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Abstract

Without a preventive vaccine, hepatitis C virus (HCV) remains an important pathogen
worldwide with millions of carriers at risk of end-stage liver diseases. Despite the
introduction of novel direct-acting antivirals (DAAs), resistance problems, challenges
with the difficult-to-treat populations and high costs limit the widespread application of
these drugs. Antivirals with alternative mechanism(s) of action, such as by restricting
viral entry or cell-to-cell spread, could help expand the scope of antiviral strategies for
the management of hepatitis C. Transfusion-associated HCV infection remains another
issue in endemic and resource-limited areas around the world. This chapter describes
some of the latest developments in antiviral strategies to preclude HCV entry, such as
through monoclonal antibodies and small molecules, as well as measures to enhance the
safety of therapeutic plasma products in blood transfusion.

Keywords: hepatitis C virus, viral entry, antivirals, entry inhibitors, monoclonal anti-
bodies, small molecules, therapeutic plasma products

1. Introduction

Hepatitis C virus (HCV) is a major pathogen that predisposes about 170–300 million people

worldwide to risks of end-stage liver diseases (ESLD), including cirrhosis and hepatocellular

carcinoma (HCC). The hepatotropic virus remains one of the top indications for liver trans-

plantation in treating ESLD [1]. While a preventive vaccine remains unavailable, the recent

introduction of direct-acting antivirals (DAAs) has revolutionized the treatment for hepatitis

C, phasing out the decade-old interferon (IFN)-based regimens. The majority of DAAs, how-

ever, focus on targeting viral replication such as via inhibition of the HCV NS3/4A protease,

the NS5A cofactor, and the NS5B polymerase [2]. Although the DAAs have significantly

improved the rate of sustained virological response (SVR) in the most prevalent genotype 1

patients, several challenges persist in real-world setting including high cost, drug-drug
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interactions, emergence of drug resistance, hard-to-treat populations (e.g., human immuno-

deficiency virus [HIV] coinfection, ESLD, and transplant patients), and management of DAA

failures [3–5]. With the advent of hepatitis C treatment in larger populations and borrowing

from the experience with HIV cocktail therapy, it is becoming clear that developing therapeu-

tic strategies with different modes of action would be necessary to address the various

limitations of current DAAs. In addition, HCV transmission due to transfusion of contami-

nated blood products remains an issue in endemic areas around the world. This is particu-

larly the case in resource-limited countries that face inadequate supply of safe blood products

or have poorly controlled blood screening practices, leading to significant risk of transfusion-

associated HCV infection [6]. Measures to enhance the safety of therapeutic plasma products

such as through the implementation of viral inactivation treatments are therefore a necessity

to reduce such risk.

The multistep process of HCV entry makes it an attractive target since it is the foremost

fundamental prerequisite in establishing an infection. Following successful entry, the viral

life cycle initiates to produce more virions, and with this development the underlying

disease begins its progression. Blocking HCV infection by targeting its entry therefore has

important implications for both prophylactic and therapeutic purposes since it abolishes the

viral life cycle. As a prophylactic treatment, it can be used to prevent infection or reinfection.

This is particularly useful in liver transplant setting of hepatitis C wherein the liver allograft

is inevitably reinfected [7, 8]. As a therapeutic treatment, precluding HCV entry via de novo

infection or cell-to-cell transmission helps to restrict viral spread in an infected person which

could slow the progression of the disease. In addition, incorporation of strategies to block

HCV entry into existing DAA treatments is expected to maximize the treatment response

rate, even producing a synergistic effect [9], as with the experience of using multiple inhib-

itors in HIV cocktail therapy to concomitantly target various stages of the viral life cycle.

Since more steps are being targeted in such a multipronged approach, the inclusion of entry

inhibitors to existing DAAs could impose a higher genetic barrier to drug-resistance devel-

opment. Such tactic not only aids in disrupting persistent HCV infection but could also help

to ultimately achieve viral clearance. These aspects therefore make the development of HCV

entry blocking strategies highly advantageous in both expanding the scope of antiviral

treatments against hepatitis C and providing new insights into antiviral management. This

chapter describes some of the latest development of strategies in precluding HCV entry for

the management of hepatitis C.

2. Overview of HCVentry

Owing to the development of infectious HCV culture systems (e.g., cell-culture-derived HCV,

HCVcc) and viral pseudoparticles bearing HCV glycoproteins (e.g., HCV pseudoparticles,

HCVpp), a scenario of how HCV entry occurs has slowly emerged over the last decade of

research. It is widely recognized that the HCV particle undergoes a series of intimate and well-

orchestrated interactions with various receptors/coreceptors on the hepatocyte host cell surface

as well as in the tight junctions, which ultimately lead to the attachment, internalization, and
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fusion of the virion with the cellular membrane. A number of these receptor interactions are

thought to be attributed to the highly lipidated nature of the HCV virion. Specifically, HCV

exists as a lipo-viro particle (LVP) with a lipid composition that includes the apolipoproteins

and resembles that of very low-density lipoproteins (VLDLs) and low-density lipoproteins

(LDLs) [10–15]. The association with lipids on the viral particle is thought to contribute to the

shielding of HCV glycoproteins from neutralization by the host antibody-mediated response.

In addition, the presence of the apolipoproteins on the virion has a large influence on the

production of infectious HCV and also its tissue tropism [13, 16–22].

Following circulation in the blood, the HCV viral particles reach the liver and begin the

interactions with molecules at the surface of the hepatocytes (Figure 1). The initial contacts

are with nonspecific receptor(s) including the glycosaminoglycan (GAG) heparan sulfate

moieties [23–25] that can be found on the transmembrane core proteins syndecans [26, 27].

These early interactions facilitate the attachment of the HCV virion and its accumulation on

the hepatocytes for subsequent binding to more specific receptors. Although the LDL recep-

tor (LDLR) has also been suggested as a potential initial attachment factor [28–30], recent

evidence suggests that it may play a more essential role in viral replication [31, 32].

Figure 1. Overview of HCV entry.
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Nevertheless, these initial interactions have been shown to be mediated via apolipoprotein E

(apoE) on the virion [29, 33–36]. The capturing process of the HCV particle is finalized by its

interaction with the scavenger receptor class B type I (SR-BI) [37, 38], which is able to

associate with the virion’s lipoproteins [37, 39] as well as the HCV E2 glycoprotein [40, 41].

