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Abstract

The heart undergoes extensive morphological, metabolic, and energetic remodeling in
response  to  inherited,  or  familial,  hypertrophic  cardiomyopathies  (FHC).  Myocyte
contractile  perturbations  downstream  of  Ca2+,  the  so-called  sarcomere-controlled
mechanisms, may represent the earliest indicators of this remodeling. We can now state
that the dynamics of cardiac contraction and relaxation during the progression of FHC
are governed by downstream mechanisms, particularly the kinetics and energetics of actin
and myosin interaction to drive the trajectory of pathological cardiac remodeling. This
notion is unambiguously supported by elegant studies above linking inheritable FHC-
causing mutations to cardiomyopathies, known to disturb contractile function and alter
the  energy  landscape  of  the  heart.  Although  studies  examining  the  biophysical
properties of cardiac myocytes with FHC-causing mutations have yielded a cellular and
molecular understanding of myofilament function, this knowledge has had limited
translational success. This is driven by a critical failure in elucidating an integrated and
sequential  link  among the  changing  energy  landscape,  myofilament  function,  and
initiated signaling pathways in response to FHC. Similarly, there continues to be a major
gap  in  understanding  the  cellular  and  molecular  mechanisms  contributing  to  sex
differences in FHC development and progression. The primary reason for this gap is a
lack  of  a  “unifying”  or  “central”  hypothesis  that  integrates  signaling  cascades,
energetics, sex and FHC.
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1. Introduction to inherited cardiomyopathies

Cardiomyopathies are a major underlying cause of heart failure (HF) and often have a significant
heritable component. Although the origin of the inherited trigger can be traced to a single
mutation  in  a  sarcomeric  gene,  the  development  and progression  of  a  cardiomyopathic
phenotype depends on a complex interaction between initiated cellular signaling pathways,
environmental stressors, and individual genotype (including sex/gender). Inherited, or familial,
cardiomyopathy (FHC) is a disease of the cardiac sarcomere and can be classified as either a
hypertrophic (HCM), dilated (DCM), or restrictive (RCM) cardiomyopathy. Inherited cardio-
myopathies, FHC, are relatively common in the general population with a penetrance of 1:500 [1].

Although subjects with an identified genotype are at risk for sudden cardiac death (SCD) or
HF, it is clinically heterogeneous with severe, mild, or no symptoms. For example, subjects
with severe left ventricular (LV) hypertrophy defined as LV thickness >30 mm are at increased
risk for SCD [2]. However, subjects with inherited hypertrophic cardiomyopathy (HCM) may
present with little LV hypertrophy but yet still be at risk for SCD and HF. Unlike subjects with
non-inherited LV hypertrophy, HCM patients may present with cardiac dysfunction that is not
proportional to LV thickness [3–5].

HCM is highly progressive and often transitions to DCM. As the name suggests, DCM is
characterized by a dilated LV hypertrophy accompanied by worsening cardiac function [6].
Although primary DCM is less common than HCM, DCM is the most genetically heterogeneous
[6]. This is best illustrated by findings that DCM can be linked to genes that are also linked to
HCM mutations further highlighting the complex nature of FHC.

HCM with abnormal LV diastolic filling associated with intracellular or interstitial infiltration
and/or fibrosis in the absence of LV dilation has been described as a RCM. The prevalence of
primary RCM is not known, but RCM is less common than both HCM and DCM with poorer
clinical outcomes [5]. Again, co-existent HCM and RCM in the same family illustrates the
importance of elucidating the pathogenesis that is not entirely based on genotype. Our ability
to develop novel approaches or therapies for FHC will depend on a clear understanding of the
genotype-to-phenotype interrelationship and potentially translate into personalized treatment
options. Since the primary genetic defect in HCM, DCM, and RCM impacts the biophysics of
the cardiac sarcomere, we discuss the genotype-phenotype relationship for inherited cardio-
myopathies focusing on cardiomyocyte kinetics and energetics in a sex dimorphic manner.

