEHy o, (9)[4] (M),

g (axB), = Dy3" " (a®B®y).y = PD(C). (52)

We denote a quantum type cohomology [11, 13] of M by

QH" (M) := H"(M)®Qlq] (53)
where Q[g] is the ring of Laurent polynomials in g of degree 2N with coefficients in the rational
numbers Q. By linearly extending the product * on QH" (M), we have

Theorem 3.1.2. The quantum type cohomology QH" (M) of the manifold M is an associative ring

under the product .
Let (M%”’ .81-J1, w1) be a symplectic manifold and (Mianrl 282> Pas 125 &2, P,) be an either almost

cosymplectic or contact or C-manifold.

Let the product (MZ”H, 2, 9,1, &,¢) be construct as Theorem 3.2 where n = 1y + n,. Now we
will only consider the free parts of the cohomologies. By the Kiinneth formula,

H*(M)~H"(M;)®H"(M>) in particular, Hp (M)~H, (M (H1 (M1)®H1(M>))®H> (M>)).
Assume that a two-dimensional classA = A; + Ay€H,(M;)®H,(2)CH, (M).

Lemma 3.1.3. Let (M, g,9,1,&, @) be the product M = MM, constructed as above. For a generic
almost cocomplex structure ¢ on M

(1) the moduli space Mo 3(M; A, @) is homeomorphic to the product
Moz (M, A1, ]1) Mo,3(Ma, Az, ¢), (54)
dimMo,3(M,A,(p) = Z[Cl(TMl)(Al) + 1 (5732)(142)] +2(nm + 712). (55)
Theorem 3.1.4. For the product (M,g,¢.n,& ¢) = (M1,8,]1,@1)(Ma, 8. @015, E20Dy),  if

A=Ay + AyeHy(M;)®H,(My)CHy (M), then the Gromov-Witten type invariants satisfy the follow-
ing equality
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M, A, _ +M1,A1.]; My, Az, ¢,
(Do,s —q)0,3 'q)0,3 : (56)

The complex (17 + ny)-dimensional vector bundle
TM1®$2, — M = MiM, (57)

has the first Chern class ¢; (TM1©%,) = ¢1(TMy) + c1($2).
The minimal Chern numbers N; and N; are given by N1Z =< ¢1(TMj), H2(M;) > and

N>Z =< ¢1 (sz),Hz(Mz) > . (58)

For cohomology classes
a = a;@eH" (M) ®H" (M,)cHN (M), (59)
B = B1®B,€H" (M1)®H" (Ma)cH' (M), (60)

ki + ko = k, the quantum type product a * f§ is defined by

axp = Z (a1 * 51)A1 qcl(Al)/M@(aZ * .Bz)Aqu1(A2)/N2 (61)

A1€H, (M)
Ar€Hy(M2)

where g, is a degree 2N; auxiliary variable, i=1,2, and the cohomology class

(i * B;) o, €EHp, 11,20, (4,) (M) is defined by the Gromov-Witten type invariants as follows:
M, Ai, p;
J (@i« Bi)a, =Py 3 Y (i ®B;®y;) (62)

i

where C;€Hy, 11, 2c,(a,) (M), ¥; = PD(C;) and ¢, := ];,i = 1,2, respectively.

i

The quantum type cohomology of M is defined by the tensor product
QH* (M) = H*(M)®Qlq, 4, (63)

where Q[g,,¢,] is the ring of Laurent polynomials of variables g, and g, with coefficients in Q.
Extend the product * linearly on the quantum cohomology QH"(M); similarly, we define the
quantum cohomology rings

{ QH*(My) = H" (M1)®Qq,,
(64)

QH" (M) = H" (M2)®Qg,]-

Theorem 3.1.5. There is a natural ring isomorphism between quantum type cohomology rings
constructed as above,

QH" (M) = QH" (M1)®QH" (My). (65)