Binding of HCV with SR-BI induces lipoprotein rearrangements that help prime the virion

for subsequent binding to other host cell factors and promote entry. This process is proposed

to occur via SR-BI’s lipid transfer activity between the viral particle and the plasma mem-

brane [37, 42] and/or by direct interaction with the hypervariable region 1 (HVR1) domain

on E2 [37, 43], which ultimately leads to conformational change and the exposure of func-

tional glycoprotein epitopes for additional receptor binding. Closely following this event is

the engagement of the HCV particle with the tetraspanin receptor CD81 [44, 45], which is an

important entry factor for the virus [41, 46, 47]. HCV binding to CD81 is proposed to induce

a dynamic lateral diffusion of virus-receptor complexes toward the tight junction area for

further interactions with additional entry factors and viral internalization [22, 48]. Specifi-

cally, CD81 forms a coreceptor complex with the tight junction protein claudin-1 (CLDN1)

[49, 50] and is engaged in late events of HCV entry [51]. This re-localization and virus-

receptor complex association with CLDN1 involves multiple signaling pathways (e.g., Rho

GTPases, PI3K/AKT, and ERK/MAPK) [52, 53], includes the activation of host cell kinases

such as the epidermal growth factor receptor (EGFR) and ephrin receptor A2 (EphA2) [54,

55], and is influenced by the absence of the CD81-associated partner EWI-2wint on the

hepatocytes [56, 57]. The EWI-2wint molecule is normally bound to CD81 on most cell type

surfaces and inhibits its diffusion which is required to promote HCV entry; however, it is not

expressed in the hepatocytes, and hence its absence has been suggested to contribute to the

restricted tropism of the virus [56]. Following interaction with the CD81/CLDN1 complex,

the HCV particle is presumed to then interact with the tight junction protein occludin

(OCLN) prior to viral internalization [58]. Additional proteins that take part in influencing

virion entry into the hepatocyte include the transferrin receptor 1 (TfR1) [59] and the choles-

terol transporter Niemann-Pick C1-like 1 (NPC1L1) [60], although their specific role and

interplay with other entry factors in the HCV entry process remain to be defined. The HCV

particle finally enters the cell via clathrin-mediated endocytosis [61]. The HCV-receptor

complexes then migrate to endosomal compartments [62, 63] where acidification occurs to

induce membrane fusion, which allows the release of viral RNA into the host cytosol.

The above sequential and multistep entry process consequently yields the successful release of

the HCV genome into the host cytoplasm for direct translation and the ensuing launch of viral

replication. The roles played by several of these entry factors including SR-BI, CD81, CLDN1,

and OCLN not only mediate HCV entry but also presumably help to define tissue and species

tropism of the virus [64–67]. The understanding of how HCVachieves viral entry has led to the

possibility of antiviral targeting. From docking to virus internalization, essentially all steps are

targetable to prevent HCV infection of the host cell. In addition, given the association of HCV

with lipoproteins and the viral particle’s interaction with lipoprotein and lipid receptors

(LDLR, SR-BI, and NPC1L1), the lipidic nature of HCV virion also offers various methods of

pharmacological intervention. Finally, many of the entry factors including CD81, SR-BI,

CLDN1, OCLN, and NPC1L1 also play a role in mediating HCV cell-to-cell transmission
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between intercellular junctions [68–71], and therefore targeting these molecules could help

restrict both cell-free entry and cell-to-cell spread of HCV.

3. Current development in inhibition of HCVentry

3.1. Use of monoclonal antibodies to target host cell receptors or viral antigens

Recent insight into the molecular interactions of HCV at the cellular membrane has signifi-

cantly enhanced the understanding of the HCV entry paradigm and revealed potential targets

for drug intervention, including the use of monoclonal antibodies (mAbs) to mask HCV entry

receptors/coreceptors or viral antigens. As described below and summarized in Table 1, the

use of mAbs targeting CD81, SR-BI, CLDN1, or the HCV E2 has been shown to have prophy-

lactic/therapeutic effects against HCV infection in both cell culture and animal models.

3.1.1. Anti-CD81 monoclonal antibodies

CD81 is the first putative receptor identified for HCVentry [72, 73] and plays an important role

in the virus infection. The molecule is a member of the tetraspanin superfamily with four

transmembrane domains and two extracellular loops and is expressed in most human tissues

[74]. Commercial CD81 mAb JS-81 has been applied in human liver-chimeric mouse model

and shown prophylactic protection but no postexposure effect inhibiting HCV infection [75];

nonetheless, this experimental test inspired subsequent studies of anti-CD81 mAbs as antiviral

agents. Of the newly generated antibodies, mAb QV-6A8-F2-C4 produced by genetic immuni-

zation could efficiently inhibit HCVcc infection and pan-genotypic HCVpp entry in a similar

range as mAb JS-81 [76]. The antibody also appeared to block neutralizing antibody-resistant

HCV cell-to-cell transmission and viral dissemination in a dose-dependent manner, with a less

cytotoxic or antiproliferative property than JS-81 in vitro. In a recent study, another mAb K04

generated with hybridoma technique not only showed inhibitory effect against HCVpp and

HCVcc infection in hepatoma cells and primary human hepatocytes (PHH), but also surpris-

ingly blocked HCV infections in both prophylactic setting and postinfection stage in human

liver-chimeric mice [77]. This is probably due to the improved intrinsic binding affinity of mAb

K04 to CD81 large extracellular loop (LEL) and a different binding epitope as compared to

mAb JS81. However, treatment-associated reductions in body weight and human serum albu-

min levels were observed in this study. Further research will be needed to determine the

minimal dose of antibodies needed to provide protection and to evaluate the toxicology of

anti-CD81 mAbs for long-term development.

3.1.2. Anti-SR-BI monoclonal antibodies

SR-BI is a member of the CD36 family primarily expressed in liver and non-placental steroido-

genic tissues which facilitates selective cholesterol uptake [78]. The molecule has been pro-

posed to be a horseshoe-like glycoprotein with a large extracellular loop anchored to the

plasma membrane at both N- and C-termini with short extensions into the cytoplasm [79]. It

was first identified as the alternative E2 receptor on HepG2 cells which efficiently recognize
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Candidates Effect(s)

Stage of

Development Reference

mAbs Against Host Entry Factors

Anti-CD81 mAbs Inhibit CD81-E2 interaction Mouse model [75–77]

Anti-SR-BI mAbs Inhibit SR-BI-E2 interaction Mouse model [80–82]

Anti-CLDN1 mAbs Inhibit E2-CD81-CLDN1 association Mouse model [84–87]

Passive Immunotherapy Against HCV

Anti-E2 mAbs Neutralize circulating virion Phase II [89–96]

Polyclonal IgG Neutralize circulating virion Phase III [190, 192,

193]

Small Molecule Inhibitors

Heparin, heparin-derived

compounds

Heparan sulfate competitors Cell culture [24, 25]

Heparinases Heparan sulfate enzyme Cell culture [25]

EGCG Compete with heparan sulfate; alter viral shape; inhibit

cell-to-cell spread

Cell culture [99–101]

Delphinidin Alter viral shape Cell culture [101]

SSb2 Inhibit attachment & viral fusion Cell culture [102]

GA Inactivate virion Cell culture [103]

Hydrolysable tannins CHLA

& PUG

Inactivate virion; inhibit attachment & cell-to-cell spread Cell culture [104]

LOD Inactivate virion; inhibit attachment Cell culture [105]

DHMD Inactivate virion; inhibit attachment Cell culture [106]

Curcumin Decrease viral envelope fluidity; inhibit cell-to-cell spread Cell culture [107]

CV-N E1/E2 glycan-binding protein Cell culture [109]

Griffithsin E1/E2 glycan-binding protein Mouse model [110]

MBL E1/E2 glycan-binding protein Cell culture [111]