2. Genotype to phenotype

Approximately 100 genes are genetically linked to FHC with most gene mutations encoding
for sarcomeric proteins including β-myosin heavy chain (β-MYHC), cardiac troponin T (cTnT),
cardiac myosin binding protein C (cMyBP-C), α-tropomyosin (α-Tm), cardiac troponin I (cTnI),
myosin regulatory light chain (RLC), and titin [6–8]. FHC follows an autosomal dominant
pattern of inheritance and rarely arises from de novo mutations; although founder mutations
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are less common, some have been traced to a common ancestor in certain populations and
countries [7]. The first identified HCM-causing mutation is a missense in the thick filament
gene (MYH7) encoding β-MyHC [9]. Since the initial discovery, hundreds of MYH7 mutations
have been genetically linked to HCM and account for 30–40% of all inherited FHCs.

Mutations in MYBPC3, a thick filament gene encoding cMyBP-C, is genetically linked to 40–
50% distinct HCM-causing mutations, making MYH7 and MYBPC3 the most common genes
underlying FHC-based disease [3, 10]. Despite the predominance of these gene mutations in
HCM, MYH7 mutations typically result in amino acid substitutions whereas MYBPC3 variants
disrupt the reading frame, leading to a truncated cMyBP-C protein and, often, haploinsuffi-
ciency [3]. Considering the role of β-MyHC in cardiomyocyte force generation, a missense
mutation within a known critical domain of the MYH7 gene can be more directly linked to a
contractile deficit, usually through a gain-of-function and increased energy cost [11–13]. On
the other hand, haploinsufficiency leads to loss of protein or accumulation of truncated protein
making it difficult to mechanistically link the mutation to a biophysical effect. In general,
patients with MYBPC3 mutations present with less severe or delayed-onset HCM compared
to patients with MYH7 mutations [3, 6, 10]. Further illustrating profound genetic heterogeneity
in FHC-causing mutations, MYH7 and MYBPC3 mutations have been linked to inherited DCM
as well, even when the mutation is within the same functional domain [2, 6].

Less frequent FHC-causing mutations exist in other thick filament proteins as well. A third
thick filament gene linked to FHC, although at a much lower prevalence, is MLC2, which
encodes for myosin regulatory light chain (RLC). RLC associates with β-MYHC to impact the
kinetics of actin-myosin interaction and contractile dynamics [14, 15]. Clinical presentation in
patients with MLC2 mutations is similar to other patients with thick filament mutations,
including the phenotypic diversity. Mutations in thin filament proteins (cTnT, α-Tm, and cTnI)
have been linked to both HCM, DCM, and RCM [2]. Interestingly, mutations in TNNT2 (cTnT)
and TPM1 (α-Tm) are potentially more dangerous but with a variable penetrance [4]. For
example, subjects are characterized as having “mild hypertrophy” and “less fibrosis”, with a
significant percentage of SCD patients displaying little to no phenotype [4].

From the above summary, it is clear that a clinical phenotype cannot be categorically assigned
to a particular FHC genotype. Still, as a disease of the sarcomere, the prevailing assumption is
that FHC-causing mutations perturb the biophysics of muscle contraction. As more sophisti-
cated techniques are available to precisely locate the origins of biophysical abnormalities,
investigators remain tasked with detailing the interrelationship between genetic aberrations
and basic cardiac sarcomere biology.

3. Sarcomere contractile dynamics

Force generation in a sarcomere is produced by cyclic interactions between myosin and actin,
process that is energetically driven by ATP hydrolysis. The myosin-actin interaction is
regulated by the tropomyosin and troponin complex; calcium (Ca2+) binding to the troponin
complex initiates a macromolecular rearrangement on the thin filament and permits myosin
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binding to actin [2, 14]. Contractile perturbations downstream of Ca2+ cycling, the so-called
sarcomere-controlled mechanisms, represent the earliest indicators of HF [16]. We can now
state the dynamics of cardiac contraction and relaxation during the progression of HF are
governed by downstream mechanisms, particularly the kinetics and energetics of the cross-
bridge cycle to drive the trajectory of pathological cardiac remodeling [17]. This notion is
unambiguously supported by elegant studies above linking inheritable FHC-causing muta-
tions to cardiomyopathies, known to disturb contractile function and alter the energy land-
scape of the heart.

The ability to maintain contractile force at a given cytosolic Ca2+ concentration (Ca2+-sensitive
tension development) provides an index of cardiac contractility and is often used to charac-
terize the impact of FHC-causing mutations on contractile function [18–21]. While Ca2+-
sensitive tension development indexes contractility, the rate of cross-bridge (actin-myosin
interaction) binding and unbinding can impart knowledge regarding the amount of force that
can be extracted from ATP [22].