Let (M, g, @, ®) be the product of a compact symplectic manifold (M3",g,,];,@1) and an either

almost cosymplectic or contact or C-manifold (Mg”ZH, Q2> Pas My €2,P,). We choose integral
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bases, e, e1,...,ex, of H*(M;) and fo’fp“-’sz of H*(M;) such that eozleHO(Ml),

fo = 1€H"(M,) and each basis element has a pure degree. We introduce a linear polynomial
of k; + 1 variables fo, 1, ..., t,, with coefficients in H* (M)

a; := toep + e + -+ + t ek, (66)
and a linear polynomial of k, + 1 variables s, s1, -+, 5k, with coefficients in H*(M;)
as := Sof g +51f1 + =+ + Sk, f, - (67)
By choosing the coefficients in @, the cohomology of M is
H*(M)=H*(M1)®H"(M;). (68)

Then, H*(M) has an integral basis {e;®f.|i =0, ..., k1,j =0, ..., ko}. The rational Gromov-Witten
type potential of the product (M,w) is a formal power series in the variables
{ti,sjli=0,...,k1,j =0, ..., ko} with coefficients in the Novikov ring A, as follows:

o

wi(t,s) ZZ (DM 4P (1,@a, ..., 0:Qas)e A

) ) (69)

QMiAnT 2 o 1 4.0, J%

_ZZ Oml t""’at)e 1 .ZZ_CDO,MZ (lls,...,as)e 2

Aq ml Ay my mz!
=Wy (1) - W (s).

Theorem 3.1.6. The rational Gromov-Witten type potential of (M, @) is the product of the rational
Gromov-Witten potentials of My and M,, that is,

Wil (t,5) = Wit (1) - W (). (70)

3.2. Floer type cohomology

In this subsection, we assume that our manifold (MZ”“, 3. @,1,&,¢) is either a almost
cosymplectic, contact, or C-manifold.

Let H; = Hip1 : M — R be a smooth 1-periodic family of Hamiltonian functions. Denoted by
X; : M — TM the Hamiltonian vector field of H,.

The vector fields X; generate a family of Hamiltonian contactomorphisms 1, : M — M satisfy-
ing &1, = X;oy, and ¢, =

Leta : R/Z — M be a contractible loop, then there is a smooth map u : D — M, defined on the
unit disk D = {z€C||z|[<1}, which satisfies u(e*™) = a(t). Two such maps u,us : D — M are
called equivalent if their boundary sum u;#(-u,) : S* — M is homologus to zero in Hy(M).
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Let @ := (a, [u]) be an equivalence class and denoted by LM the space of equivalence classes.

The space LM is the universal covering space of the space LM of contractible loops in M whose
group of deck transformation is H,(M).

The symplectic type action functional ay; : LM — R is defined by

1
ani(a, [u]) = —g u*qb—{ H, (a(t)>dt, (71)

then satisfies ay (A#a) = ap(a)-¢p(A).

Lemma 3.2.1. Let (M, ¢) the manifold with a closed fundamental 2-form ¢ and fix a Hamiltonian
function HEC™(R/ZM) . Let (a, [u])eLM and VeT, LM = C*(R/Z,a*TM). Then

1

(darg) g ) (V) = { o (a'—XHt (a), v) dt. (72)

We denote by P(H)CLM the set of critical points of a; and by P(H)CLM the corresponding set
of periodic solutions.

Consider the downward gradient flow lines of ay with respect to an L>-norm on LM. The
solutions are

u:R* = M, (s, t)~u(s, t) (73)
of the partial differential equation
8,() + p(u) (u=Xi(u) ) = 0 (74)
with periodicity condition
u(s,t+1) =u(s,t) (75)
and limit condition
limu(s,t) = a(t), lim u(s,t) = b(t), (76)

oo s

where a,beP(H).
Let M(a,b) := M(a,b, H, ) be the space of all solutions u(s, ) satisfying (74)~(76) with
atu =b. (77)

The solutions are invariant under the action u(s, t)—u(s + r, t) of the time shift reR. Equivalent
classes of solutions are called Floer connecting orbits.
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For a generic Hamiltonian function H, the space M(a,b) is a finite dimensional manifold of
dimension

dimM(@,5) = u(a)-p(b). (78)
where the function u: P(H) — Z is a version of the Maslov index defined by the path of
unitary matrices generated by the linealized Hamiltonian flow along a(f) on D .