Recombinant L-ficolin E1/E2 glycan-binding protein Cell culture [112]

BA-LNCs E2 glycan-binding protein Cell culture [114]

Oleanolic acid E2 glycan-binding protein Cell culture [115]

CD81-derived peptides Interact with E2 Cell culture [116, 117]

CLDN1-derived peptide

(CL58)

Interact with E1 & E2 Cell culture [81]

E2-derived peptide Interfere with E1/E2 hetero-dimerization Cell culture [119]

Terfenadine CD81 competitor Cell culture [120]

ITX 5061 SR-BI inhibitor Phase Ib [121–124]

Aspirin Down regulates CLDN1 Cell culture [125]

Erlotinib EGFR inhibitor; inhibit cell-to-cell spread Mouse model [54]

Dasatinib EphA2 inhibitor; inhibit cell-to-cell spread Cell culture [54]
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soluble E2 proteins but do not express CD81 on their surface [40]. As described above, both

CD81 and SR-BI are considered necessary for HCV entry, since the overexpression of CD81 on

HepG2 cells restores HCVpp entry in these originally poorly permissive cells [41]. Monoclonal

antibodies targeting SR-BI that inhibited HCV infections include mAb C167, mAb16-71, mAb8,

and mAb151. For HCV inhibitory activities in vitro, mAb C167 effectively prevented infection

in hepatoma cells with HCVcc and ex vivo virus recovered from HCVcc-infected chimpanzees

[80]; mAb16-71 exhibited preventive effect against HCVcc infection in both hepatoma cells and

PHH [81]; mAb8 and mAb151 also prevented HCVcc infection in reporter Huh-7 cells [82].

Additionally, mAb16-71, mAb8, and mAb151 all showed their ability in blocking HCV cell-to-

cell spread in vitro and in vivo. Human liver-chimeric mouse models challenged with serum-

derived HCV isolates of different genotypes revealed the anti-HCV property in vivo of the

three antibodies in both prophylactic and postexposure settings. Specifically, mAb16-71

showed complete blockage of infection and intrahepatic spread of HCV isolates with a pro-

phylactic treatment, but had no effect on chronically infected chimeric mice; mAb151, on the

other hand, appeared to be effective against an HCV variant escaped from adaptive immune

response in a liver transplant patient and displayed better antiviral activity in inhibiting viral

spread and amplification in the postexposure setup.

Candidates Effect(s)

Stage of

Development Reference

Tipifarnib, sorafenib Ras, Raf inhibitor Cell culture [126]

Ferristatin TfR1 inhibitor Cell culture [59]

Ezetimibe NPC1L1 inhibitor Mouse model [60]

PF-429242 Down regulate NPC1L1 & LDLR Cell culture [127]

Phenothiazines Modulate host cell membrane Cell culture [128]

Chlorpromazine Clathrin-coated pit formation inhibitor Cell culture [61]

Arbidol Trap virion in clathrin-coated vesicles Cell culture [129]

Bafilomycin A1,

concanamycin A

Disturb acidic endosomal compartments Cell culture [130]

Chloroquine, ammonium

chloride

Disturb acidic endosomal compartments Cell culture [131]

RAFI dUY11 Inhibit viral fusion Cell culture [132]

Ferroquine Inhibit cell-to-cell spread Cell culture [133]

Triazine-based compounds Inhibit post- binding step & cell-to-cell spread Cell culture [134, 135]

Silibinin Inhibit viral fusion & cell-to-cell spread Clinical

Legalon® SIL

[136–140]

Tamoxifen Inhibit attachment & post-binding step Cell culture [142]

HCV II-1 (GS-563253) Inhibit attachment & post-binding step Cell culture [143]

EI-1 (BJ486K) Inhibit post-binding step Cell culture [144]

Table 1. Antiviral strategies to preclude HCV entry.
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3.1.3. Anti-CLDN1 monoclonal antibodies

The CLDN1 tight junction protein has four transmembrane domains and is highly expressed

in the liver [83]. Its role in HCV entry is proposed to occur in the post-binding steps [64].

Anti-CLDN1 antibodies directed against the CLDN1 extracellular loops were found effective

in neutralizing HCV infection in hepatoma cells through disrupting CD81-CLDN1 association

and therefore inhibiting E2 binding to the cell surface [84]. A CLDN1 mAb OM-7D3-B3

targeting CLDN1 extracellular loop was found to be effective in inhibiting HCV isolates

in vitro [85]. Further experiments in human liver-chimeric mouse models confirmed its

potency in preventing HCV infection and eliminating persistent infection in vivo [86].

Pretreatment of another anti-CLDN1 mAb 3A2 targeting CLDN1 extracellular loop also

showed protective effect in a chimeric mouse model [87]. Safety profiles of these antibodies

were also assessed regarding the levels of human albumin, aspartate transaminase, alanine

transaminase and total bilirubin, and potential side effects on the other organs and tight

junction integrity. Further studies were suggested to assess potential immune-mediated

adverse effects to ensure its relevance for clinical use [86, 87].

3.1.4. Anti-HCV E2 monoclonal antibodies

Another approach to developing entry-inhibiting mAbs is to target the glycoproteins on the

HCV virion surface. Albeit HCV glycoproteins exhibit high variability and are protected by

glycosylation and lipids on the viral particle, neutralizing mAbs have been designed to target

more conserved and accessible regions, specifically on the E2 glycoprotein [88]. Effects of E2

mAbs have been shown in vitro and in vivo [89–94]. Clinical trials have been carried out to

assess the protective function of human anti-E2 mAbs HCV-AbXTL68 and MBL-HCV1 in liver

transplant settings of HCV-positive patients. With a higher dose and daily infusion of HCV-

AbXTL68, HCV RNA in patient serum showed transient reduction in the first week post-

transplantation but not yet below the detectable limits [95]. MBL-HCV1, on the other hand,

successfully suppressed the viral load from 7 to 28 days after transplantation in genotype 1a-

infected patients with multiple infusions. Although the primary endpoint at day 42 was not

met, the viral rebound was significantly delayed, and the magnitude of the viral load reduc-

tion was greater than the previous HCV-AbXTL68 therapy [96]. The result indicates that mAbs

may be a promising class of entry inhibitors that adsorbs circulating virions to protect the new

liver from reinfection after transplantation. A study of combination therapy with DAAs to

prevent allograft HCV infection is currently underway [96].

Current obstacles to the development of mAbs as therapeutic antiviral agents include the high

cost of production, storage, and administration, which can only be done by injection so far [88].

Nevertheless, the associated immune responses such as antibody-dependent cell-mediated

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) may help to clear the

viruses and infected cells [88, 97]. Antibodies that directly block host cell entry factors are

more likely to be effective for the diverse circulating viral strains; however, due to the distri-

bution and multiple functions of such molecules, the blockage may cause potential adverse

side effects [97]. As for antibodies targeting viral antigens, designing suitable candidates may

be a challenging issue due to the heterogeneity of the HCV glycoproteins [98], but such
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antibodies may provide a safer option for the synergistic therapy with other antivirals of

different modes of action to suppress the development of resistance, particularly at the early

post-transplantation stage [96]. Additional neutralizing antibodies against other entry factors

have also been reported to antagonize HCV infection in vitro, such as anti-TfR1 [59] and anti-

NPC1L1 [60] antibodies, suggesting they could also be potentially developed for treatments

against hepatitis C.