Figure 1. Two-state model of cross-bridge kinetics states that the rate of cross-bridge transition from non-force-generat-
ing (detached) to force-generating (attached) is described by f. Similarly, the rate of cross-bridge transition from force
generating (attached) to non-force-generating (attached) is described by g. The reverse rate constants, noted as f- and g-,
are very small. ktr can be defined by f+ + g+.

The time course of Ca2+-activated tension development following mechanical perturbation
(release-restretch protocol) reveals information regarding the kinetics of cycling cross-bridges.
Specifically, the rate constant for this time course (ktr) describes the isometric cross-bridge
turnover rate, i.e., the sum of the apparent rates of cross-bridges entering and leaving force-
generating states using a two-state model system of cross-bridge kinetics [23, 24]. This
maneuver can be applied to the muscle at the end of a contraction to measure apparent rate of
tension redevelopment (ktr). The recovery of tension toward the isometric steady-state level
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fitted to a single exponential yields the rate constant ktr. We and others define the rate constant
ktr according to the two-state model system. Cross-bridge kinetics of the two-state system can
be described by rate constants, f and g, characterizing the making and breaking of cross-
bridges [24, 25]. Using this two-state model, ktr can be defined by f+ + g+ (Figure 1).

Figure 2. The rate of NADH absorbance is proportional to ATP consumption during isometric steady-state force devel-
opment (top panel). The ATPase rate is plotted against force (bottom panel). The slope of this relationship represents
the energetic cost (ATPase) of tension generation. Using a two-state model of cross-bridge kinetics, the slope of this line
represents the rate of cross-bridge detachment and thus a measure of g. This figure was adapted with permission from
Rundell et al. [117].

We have also exploited an apparatus to simultaneously measure force and ATP utilization [26,
27]. Briefly, the bath used for the ATPase assay allows transmission of near-UV light for the
measurement of NADH absorbance. The ATPase activity of demembranated cardiac muscle
strips or trabecula is measured on-line by means of an enzyme-coupled assay [26, 27].
Formation of ADP by the muscle is stoichiometrically coupled first to the synthesis of pyruvate
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and ATP from phosphoenolpyruvate, a reaction that is catalyzed by the enzyme pyruvate
kinase, and subsequently to synthesis of lactate, a reaction that is catalyzed by the enzyme
lactate dehydrogenase and during which NADH is oxidized to NAD+. The breakdown of
NADH is determined photometrically by measuring the absorbance of 340 nm near-UV light
that is projected through the bath just beneath the preparation. Once the steady-state tension
is reached, the first time derivative of this signal, which is proportional to the rate of ATP
consumption in the assay bath, is determined off-line by linear regression of the sampled data
using custom-designed software (Figure 2). The rate of ATP consumption, normalized to fiber
volume, is plotted against force (Figure 2). This slope reflects the tension cost of contraction
[26, 28]. Using the two-state model, this value approximates the rate of detachment (g). The
combined measurements of ktr and tension cost can give determinations of cross-bridge
attachment (f) and detachment (g) [26].

4. ATP shuttling in the cardiac sarcomere

The hypertrophic heart has long been characterized as energy starved [12], and central to this
energy remodeling is an alteration in the production, use, and delivery of ATP. Given the
physical barriers to rapid diffusion within the myocyte, the cardiomyocyte utilizes key
enzymes and a phosphotransferase system to optimize efficient transfer of phosphoryl groups
to ADP [29]. Speaking directly to its significance, disturbances in the creatine kinase (CK)/
adenylate kinase (AK) phosphotransfer system are observed early in CVD and are stronger
predictors of heart failure mortality than functional status [30]. The molecular underpinnings
of the metabolic derangements reside in changes in the mediators of ATP generation, utiliza-
tion, and delivery. As seen in Eq. (1) creatine kinase (CK) reversibly and rapidly converts ADP
and phosphocreatine (PCr) to ATP and creatine (Cr) [31].

+ ® +
CK

ADP PCr ATP Cr (1)

In parallel reactions [Eqs. (1) and (2)], a network of adenylate kinase (AK) enzymes mediates
a complementary intracellular phosphotransfer promoting high-energy Pi transfer from ADP
to ATP (leaving an increasing AMP pool) via distinct AK isoforms with different cellular
localizations [32, 33].