If H=H is a C*-small Morse function, then a critical point (a, [u]) of H; is a constant map
u(D) = a with index indy(a).

If u(a)-u(b) = 1, then the space M(a,b) is a one-dimensional manifold with R action by time
shift and the quotient M(a,b)/R is a finite set. In fact, u(a)em; (U(n))~Z.

If u(@)-u(b) =1, &,BEP(I:I), then we denote
n@,b) = #<L§§’E)), (79)

where the connection orbits are to be counted with signs determined by a system of coherent

orientation s of the moduli space M) (a,b). These numbers give us a Floer type cochain com-
plex.

Let FC*(M, H) be the set of functions

&:PH) —R (80)

that satisfy the finiteness condition

#HxeP(H)|&(X)#0, ap (¥)<c} < o (81)
for all ceR.
Now we define a coboundary operator

o : FCK(M, H) — FC*"'(M, H), (82)

(@@= 2 n@b)E®) (83)

p@)=pb)+1

where EeFCK(M, H), u(a) = k + 1 and u(b) = k.

Lemma 3.2.2. Let (M, @) be a semipositive almost contact metric manifold with a closed functional 2-
forms. The coboundary operators satisfy 66" = 0, for all k.

Definition - Theorem 3.2.3. (1) For a generic pair (H, ) on M, the cochain complex (FC*, ) defines
cohomology groups
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Kerd
Imd

FH' (M, ¢, H, ) := (84)

which are called the Floer type cohomology groups of the (M, ¢, H, @).

(2) The Floer type cohomology group FH*(M,$,H, ) is a module over Novikov ring Ay and is
independent of the generic choices of H and .

4. Quantum and Floer type cohomologies

In this section, we assume that our manifold M is a compact either almost cosymplectic or
contact or C-manifold. In Section 3.1, we study quantum type cohomology of M and in Section
3.2 Floer type cohomology of M. Consequently, we have:

Theorem 4.1. Let (M, g, 9,1, &, ¢) be a compact semipositive almost contact metric manifold with a
closed fundamental 2-form ¢. Then, for every regular pair (H, ), there is an isomorphism between
Floer type cohomology and quantum type cohomology

@ : FH* (M, ¢, H, ) =QH" (M, Ay). (85)

Proof. Let h : M — R be a Morse function such that the negative gradient flow of /1 with respect to
the metric d)( - go()) + n®n is Morse-Smale and consider the time-independent Hamiltonian

H, := —eh, teR. (86)

If ¢ is sufficiently small, then the 1-periodic solutions of
a(t) = Xi(a(t)) (87)

are precisely the critical point of #. The index is
u(a,u,) = n—indy(a) = indp,(a)-n (88)
where u, : D — M is the constant map u,(z) = a.

The downward gradient flow lines u : R — M of h are solutions of the ordinary differential
equation

u(s) = J(u)X(u). (89)
These solutions determine a coboundary operator

5 : C* (M, h, Ay) — C* (M, h, Ay). (90)

This coboundary operator is defined on the same cochain complex as the Floer coboundary 6,
and the cochain complex has the same grading for both complex C*(M, h,A¢), which can be
identified with the graded /A, module of all functions
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£ : Crit(h)Ha(M) — R (91)

that satisfy the finiteness condition
#{(a, A)|E(a, A)#0, p(A)=c) < o0 (92)

for all ceR. The A,-module structure is given by

(v &)(a,A) Zv &(a, A+ B), (93)

the grading is deg(a, A) = indj(a)-2¢1(A), and the coboundary operator 6 is defined by
(6&)(a, A) Znh (a,b)&(b, A), (a, A)eCrit(h)Hy (M), (94)

where ny,(a,b) is the number of connecting orbits from a to b of shift equivalence classes of
solutions of

{u(s) + Vu(s) =0, limu(s) = a, lim u(s) = b, (95)

S—»—00 §— o0

counted with appropriate signs.