3.2. Small-molecule inhibitors of HCVentry

In addition to the mAbs, great efforts have been put into identifying small molecules with

potent antiviral effects against HCV entry. The source of such entry inhibitors includes clini-

cally approved medications, synthetic molecules, and natural product-based compounds.

These small molecules could be further evaluated for development as drug candidates or drug

leads. Below is a panel of small molecules that have been investigated with their activities

inhibiting HCV entry (Table 1).

3.2.1. Small molecules inhibiting viral attachment

The attachment step represents the primary interaction of an HCV virion with its host cell

surface. Since the GAG heparan sulfate moieties dominate the capturing of HCV virions, the

heparan sulfate homologue heparin and its derivatives as well as the enzyme heparinases which

degrade the molecule were all shown to inhibit the viral binding to hepatoma cells [24, 25]. (-)-

Epigallocatechin-3-gallate (EGCG), a green tea catechin, was speculated to exert its inhibitory

effect on viral attachment [99] by competing with heparan sulfate for HCV binding [100] or

altering the viral shape [101]. Delphinidin, an anthocyanidin extracted from plant pigment, was

also demonstrated to inactivate HCVpp by altering its shape and was particularly potent when

added concurrently with the viral inoculation [101]. The natural terpenoid saikosaponin b2

(SSb2), isolated from the root of Bupleurum kaoi, was observed to specifically block HCV particle

binding and early viral entry without affecting other stages of the viral life cycle [102]. SSb2

could inactivate cell-free HCV particles and was suggested to target the glycoprotein E2 in

mediating its antiviral effect against HCV infection. Several other natural compounds including

the gallic acid (GA) extracted from Limonium sinense [103], the hydrolyzable tannins chebulagic

acid (CHLA) and punicalagin (PUG) [104], and the hepatoprotective plant Phyllanthus urinaria-

derived monolactone loliolide (LOD) [105] and butenolide (4R,6S)-2-dihydromenisdaurilide

(DHMD) [106] were also found to efficiently inactivate cell-free HCV viral particles and impede

viral attachment. Another natural compound curcumin extracted from turmeric was shown to

decrease the fluidity of viral envelope and therefore prevent the binding and fusion [107],

possibly by inserting into the membrane in a manner similar to cholesterol [108].

3.2.2. Small molecules blocking viral glycoproteins

A variety of broad-spectrum antiviral agents have exhibited their ability to interact with the

glycans on viral glycoproteins. In the case of HCV, glycan-binding proteins interfere with the

association between the E1/E2 heterodimer and the host cell receptor CD81. Lectins such as

cyanovirin-N (CV-N) and griffithsin, isolated from cyanobacterium Nostoc ellipsosporum and
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the red alga Griffithsia sp., respectively, were reported to have such effect. CV-N was shown to

interact with N-linked glycans of HCV glycoproteins and disrupt E1/E2 binding to CD81 [109].

The inhibitory effect of griffithsin on HCV entry was also quenched when N-linked high-

mannose oligosaccharides were present, indicating a pattern similar to CV-N of affecting the

glycoproteins-CD81 interaction [110]; pretreatment of griffithsin was shown to delay the viral

infection in chimeric mouse model. Humoral lectins of the innate immune systems including

the mannan-binding lectin (MBL) and L-ficolin were also considered to have analogous effect

neutralizing HCV particles. MBL [111] and recombinant oligomeric L-ficolin [112] were found

to interact with the glycans on the E1/E2 heterodimer in a calcium-dependent manner, thereby

inhibiting the viral entry. Notably, the MBL-associated complement system was activated upon

its binding to HCV E1/E2, suggesting the use of humoral lectins as viral entry inhibitors may

also help facilitate viral clearance. However, the detailed mechanism and specific target of the

humoral lectins remain to be defined. The boronic acid (BA)-modified nanoparticles were also

found to suppress HCVentry in a way that acted similar to lectins [113], with the incorporation

of lipid nanocapsule (BA-LNC) techniques enhancing their stability and solubility [114].

Chemically modified oleanolic acid, a triterpene compound originally extracted from Dipsacus

asperoides, was found able to interrupt the E2-CD81 interaction by binding to E2 [115].

Besides the glycan-binding proteins, molecules imitating HCV host entry factors or viral

glycoproteins were also developed in the attempt to block the viral entry. An imidazole-

based scaffold presenting CD81 helix D amino acid side chains [116] and stapled peptides

based on CD81 LEL [117] were designed to antagonize the E2-CD81 interaction by mimick-

ing the putative E2-binding region of CD81. A CLDN1-derived peptide, CL58, was also

found to inhibit HCV entry in the post-attachment stage by interacting with HCV E1 and E2

[118]. As for viral glycoprotein-based molecules, an E2-derived peptide was found able to

block E1/E2-mediated fusion by targeting E1 and therefore interfere with the hetero-dimer-

ization of the glycoproteins [119].

3.2.3. Small molecules targeting host entry factors and CD81-triggered signaling pathway

In addition to the therapeutic antibodies mentioned in the previous section, several small

molecules have been suggested to exert their inhibitory activity of HCV entry by targeting

cellular receptors/coreceptors. Terfenadine, an antihistamine, was found able to prevent HCV

infection by competing with the CD81 antibody JS81 binding to the LEL of CD81 protein on

the hepatoma cell surface [120]. ITX 5061, a clinical stage compound originally characterized as

a p38 MAPK inhibitor, was identified with its capability of antagonizing SR-BI [121] and

further validated for its potency of inhibiting HCV entry at post-binding step [122]. The anti-

HCV effect of ITX 5061 was found additive to synergistic in combination with several stan-

dard-of-care therapeutics, and the resistant mutant was defined on the viral glycoprotein E2

[123]. A latest phase 1b clinical trial [124] revealed that the ITX 5061-treated patients, especially

the genotype 1-infected patients, had a significant reduction in HCV RNA through the first

week after liver transplantation and viral evolution were restricted; however, the viral RNA

levels became comparable in both ITX 5061-treated and untreated patients, suggesting the

need to incorporate other antiviral agents using different modes of actions to eliminate HCV

infection. Aspirin, alternatively, inhibited HCV entry by downregulating CLDN1 [125].
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Since the receptor tyrosine kinases are also involved in the HCV entry process, two clinically

approved protein kinase inhibitors were evaluated for their ability to abrogate the viral entry.

Both erlotinib, an EGFR inhibitor, and dasatinib, an EphA2 inhibitor, could successfully block

HCV entry in a dose-dependent manner as well as the cell-to-cell transmission. Specifically,

erlotinib was shown to inhibit the membrane fusion of hepatoma cells overexpressing HCV

glycoproteins. In vivo treatment of erlotinib resulted in a significant suppression of the viral

load in PHH-chimeric mouse model with HCV infection [54]. Furthermore, inhibitors of EGFR

downstream kinases Ras (tipifarnib) and Raf (sorafenib) were also assessed and found effective

in blocking HCV entry [126].