+ ® +
AK

ADP ADP ATP AMP (2)

The diseased heart will preferentially recruit phosphotransferase reactions to keep a constant
pool of ATP. As cardiac disease ensues, total Cr and PCr decreases and results in elevated ADP
and AMP even if ATP is maintained [11]. Further along the disease process, CK activity is
reduced leading to a gradual decrease in cellular ATP [34]. Considering the relatively high rate
of ATP synthesis in the heart [12], a gradual decrease in ATP can cause disproportionate
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energetic deficiencies [30, 35]. Such changes in energetics limit contractile reserve and the
ability to power myocellular ATPases necessary to support contractile function. Given the
physical barriers to rapid diffusion within the myocyte, physical association of CK, AK, and
other key enzymes in the phosphotransferase system optimizes efficient transfer of phosphoryl
groups to ADP [29]. These phosphotransfer microdomains are localized to sarcomeric
myofibrils and act as hubs for energetic “sensing” [32, 36]. During acute or chronic ATP supply–
demand imbalance, like the one that occurs during cardiac disease, AK amplifies the amount
of AMP within these microdomains to preserve ATP levels for contraction [33].

5. Biophysical impact of inherited cardiomyopathies

5.1. Mutations in β-MyHC

The R403Q point mutation in β-MyHC is the first identified mutation leading to HCM with a
heritable component [9]. The R403Q mutation resides in the actin-binding domain and in vitro
analysis of R403Q myosin kinetics yields inconsistent results such as reduced [37] or enhanced
[38] actin filament velocity and reduced [39] or enhanced [40] actin-activated ATPase. On the
other hand, human myofibril or multicellular R403Q samples consistently show accelerated
tension generation and increased ATP hydrolysis rates [20, 41]. In a recent study, we demon-
strated that R403Q male fibers develop tension at an increased energy cost of contraction than
WT fibers. This is consistent with a previous study that directly measured cross-bridge kinetics
in cardiac myofibrils isolated from a patient carrying the R403Q mutation [41]. In addition,
R403Q male cardiac trabeculae show an elevated ktr at submaximal tension, again consistent
with the kinetics of human R403Q-expressing myofibrils [41]. These observations show that
less mechanical energy can be extracted from ATP suggesting an increase in the energy cost
of tension generation in R403Q fibers.

Yet, the role that Ca2+-sensitive tension development as an index of cardiac contractility plays
in the progression of HCM is unclear. Studies consistently show that Ca2+-sensitive tension
development of cardiac fibers is not different between young (6–20 weeks) WT and R403Q
hearts [42–44] even though previous studies show that intact hearts from male mice expressing
the R403Q mutation show greater contractility compared to controls [45, 46]. We previously
showed that cardiac trabeculae from 10-month-old male R403Q trabeculae were not different
from wild-type fibers [21]. At the very least, the presence of the R403Q mutation alters
myofilament function and ATP utilization at the level of the sarcomere.

5.2. Mutations in cMyBP-C

Historically, cMyBP-C has been viewed as a modifier of contraction through its direct inter-
action with myosin. In fact, genetic deletion of cMyBP-C in a murine model results in reduced
systolic and diastolic parameters, reduced tension at submaximal activation, and cardiac
hypertrophy [47]. Representative of a gain-of-function, myocytes lacking cMyBP-C generate
more power and display increased rates of force redevelopment at the submaximal activation
[48]. Interestingly, permeabilized myocytes taken from humans harboring MYBPC3 mutations
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with evidence of reduced protein expression by haploinsufficiency show reduced maximal
force without a change in the kinetics of actin-myosin cycling [49].

In contrast, human samples heterozygous for a missense mutation in MYBPC3 are more
sensitive to activating Ca2+, which may be representative of enhanced contractility [50]. Again,
the genetic heterogeneity of MYBPC3 mutations mirrors the specific impact of each mutation
on sarcomeric function. For example, loss of cMyBP-C protein as a result of MYBPC3 mutations
does not necessarily result in “loss-of-function”. More recent studies have confirmed that
cMyBP-C also interacts with actin to potentially tuning thin filament activation directly while
simultaneously maintaining a functional interaction with myosin [51]. The implication for
cMyBP-C is a complex regulatory role that imparts novel structural and functional mechanisms
during the contractile cycle.