Here we assume that the gradient flow of  is Morse-Smale and so the number of connecting
orbits is finite when indj(a)-ind;(b) = 1. Then the coboundary operator 6 is a /Ag-module
homomorphism of degree one and satisfies 56 = 0. Its cohomology is canonically isomorphic
to the quantum type cohomology of M with coefficients in /.

For each element aeP( ) we denote M(a,H, @) by the space of perturbed ¢@-cohomomorphic
maps u : C — M such that u(re?™) converges to a periodic solution a(t) of the Hamiltonian
system H; as r — . The space M (a, H, ¢) has dimension n—u(a). Now fix a Morse function
h: M — R such that the downward gradient flow u : R — M satisfying (95) is Morse-Smale.
For a critical point beCrit(h) the unstable manifold W*(b,h) of b has dimension ind;(b) and
codimension 2n-indy (b) in the distribution D.

The submanifold M (b,a) of all ueM(a, H, ) with u(0)eW"(b) has dimension
dimM (b,a) = ind; (b)-u(a)-n. (96)

If ind (b) = u(a) + n, then M(b,a) is Ozero-dimensional and hence the numbers n(b,a) of its
elements can be used to construct the chain map defined by

@ : FC*(M,H) — C (M, h,Ay) (97)
(@E)(B,A)A ), nl(b,a)é(Ata) (98)
indj, (b)=u(@)+n

which is a /Ay-module homomorphism and raises the degree by n. The chain map ® induces a
homomorphism on cohomology
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@ : FH' (M, Ay) — H*(M,h,Ay) = Ifrir; ~QH" (M, Ay). (99)

Similarly, we can construct a chain map,
W C"(M,h,Ay) — FC*(M, H) (100)
(We)(@) = 2 (A, DE(b, A). (101)

u(a)+n=indy (b)-2c; (A)

Then @-¥ and We® are chain homotopic to the identity. Thus we have an isomorphism .

We have studied the Gromov-Witten invariants on symplectic manifolds (M, w,]) using the
theory of J-holomorphic curves, and the Gromov-Witten type invariants on almost contact
metric manifolds (N, g,¢,n,&,¢) with a closed fundamental 2-form ¢ using the theory of ¢-
coholomorphic curves. We also have some relations between them. We can apply the theories
to many cases.

Examples 4.2.

1. The product of a symplectic manifold and a unit circle.

2. The circle bundles over symplectic manifolds.

3. The almost cosymplectic fibrations over symplectic manifolds.
4

The preimage of a regular value of a Morse function on a Kahler manifold.

o

The product of two cosymplectic manifolds is Kahler.
6. The symplectic fibrations over almost cosymplectic manifolds.

7. The number of a contactomorphism is greater than or equal to the sum of the Betti
numbers of an almost contact metric manifold with a closed fundamental 2-form.

Examples 4.3. Let N be a quintic hypersurface in CP* which is called a Calabi-Yau threefold.
Then N is symply connected, ¢;(TN) =0 and its Betti numbers by =bs =1, by =bs =0,
bz = b4 =1and b3 = 204.

Let A be the standard generator in Hy(N) and h€H?*(N) such that h(A) = 1. The moduli space
Mo.3(N,A) has the dimension zero. The Gromov-Witten invariant CD(I)\{ ’3A(111,a7_,a3) is nonzero
only when deg(a;) =2, i=1,2,3. In fact, (Df)\{ ’3A (h,h,h) =5 [4, 5]. The quantum cohomology of
Nis QH"(N) = H*(N)®/ where A is the universal Novikov ring [5].

Let (N,g,,w1,J;) be the standard Kahler structure on N and (Sl, 9P, = 0,1, =d0,

& =45, ¢, = 0) the standard contact structure on S'. Then the product M = NS' has a canon-
ical cosymplectic structure (M, g, 9,1, &, @) as in Section 3. The quantum type cohomology of
Mis
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QH" (M) = QH"(N)®QH"(S") (102)

Let 1, : N — N be a Hamiltonian symplectomorphism with nondegenerate critical points.
6

Then #Fix(1,)>) b;(N) = 208.
i=0

Let i, : M — M be a Hamiltonian contactomorphism with nondegenerate critical points. Then
7

#Fix(1,)>) bi(M) = 416.
i=0
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