Inhibitors of other entry factors were also shown to be effective in hampering the viral entry.

Pretreatment of ferristatin, a TfR1 inhibitor that binds to the molecule and causes its internaliza-

tion and degradation, was shown to decrease HCVcc infection in vitro [59]. The NPC1L1

internalization inhibitor ezetimibe, which is also an FDA-approved cholesterol-lowering medi-

cation, diminished HCVcc foci formation before and during the viral challenge. Daily oral

administration of ezetimibe starting two weeks before infection also delayed the viral growth of

a genotype 1 clinical isolate in PHH-chimeric mouse model [60]. PF-429242, an SKI-1/S1P inhib-

itor, potentially impeded HCV entry by downregulating NPC1L1 and LDLR expression [127].

On the other hand, phenothiazines, a group of synthesized nitrogen- and sulfur-containing

tricyclic compounds, inhibited HCV fusion into the cell by modulating the host cell membrane.

Insertion of phenothiazines into the cholesterol-rich membrane increased its fluidity, thus possi-

bly decreasing the local inhomogeneity of the cell required for the viral fusion [128].

3.2.4. Inhibition of clathrin-mediated endocytosis and viral fusion

Since HCV fusion has been discovered to be facilitated by clathrin-mediated endocytosis and

requires an acidic environment, several reagents were assessed for their effectiveness in

preventing HCV entry through blocking such pathways. Chlorpromazine, an inhibitor of

clathrin-coated pit formation, was shown to inhibit both HCVpp and HCVcc infection in vitro

in the validation of clathrin-mediated endocytosis pathway of HCV fusion to the host cell

membrane [61]. Arbidol, a broad-spectrum antiviral agent that blocks viral entry and has been

licensed in some regions for influenza, was described to trap the HCV virion in clathrin-coated

vesicles, thereby hindering the release of viral genome and the following infection [129]. It was

also suggested that arbidol could generally cause the intracellular accumulation of clathrin-

coated structures and restrain the formation of clathrin-coated pits on the cell surface [129],

possibly due to its tropism for lipid bilayers.

Small molecules disturbing the acidic endosomal compartments were also identified as HCV

entry inhibitors in the discovery of the low pH-triggered entry. These include bafilomycin A1

and concanamycin A, which are inhibitors of vacuolar H+-ATPases [130]. Weak bases such as

chloroquine and ammonium chloride were also found to inhibit the low pH-dependent con-

formational change required for the viral fusion, based on their ability to penetrate lysosomes

and increase the pH [131]. Finally, dUY11, one of the rigid amphipathic fusion inhibitors

(RAFIs), was suggested to inhibit HCV entry by interacting with the hydrophobic structures

in virions and preventing the formation of negative curvature required for viral fusion [132].

Curcumin [107] is also able to affect the fusion step as previously mentioned.

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

261



3.2.5. Small molecules inhibiting cell-to-cell transmission

Besides inhibiting the HCV entry in de novo infection, blocking cell-to-cell spread of the viral

particles is also important as this mode of transmission facilitates efficient spread of the virus

in the liver escaping from neutralizing antibodies [68, 69]. Ferroquine was speculated to

interact with HCV glycoprotein E1 and abrogate cell-to-cell spread of the virus [133]. Tri-

azine-based compounds indicated to be closely related to the amino acids on the glycoprotein

could also selectively inhibit genotype 1 HCVentry at the post-attachment step along with cell-

to-cell transmission [134, 135]. Several molecules also block cell-to-cell spread in addition to

their activities in hindering HCV viral entry. For instance, besides impeding viral attachment,

CHLA and PUG exhibit pronounced antiviral effects at the postinfection stage, especially in

restricting HCV foci expansion [104]. Others include EGCG [99], curcumin [107], erlotinib, and

dasatinib [54]. Silibinin, the major component of Silybum marianum that has been designated as

an orphan drug for the prevention of recurrent hepatitis C in liver transplant patients [136],

was also suggested to possess a prominent effect blocking transmission of the viral particles

between intercellular junctions [137, 138], although other studies have proposed that it may

slow down clathrin-mediated endocytosis [139] as well as inhibit viral membrane fusion [140].

This could be useful since DAA-resistant HCV variants have been suggested to escape via cell-

to-cell transmission route [141]. Therefore, the choice of inhibitors exhibiting mechanistic effect

against both HCV cell-to-cell spread and cell-free entry, or a combination of such two types of

inhibitors, should facilitate viral clearance.

3.2.6. Additional candidate entry inhibitors

Some other molecules were found able to prevent the infection at different steps of HCV entry.

The estrogen receptor modulator tamoxifen [142] and HCV infectivity inhibitor 1 (HCV II-1 or

GS-563253) [143] were shown to inhibit the HCV infection at both attachment and post-binding

steps. HCV II-1 was also found capable of impeding infectious virion propagation [143]. HCV

entry inhibitor 1 (EI-1 or BJ486K), a flavonoid ladanein, was shown to interrupt the viral entry

at post-attachment stage [144]. The exact mechanisms of these molecules require further inves-

tigations. Other compounds such as serum amyloid A [145, 146], p7 ion channel-derived

peptide H2-3 [147], amphipathic DNA polymers [148], lactoferrins [149], tellimagrandin I and

its derivatives [150], indole derivatives [151], and imidazo[1,2α][1,8]naphthyridine derivatives

[152] were found able to inhibit HCV entry with mechanisms that remain to be clarified.

3.3. Control of HCV infection risks in human blood-derived therapeutic products

Many viruses can contaminate human blood. HCV, along with HIVand HBVare a major cause

of infectious complications of blood product transfusion therapy. HCV contamination in

patients by transfusion of blood components such as red blood cells, platelets or clinical

plasma, as well as industrial fractionated plasma products, has been well documented. At the

time of the “tainted blood scandal,” numerous recipients of blood components and hemophil-

iacs receiving plasma-derived factor VIII concentrates were contaminated through transfusion

of nonvirally inactivated products prepared from blood products that were not HCV-tested.
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HCV transmission through blood transfusion is a major medical issue, as infection can lead to

high risk of liver cirrhosis and eventually cancer complications.

3.3.1. HCV safety nets for blood components

There are now over 100 million whole blood donations collected each year in the world.

Collected blood is most often separated by “blood establishments” into red blood cell concen-

trates, platelet concentrates, and plasma that are transfused at nearby hospitals. Plasma, which

can be obtained from whole blood collection or drawn by specialized apheresis procedures,

can also be used as raw material for the production of “industrial” plasma protein products.

These protein drugs include immunoglobulins G (IgGs), various coagulation factors, albumin,

and many others. Industrial plasma products are manufactured from pools of plasma of

several thousand liters, making them statistically more susceptible to contamination by HCV

and other viruses as one highly infectious donation would contaminate the whole plasma pool

and potentially the derived products.