5.3. Mutations in RLC

The myosin regulatory light chain (RLC), also called as the ventricular light chain, is encoded
by the MLC2 gene. The RLC protein forms a non-covalent association with myosin and contains
an EF-hand motif implicating functional regulation of myosin and subsequent tension
generation [52]. Within this EF-hand “hot spot”, the first FHC-causing mutations in the MLC2
gene were identified, confirming an integral role for the RLC in contractile function [53]. To
study the biophysical impact of MLC2 mutations, mice expressing an E22K RLC transgene
were engineered [15, 18]. Hearts from E22K mice display midventricular obstruction due to
papillary and septal hypertrophy similar to human counterparts. However, mechanical
properties of E22K sarcomeres remain unresolved.

Initial studies using glycerinated cardiac muscle fibers illustrate an increase in Ca2+-sensitivity
and Ca2+-activated ATPase of myofibrillar samples from E22K transgenic mice than WT
littermate and non-transgenic counterparts [15]. Follow-up studies by the same group report
no impact of the E22K RLC mutation on Ca2+-sensitivity of tension and a decrease in maximal
ATPase [18]. Inconsistencies in biophysical results from E22K hearts are not surprising,
considering the crucial role of RLC phosphorylation in the regulation of myosin mechanics [52,
54]. It is now appreciated that mutations in the MLC2 gene may impact phosphorylation-
dependent changes in force production [54].

5.4. Mutations in cTnT

Along the thin filament, a contractile unit consists of a repeating complex of 7 actin monomers,
1 troponin complex, and 1 α-Tm coil-coil dimer [2]. The heterotrimeric cardiac troponin
complex is comprised of cTnI, cTnT, and the Ca2+-binding troponin subunit, cardiac troponin
C (cTnC). Myofilament activation hinges on complex molecular interactions between thin
filament proteins where Ca2+-binding to cTnC activates the myofilament, changes the position
of α-Tm, and removes allosteric inhibition, allowing actin-myosin interaction. Transmission
through the contractile unit following Ca2+ binding is exquisitely controlled by precise
movements of multiple proteins, perhaps predicting a potentially more dangerous phenotype
and variable penetrance in patients with FHC mutations residing in thin filament proteins [4].
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Missense or splice-site mutations in the TNNT2 gene result in point mutations or truncated
variants resulting in FHC [2, 19]. Unlike MYBPC3 mutations, truncated cTnT proteins are
incorporated into the sarcomere, and early studies in transgenic mice expressing a truncated
cTnT modeled after the human condition indicate mild to no cardiac hypertrophy, significant
diastolic dysfunction and die more frequently with an increasing allelic expression similar to
the human phenotype [55]. Interestingly, cardiac fibers expressing a similar truncated cTnT
develop less force at maximum activation [56]. The truncated form of cTnT presumably
disrupts the cTnT-cTnI-α-Tm binding domain, but the exact molecular mechanism that leads
to the observed phenotype remains unresolved.

Early mapping of cTnT-related FHC alleles intimated the significance of another critical region
within the cTnT-α-Tm binding domain [19]. Several FHC-causing substitutions have been
identified at residue 92, including R92Q, R92L, and R92W [2]. Hearts taken from mice
expressing R92 point mutations are typically smaller, hypercontractile with severe diastolic
dysfunction, again, similar to findings in patients with FHC [2, 19, 57]. On the other hand,
biophysical studies are inconsistent and depend on experimental approach and the level of
molecular resolution. Still, key characteristics can be attributed to R92 mutations, including
increased force and actin-myosin cycling at lower Ca2+ and less efficient use of ATP to gener-
ate force [57–59]. Nevertheless, these biophysical data do not fully explain the phenotypic
heterogeneity of cTnT-related FHC arising from genotype-similar patients. Interestingly, a
recent work demonstrates significant interplay between cTnT R92 mutations and MyHC
isoform [57]. The suggestion from these recent data is that multiple levels of myofilament
regulation exist and that specific cTnT FHC mutations cannot be used as surrogates for
mutations comprising the functional domain. Clearly, FHC disease progression is a complex
integration of myofilament function, cross-bridge kinetics, and cellular signaling, all of which
can be modified by environmental and genetic factors such as sex/gender.