Today in developed economies benefiting from strict regulatory oversight, several measures

are in place to decrease the possibility for patients to acquire HCV by transfusion. Blood

transfusion HCV safety nets for blood components rely on complementary measures

encompassing (a) epidemiological control of the population, (b) individual screening of candi-

date blood donors to defer those identified as presenting potential risk factors, and (c) individ-

ual blood donation testing to identify and eliminate donations reactive to anti-HCV antibodies

and/or HCV RNA nucleic acid test (NAT) [153]. In technology-advanced countries applying

such procedures, this has allowed to decrease the risk of acquiring HCV by transfusion of

single blood components down to approximately 1 per 1.8 million. The remaining risk reflects

the inevitable presence of “window-phase” donations for which all markers to detect donor

infection by HCV, either indirect or direct, are found nonreactive [154, 155]. Understandably,

HCV transmission risks are substantially higher in less developed economies (a) lacking a safe

blood donor base, (b) relying on paid or "replacement" donors to increase the blood supply, (c)

with a deficient blood collection system, and (d) with a lack of reliable viral testing procedures

[6]. The ultimate barrier to avoiding HCV transmission risks from blood products collected

during the window-phase period relies on the implementation of dedicated viral reduction

treatments. Those have been developed for industrial plasma protein products, plasma for

transfusion, and platelet concentrates. Until now, however, no treatment is available commer-

cially for whole blood and red blood cell concentrates.

3.3.2. HCV reduction treatment of industrial plasma protein products

Development and implementation of dedicated viral/HCV reduction treatments of industrial

plasma protein products took place in the 1980s and early 1990s [156]. In the early 1980s,

albumin, a relatively heat-stable protein, was the only plasma product subjected to specific

HCV inactivation by heat treatment at 60 °C for 10 h in the liquid state (a process called

pasteurization), in the presence of fatty acid stabilizers. From the mid-1980s to the early

1990s, heat treatment of freeze-dried coagulation factors at 60–68 °C for 24–96 h or 80 °C for

72 h were developed to inactivate HIVand HCV concomitantly [156]. Although pasteurization
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has successfully been adapted to several plasma products (such as antithrombin and alpha 1-

antitrypsin), a milestone in the safety of industrial plasma products was the development of

the solvent/detergent (S/D) incubation procedure at 20–37 °C [157] designed to dissolve the

lipid envelope of viruses, including HCV, without affecting plasma protein functions. This

technique is still largely used for a wide range of industrial plasma products owing to well-

proven efficacy and a safety profile established by years of industrial and clinical practices

[158]. Other HCV viral inactivation treatments include low pH incubation and caprylic acid

precipitation/incubation of immunoglobulin products [159]. An additional milestone to

enhance plasma protein product safety is nanofiltration, a procedure of filtration of protein

solutions on 15–35 nm nanopore membrane devices designed to entrap and remove viruses

[160]. This dedicated virus removal methodology is well established, including for HCV, and is

currently applied to most plasma products [156]. Thanks to the implementation of such

reduction treatments, most often combined in a complementary manner at different stages of

the manufacturing process, no case of HCV transmission by industrial plasma products has

been reported since 1993 [154].

3.3.3. HCV reduction treatment applied to plasma and platelet concentrates for transfusion

3.3.3.1. Plasma

Several viral inactivation treatments of clinical plasma are licensed in various countries [161].

The S/D technology was adapted to 100–500 l of pooled industrial plasma in the early 1990s [162]

and demonstrated, prior to HCV identification, to efficiently inactivate non-A-non-B hepatitis

virus [163]. The removal of the S/D agents is typically achieved by oil extraction and column

hydrophobic interaction chromatography [162]. A miniaturized version of the S/D process using

a different detergent (Triton X-45 instead of Triton X-100) has been developed allowing its

implementation in single-use equipment, thereby facilitating its application in developing coun-

tries, such as Egypt, currently lacking industrial capacity [164]. The efficacy of such method to

inactivate HCV has been specifically demonstrated using an in vitro culture assay [165].

A procedure consisting in adding methylene blue and illuminating acellular plasma was

made available in the early 1990s [166]. The method leads to inactivation of free HCV

particles through photochemical alteration of nucleic acids and incapacity of replication

[154, 167].

Two other photoinactivation procedures of plasma have been licensed more recently. One com-

bines the addition of psoralen S-59 (amotosalen) with ultraviolet light A illumination [168]. The

other is based on the addition of riboflavin followed by UV irradiation [169]. These small

molecules can penetrate membranes and intercalate with helical regions of HCV nucleic acids.

Subsequent UV illumination irreversibly alters nucleic acids, making HCV particles unable to

replicate [154, 170].

3.3.3.2. Platelets

Development of HCV inactivation methods in cellular blood products in general, and platelet

concentrates in particular, has been more challenging due to the difficulty to inactivate
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intracellular viruses without affecting cell function for transfusion. The two photoinactivation

methods applied to plasma could nevertheless be adapted to the inactivation of HCV and

other viruses in platelet concentrates [170–172].

3.3.3.3. Cryoprecipitate

Cryoprecipitate, obtained by a freeze-thaw process of plasma, is rich in factor VIII, vonWillebrand

factor, and fibrinogen. This plasma fraction is still largely used in many developing countries for

substitution therapy in hemophilia A, von Willebrand factor disease, or fibrinogen deficiency,

respectively. The frequency of treatment of patients with congenital deficiency exposes them to a

high risk of infection in countries such as Egypt with a close to 10% HCV incidence [173, 174].

Similar mini-pool methods of HCV inactivation used for clinical plasma are applied to

cryoprecipitates [164].

3.3.3.4. Red blood cell concentrates and whole blood

No methodology is licensed yet for HCV inactivation in red blood cell concentrates or whole

blood. However, the riboflavin/UV pathogen reduction technology is being adapted to the

treatment of whole blood [175] and has been shown recently to contribute to lower the risk of

malaria transmission in a clinical study in Ghana [176]. It is still uncertain whether a pathogen

reduction technology can be developed to substantially inactivate HCV in whole blood or red

blood cell concentrates without detrimentally affecting their transfusion quality and function-

ality or immunogenic potential.

3.4. Therapeutic apheresis and passive immunotherapy

Additional methods of precluding HCV infection are to remove circulating virus through

therapeutic apheresis or attempting to neutralize HCV infectivity by administering plasma-

derived anti-HCV immunoglobulins. These strategies are aimed at reducing the infectious

viral load and have been explored in clinical trials.