6. Sex disparities in FHC

Being male predisposes carriers of FHC-causing mutations to pathological cardiac remodeling
[60]. In females, the sharp rise in FHC morbidity and mortality closely aligns with the pre- to
post-menopausal transition [60–64]. Despite the longstanding knowledge that pre-menopausal
women are protected from developing FHC, our fundamental understanding of the shift in FHC
risk with menopause remains inadequate and impedes our ability to develop sex-specific
therapeutic strategies to combat FHC and its complications.

The loss of estrogen during menopause positions 17β-estradiol (E2), the predominant naturally
occurring estrogen, to play a unique role in cardioprotection. E2 signaling through classical
estrogen receptors (ER), ERα and ERβ, and a third, membrane bound and G-protein coupled
estrogen receptor (GPER) is initiated by environmental, genetic, and non-genetic cues to
impact gene expression and cellular signaling [65–67]. E2-dependent signaling is complex and
multiple molecular, and cellular mechanisms have been suggested to underlie protection
against CVD [65, 66]. As part of these investigations, studies that utilized gonadectomized
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rodents subjected to different cardiac pathological stimuli typically demonstrate a benefit of
estrogen replacement [68–72]. Unfortunately, the prospective Women’s Health Initiative (WHI)
and Heart and Estrogen/Progestin Replacement Study (HERS I and II) studies show an
increased CVD and stroke risk with estrogen replacement in menopausal women [73, 74].

Our group has spent the past 15 years studying a murine model of HCM, which expresses an
autosomal-dominant R403Q mutation in α-myosin heavy chain and exemplifies this sex
dimorphism such that R403Q male mice develop progressive left-ventricular dilation, impaired
cardiac function, and a number of pathologic indicators well before R403Q female mice [21, 65,
75–80]. The trajectory of HCM due the R403Q FHC model differs between the sexes in an age-
dependent manner. As illustrated in Figure 3, adolescent (2 month old) males display cardiac
hypertrophy whereas females do not; males progress to a worsening phenotype characterized
by ventricular dilation by 8 month of age while females maintain ventricular morphometry with
mild hypertrophy [27, 75].

Figure 3. Cardiac morphometry of R403Q female and male mice. Top panel: Representative H&E stained longitudi-
nal heart sections from R403Q female and male mice at 2 months of age. Bottom panel: Representative H&E stained
short axis heart sections from R403Q female and male mice at 8 months of age. This figure was partly adapted with
permission from [27].

The biophysical properties of cardiac sarcomeres expressing the R403Q mutation, as for cTnT
mutations, depend on the experimental approach. In vitro analysis of R403Q myosin kinetics
yields inconsistent results such as reduced [37] or enhanced [38] actin filament velocity and
reduced [39] or enhanced [40] actin-activated ATPase. On the other hand, human myofibril or
multicellular R403Q samples consistently show accelerated tension generation and increased
ATP hydrolysis rates [20, 41]. We and others have reported both age- and sex-dependent effects
on Ca2+-sensitivity of tension and the rates of actin and myosin interaction, or ktr. [21, 42, 43].
We further demonstrated that R403Q males show increased cycling (entering and exiting) of
cross-bridges at a given force. Furthermore, we find a strong interaction between sex and the
R403Q mutation with regard to tension cost. Coupled with measures of ktr, this indicates higher
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“off” rate and more inefficient use of ATP at a given force in R403Q males with the opposite
effect in R403Q females [27].

What is clear from these studies on the biophysics of the R403Q FHC mutation is that male
and female myofilament function is perturbed and potentially under energy stress presumably
initiated by the FHC mutation. The underlying mechanisms dictating very distinct disease
trajectories in males and females are not completely elucidated by these studies necessitating
alternative approaches.

6.1. Role of estrogen in FHC

Sex differences are primarily determined by hormonal status. When considering the effect of
sex hormones on the progression of FHC, it is imperative to place a special focus on 17β-
estradiol (E2) signaling. Estradiol is the main circulating sex hormone in pre-menopausal
women. It is mainly synthesized in ovarian follicles, and to a smaller extent in adipose tissue,
liver, breast, and neural tissues [81]. It regulates a number of physiological processes including
metabolism, cell growth and proliferation, reproduction, and development [82]. It is generally
agreed that estrogen plays a protective role in the myocardium and most of the cardio-
protective effects have been attributed to E2. For the rest of this discussion, when we mention
estrogen (E2), we are referring specifically to 17β-estradiol.

6.2. Estrogen signaling pathways

Estrogen exerts its physiological effects through interaction with intracellular estrogen
receptors (ERs). The first described estrogen receptors, also known as classical estrogen
receptors, are ERα and ERβ. They are members of the nuclear hormone receptor family (NHR),
contain a DNA-binding domain, and share a high degree of homology [83]. In addition, another
estrogen receptor has been recently described. GPER1, a membrane-bound G-protein coupled
estrogen receptor, formerly known as GPR30, is a seven trans-membrane domain protein that
mediates some of the non-transcriptional activity of estrogen [84].

Estrogen signaling pathways fall into two main categories: genomic (also known as classical)
and non-genomic signaling. During genomic signaling, classical estrogen receptors act as
transcription factors. After binding to estrogen, they undergo a conformational change that
leads to the formation of homodimers (ERα/ERα and ERβ/ERβ) or heterodimers (ERα/ERβ).
Receptor-dimers then bind to estrogen response elements (ERE), located near promoter regions
of genes, and regulate gene transcription [83]. Estrogen signaling can also be initiated at the
non-transcriptional level. Estrogen receptors interact with intracellular proteins triggering
signal transduction cascades, often mediated by chain-reaction phosphorylation events. The
vast array of estrogen non-transcriptional signaling pathways is mediated by ERα, ERβ, and
GPER1 [84, 85].

6.3. Molecular mechanisms of estrogen-mediated cardio-protection

It is most widely accepted that the overall effect of cardiac estrogen signaling has a beneficial
outcome on cardiac health. Not only does estrogen mediate cardioprotection, but it is also
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involved in the regulation of physiological processes in the heart. ERα expression, for example,
is required to maintain physiological glucose uptake and proper mitochondrial function in the
murine heart [86, 87]. Acute E2 injections enhance cardiovascular reflexes and autonomic tone
in ovariectomy (OVX) mice [88]. Estrogen receptors interact with AMP-activated protein
kinase in neonatal rat cardiomyocytes (NRCM), and potentially mediate its activity [89].

More importantly, there is increasing evidence suggesting that estrogen attenuates the
progression of cardiac hypertrophy and prevents HF [70, 90]. The molecular mechanisms
behind estrogen effects on cardiomyocyte survival are still under study. However, there are
many pieces of evidence pointing to specific molecular pathways bridging estrogen signaling
and increased tolerance to hypertrophic stimuli such as those arise from FHC. Some of these
findings are explored below.

Estrogen has been shown to reverse agonist-induced cardiomyocyte hypertrophy. In NRCM,
E2-treatment counteracts angiotensin II (Ang II)-induced increase in cell surface area, protein
synthesis, skeletal muscle actin expression, nuclear translocation, and transcriptional activity
of the hypertrophic transcription factor NFAT [85]. An E2-dependent increase in SIRT1
expression levels and AMPK activity protects the cardiomyocyte from Ang II-induced injury
[91]. E2 reduces cardiomyocyte apoptosis in vivo and in vitro through the activation of
PI3K/Akt signaling [92]. E2 treatment of OVX mice hearts and NRCM inhibits calcineurin
activity and increases its degradation [93, 94]. E2 also limits undesirable extracellular matrix
(ECM) remodeling through the modulation of ECM protein expression [95]. The majority of
the effects discussed above are mediated by signaling through the classical estrogen receptors.

Limited mechanistic insights are available on E2 cardiac signaling mediated through ERα.
Selective ERα agonism attenuates cardiac hypertrophy, increasing cardiac output, left ventric-
ular stroke volume, and cardiac α-MyHC expression [96–98]. Signaling through ERβ has been
studied in more depth and has been shown to counteract the development of cardiac hyper-
trophy by reducing the expression of hypertrophic markers, attenuating fibrosis, apoptosis
and inflammation [99–101]. ERβ regulates a network of miRNAs, modulates p38 and ERK
signaling, and affects calcineurin expression [102, 103]. In fibroblasts, ERβ blocks TGFβ1
synthesis that signals for the production of fibronectin, vimetin, collagens I and III [104].