3.4.1. Therapeutic apheresis for the removal of HCV virions

Therapeutic apheresis is the process of transiently circulating the blood outside the body and

removing the components causing particular diseases by membrane separation and adsorp-

tion separation technologies. In the case of HCV, immunoadsorption apheresis was first

applied to treat the chronic hepatitis C-related cryoglobulinemia that causes autoimmune

symptoms [177]. The technique of heparin-induced extracorporeal LDL precipitation (HELP)

apheresis, which could eliminate apolipoprotein B-containing lipoproteins, was then discov-

ered to reduce HCV viral load [178]; however, the decline was found not correlated with

LDL reduction in plasma and appeared to be transient due to the high turnover rate of HCV

[179]. Studies using combination therapy of antiviral agents and double-filtration plasma-

pheresis (DFPP) that selectively removes substances with high molecular weight including

HCV particles and therefore, happened to display better effects of suppressing the viral

kinetics and therefore have been substantially explored during the past decade. Patients

who underwent the prophylactic combination treatment of low-dose IFN, ribavirin, and
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DFPP had no evidence of HCV recurrence or fibrosing cholestatic hepatitis exacerbation for

more than 1 year after liver transplantation [180]. Combination of DFPP and IFN also

achieved impressive SVR in difficult-to-treat patients (i.e., relapsed, nonresponder, or HIV-

coinfected patients) [181–184] and may also be safe for the elderly population [185]. How-

ever, the approach of apheresis for decreasing HCV viral load requires specialty equipment

and possesses potential risk of adverse events (e.g., blood pressure lowering, puncture site

hematoma, or infection) [181, 185].

3.4.2. Passive immunotherapy using plasma-derived polyclonal HCV immunoglobulins

Passive immunotherapy, also known as antibody therapy, is a very well-established treat-

ment based on the administration of polyclonal hyperimmune immunoglobulins extracted

from plasma or mAbs prepared by genetic engineering technologies. One application of

passive immunity is to prevent or treat infections due to viruses or to reduce the pathologies

associated with bacterial or venom toxins. Human immunoglobulins for passive immuno-

therapy are fractionated from the plasma of immunized donors having high-titer antibodies

against a particular organism or antigen. For the fractionation process, plasma donations

from hundreds or thousands of donors are pooled and subjected to various purification and

viral inactivation steps, as described in this chapter, to isolate an essentially pure Ig prepa-

ration [159, 186]. Current human plasma-derived hyperimmune globulin products are used

for the prophylaxis and treatment of viral diseases due to hepatitis B virus (HBV), rabies

virus, cytomegalovirus, hepatitis A virus, or respiratory syncytial virus [187]. Human

plasma-derived polyclonal hepatitis B immunoglobulin for intravenous use has been made

available commercially for over 20 years in some countries. These licensed preparations are

efficacious to predictably prevent HBV recurrence after liver transplantation and vertical

HBV transmission from mother to child and are used as prophylactic treatment to prevent

infection following contact with HBV-contaminated body fluids [188].

The possibility to use polyclonal HCV immunoglobulin to treat or prevent HCV infection has

been proposed for many years [189], but no commercial preparation is available yet as it is not

proven whether such immunoglobulin can prevent HCV infection or control viremia in

infected patients. The rationale in polyclonal HCV immunoglobulins made from large pool of

plasma units is to have a preparation that contains neutralizing antibodies to various strains of

HCV [189]. However, the presence of neutralizing antibodies has been unclear initially as their

presence in plasma was just considered to reflect the occurrence of an infection. Data have

suggested that HCV-neutralizing antibodies exist in anti-HCV-positive plasma, but the anti-

HCV antibody titer does not correlate with neutralizing capacity [190]. In vitro and animal

experiments in a mice model have nevertheless suggested the presence of neutralizing anti-

bodies in polyclonal IgG from a patient with a long-standing HCV infection [191]. A clinical

study was initiated in the USA to evaluate the capacity of polyclonal plasma-derived HCV

immunoglobulins to “prevent post-transplantation HCV infection of the liver graft and related

progression of HCV-related liver disease.” This clinical trial was “designed to evaluate a

polyclonal human hepatitis C immune globulin given during and post liver transplantation

for preventing or reducing the impact of recurrent HCV infection” [192]. However the trial was

terminated in 2012 after treatment of seven patients (five receiving the immunoglobulins and
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two standard-of-care treatment alone) and no data reported. A new trial has begun in 2013 and

was recently completed [193]. It is unclear whether plasma-derived polyclonal HCV immuno-

globulin will be developed. If this occurs, clear donor screening and donation testing criteria

should be defined to determine the specifications of the plasma donations suitable for fraction-

ation, as well as the fractionation methodology itself to exclude any infectious risks from the

fractionation of plasma donations. It should be noted that several mAbs for clinical use in

HCV-infected patients have been proposed and one has undergone a clinical trial [190]. The

future will indicate whether any HCV immunoglobulin, either polyclonal or monoclonal, has a

role to play in the control of HCV infection.

4. Prospects of targeting HCVentry in clinical setting

Treatment options against hepatitis C have significantly improved owing to recent advances in the

development of anti-HCV therapeutics. Nevertheless, there is still much room for improvement

due to potential drug resistance and possibility of viral rebound, which usually require long

periods of monitoring and analysis to uncover. More importantly, there is currently no immuniza-

tion or prophylactic treatment against hepatitis C. Introducing novel antivirals with a different

mode of action, such as targeting viral entry using mAbs or small molecules, not only helps

expand the spectrum of anti-HCV drugs but also in developing novel treatment modalities. Many

of the mAbs targeting HCV receptors/coreceptors as well as small-molecule inhibitors of HCV

entry impede both viral attachment and cell-to-cell transmission; this is useful in providing

protection against de novo infection and at the same time in helping restrict viral spread. The

inclusion of viral entry inhibitors to current DAAs has already been shown to produce synergistic

treatment effect [9]. Furthermore, taking a multistep targeting approach would help elevate the

genetic barrier against selection of resistant variants, thus facilitating viral clearance. Finally, the

advantage of developing entry inhibitors is its potential prophylactic application against hepatitis

C, which is particularly useful in protecting liver allografts from recurrent HCV infection. Other

protective measures of hepatitis C transmission in clinical scenarios include implementation of

viral inactivationmethods for the removal of HCV infectivity in therapeutic plasma products [165].

In addition, therapeutic apheresis [180] and protective anti-HCV immunoglobulins [192, 193] have

also been suggested for prevention of HCVreinfection in liver transplant patients. In the absence of

an approved hepatitis C vaccine, these approaches could be explored as preventive and prophy-

lactic measures against HCV infection. With the above-described strategies to preclude HCVentry,

it is foreseeable, in a not-too-distant future, that these tactics under development will help provide

a better management of chronic and recurrent hepatitis C, particularly in liver transplant setting.

Acknowledgements

CHL is a recipient of the 2016 CanHepC (Canadian Network on Hepatitis C) Summer

Research Scholarship and the MOST 105 College Research Scholarship (105-2815-C-038-018-

B). TB (NSC 102-2320-B-038-041-MY3) and LTL (NSC101-2320-B-038-038-MY2; MOST103-

2320-B-038-031-MY3) are supported by funding from the Ministry of Science and Technology

of Taiwan.

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

267



Author details

Thierry Burnouf1, Ching-Hsuan Liu2 and Liang-Tzung Lin2,3*

*Address all correspondence to: ltlin@tmu.edu.tw

1 Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical

Engineering, Taipei Medical University, Taipei, Taiwan

2 Department of Microbiology and Immunology, School of Medicine, College of Medicine,

Taipei Medical University, Taipei, Taiwan

3 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University,

Taipei, Taiwan

References

[1] U.S. Health Resources & Services Administration. Organ Procurement and Transplantation

Network [Internet]. 2016. Available from: https://optn.transplant.hrsa.gov/data/view-data-

reports/ [Accessed: 2016-08-15]

[2] Feeney ER, Chung RT. Antiviral treatment of hepatitis C. BMJ. 2014;348:g3308. DOI:

10.1136/bmj.g3308

[3] Zoulim F, Liang TJ, Gerbes AL, Aghemo A, Deuffic-Burban S, Dusheiko G, et al. Hepatitis

C virus treatment in the real world: optimising treatment and access to therapies. Gut.