At least three different mechanisms by which ERβ modulates hypertrophic gene expression
in cardiomyocytes have been described. First, E2 signaling through ERβ induces PI3K
activation that upregulates MCIP1 transcription [94]. MCIP1 blocks the Ang II-induced
increase in calcineurin activity, preventing NFAT translocation to the nucleus and inhibiting
the transcription of hypertrophic genes [105]. Second, ERβ signaling can reverse Ang II-
induced inhibitory phosphorylation of glycogen synthase kinase-3β (GSK3B) by Akt. This
prevents GATA4 transcription factor activation and also leads to decrease in hypertrophic
mRNA expression [106]. The third mechanism involves regulation of histone deacetylases
(HDAC). ERβ suppress the production and activation of the pro-hypertrophic HDAC2, while
promoting the retention of anti-hypertrophic HDAC in the nucleus to inhibit hypertrophic
gene expression [106].
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Taking into account the complex and multifaceted nature of cardiac estrogen signaling, it is
critical to inquire whether the cardioprotective effect of E2 signaling is sex dependent. In the
context of cardiac hypertrophy, females show a better response to E2 than males [100], but that
does not necessarily mean that E2 signaling is not beneficial for the male heart. It has been
shown that E2 treatment of male rats subjected to chronic volume overload attenuates
ventricular remodeling and disease progression [107]. It also improves survival in male mice
with TNFα overexpression-induced cardiomyopathy [108]. At the cellular level, E2 stimulation
of c-kit-expressing cardiac progenitor cells confers cardioprotection against cardiac injury.
When co-cultured, ERα stimulation of c-kit + cells enhances the survival of post-infarct male
myocytes [109].

In summary, estrogen signaling plays an important role in preventing cardiac remodeling that
occurs during hypertrophy and subsequent heart failure. The exact extent to which the
different estrogen-targeted pathways contribute to that is still under study. Better understand-
ing of the mechanisms behind estrogen cardioprotection will help to fully understand the sex
differences behind the development of FHC, and therefore lead to better and more specialized
therapeutic options.

6.4. Menopause models of estrogen depletion

One obstacle that has stalled translational progression of studies into menopausal hypersen-
sitivity to FHC is the lack of appropriate rodent models mirroring progressive ovarian failure,
i.e., one that moves from perimenopause into menopause, similar to humans. Most studies
have used the surgical removal of ovaries (ovariectomy) as a model of menopause, yet only
10% of women enter menopause surgically. Our studies have utilized an ovary-intact mouse
model of menopause, using the chemical 4-vinylcyclohexene diepoxide (VCD) [110]. Repeated
short term daily dosing with VCD selectively targets primordial follicles of the ovaries,
accelerating the natural process of follicular atresia, and inducing gradual ovarian failure. This
model preserves the important “perimenopause” transitional period and androgen-secreting
capacity of residual ovarian tissue, analogous to menopausal women [111, 112]. Preserving
endogenous androgens in estrogen-deplete females is particularly critical when studying sex
differences in FHC [113]. Although androgen levels drop during menopause, the loss of
estrogen in menopause elevates the androgen to estrogen ratio and represents an independent
risk factor for FHC [114, 115]. We have used this model to demonstrate that during perime-
nopause, females were protected from hypertension and adverse cardiac remodeling. How-
ever after menopause, hypertension and pathological remodeling, indicative of worse clinical
outcomes, is a hallmark of this increase in FHC susceptibility during menopause [116].
Importantly, the worsening phenotype in menopausal females is prevented by estrogen.

7. Conclusions

The assertion that FHC is a complex disease is underscored by the difficulty in attributing a
single cause to the disease such as aberrant biophysical function of the myofilament. What is
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evident from studies of FHC is that although the primary defect may reside in the sarcomere,
the development of an HCM, DCM, or RCM phenotype depends on the interaction of the
initiated signaling pathways, environmental stressors, and individual genotype (including
sex/gender). For example, pathways downstream of Ca2+ activation such as Ca2+-sensitivity or
actin-myosin cycling kinetics represent functional parameter that is the summation of multiple
signals.

Despite an increasing appreciation of sex dimorphisms in the pathophysiology of FHC, many
inconsistencies plague the cellular and molecular mechanisms underlying these sex differences.
Taken together, there is a clear necessity in elucidating the cellular and molecular actions of
estrogen and how this relates to the sex dimorphisms in FHC. Finally, although murine models
of FHC do not exactly mimic the human genotype, they have proven as useful tools to elucidate
the mechanisms underlying the FHC phenotype.
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