2015;64(11):1824-33. DOI: 10.1136/gutjnl-2015-310421

[4] Hoofnagle JH, Sherker AH. Therapy for hepatitis C—the costs of success. N Engl J Med.

2014;370(16):1552-3. DOI: 10.1056/NEJMe1401508

[5] Liang TJ, Ghany MG. Current and future therapies for hepatitis C virus infection. N Engl

J Med. 2013;368(20):1907-17. DOI: 10.1056/NEJMra1213651

[6] Thursz M, Fontanet A. HCV transmission in industrialized countries and resource-

constrained areas. Nat Rev Gastroenterol Hepatol. 2014;11(1):28-35. DOI: 10.1038/

nrgastro.2013.179

[7] Verna EC, Brown RS, Jr. Hepatitis C and liver transplantation: enhancing outcomes and

should patients be retransplanted. Clin Liver Dis. 2008;12(3):637-59, ix-x. DOI: 10.1016/j.

cld.2008.03.010

[8] Firpi RJ, Clark V, Soldevila-Pico C, Morelli G, Cabrera R, Levy C, et al. The natural history

of hepatitis C cirrhosis after liver transplantation. Liver Transpl. 2009;15(9):1063-71. DOI:

10.1002/lt.21784

Advances in Treatment of Hepatitis C and B268



[9] Xiao F, Fofana I, Thumann C, Mailly L, Alles R, Robinet E, et al. Synergy of entry

inhibitors with direct-acting antivirals uncovers novel combinations for prevention and

treatment of hepatitis C. Gut. 2015;64(3):483-94. DOI: 10.1136/gutjnl-2013-306155

[10] Merz A, Long G, Hiet MS, Brugger B, Chlanda P, Andre P, et al. Biochemical and

morphological properties of hepatitis C virus particles and determination of their

lipidome. J Biol Chem. 2011;286(4):3018-32. DOI: 10.1074/jbc.M110.175018

[11] Catanese MT, Uryu K, Kopp M, Edwards TJ, Andrus L, Rice WJ, et al. Ultrastructural

analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A. 2013;110(23):9505-10.

DOI: 10.1073/pnas.1307527110

[12] Andre P, Komurian-Pradel F, Deforges S, Perret M, Berland JL, Sodoyer M, et al. Charac-

terization of low- and very-low-density hepatitis C virus RNA-containing particles. J

Virol. 2002;76(14):6919-28. DOI: 10.1128/JVI.76.14.6919-6928.2002

[13] Chang KS, Jiang J, Cai Z, Luo G. Human apolipoprotein e is required for infectivity and

production of hepatitis C virus in cell culture. J Virol. 2007;81(24):13783-93. DOI: 10.1128/

JVI.01091-07

[14] Meunier JC, Russell RS, Engle RE, Faulk KN, Purcell RH, Emerson SU. Apolipoprotein c1

association with hepatitis C virus. J Virol. 2008;82(19):9647-56. DOI: 10.1128/JVI.00914-08

[15] Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, Toms GL. Associa-

tion between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed

in iodixanol density gradients. J Virol. 2006;80(5):2418-28. DOI: 10.1128/JVI.80.5.2418-

2428.2006

[16] Jiang J, Luo G. Apolipoprotein E but not B is required for the formation of infectious

hepatitis C virus particles. J Virol. 2009;83(24):12680-91. DOI: 10.1128/JVI.01476-09

[17] Benga WJ, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, Lupberger J, et al. Apolipo-

protein E interacts with hepatitis C virus nonstructural protein 5A and determines

assembly of infectious particles. Hepatology. 2010;51(1):43-53. DOI: 10.1002/hep.23278

[18] Huang H, Sun F, Owen DM, Li W, Chen Y, Gale M, Jr., et al. Hepatitis C virus production

by human hepatocytes dependent on assembly and secretion of very low-density lipo-

proteins. Proc Natl Acad Sci U S A. 2007;104(14):5848-53. DOI: 10.1073/pnas.0700760104

[19] Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, Chisari FV. Cellular determinants of

hepatitis C virus assembly, maturation, degradation, and secretion. J Virol. 2008;82

(5):2120-9. DOI: 10.1128/JVI.02053-07

[20] Icard V, Diaz O, Scholtes C, Perrin-Cocon L, Ramiere C, Bartenschlager R, et al. Secretion

of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B

positive lipoproteins. PLoS One. 2009;4(1):e4233. DOI: 10.1371/journal.pone.0004233

[21] Hueging K, Doepke M, Vieyres G, Bankwitz D, Frentzen A, Doerrbecker J, et al. Apoli-

poprotein E codetermines tissue tropism of hepatitis C virus and is crucial for viral cell-

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

269



to-cell transmission by contributing to a postenvelopment step of assembly. J Virol.

2014;88(3):1433-46. DOI: 10.1128/JVI.01815-13

[22] Douam F, Lavillette D, Cosset FL. The mechanism of HCV entry into host cells. Prog Mol

Biol Transl Sci. 2015;129:63-107. DOI: 10.1016/bs.pmbts.2014.10.003

[23] Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, et al. Cellular binding of

hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol

Chem. 2003;278(42):41003-12. DOI: 10.1074/jbc.M302267200

[24] Barth H, Schnober EK, Zhang F, Linhardt RJ, Depla E, Boson B, et al. Viral and cellular

determinants of the hepatitis C virus envelope-heparan sulfate interaction. J Virol.

2006;80(21):10579-90. DOI: 10.1128/JVI.00941-06

[25] Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, Pietschmann T, et al. Char-

acterization of the early steps of hepatitis C virus infection by using luciferase reporter

viruses. J Virol. 2006;80(11):5308-20. DOI: 10.1128/JVI.02460-05

[26] Shi Q, Jiang J, Luo G. Syndecan-1 serves as the major receptor for attachment of hepatitis

C virus to the surfaces of hepatocytes. J Virol. 2013;87(12):6866-75. DOI: 10.1128/

JVI.03475-12

[27] Lefevre M, Felmlee DJ, Parnot M, Baumert TF, Schuster C. Syndecan 4 is involved in

mediating HCV entry through interaction with lipoviral particle-associated apolipopro-

tein E. PLoS One. 2014;9(4):e95550. DOI: 10.1371/journal.pone.0095550

[28] Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other

flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U

S A. 1999;96(22):12766-71. DOI: 10.1073/pnas.96.22.12766

[29] Owen DM, Huang H, Ye J, Gale M, Jr. Apolipoprotein E on hepatitis C virion facilitates

infection through interaction with low-density lipoprotein receptor. Virology. 2009;394

(1):99-108. DOI: 10.1016/j.virol.2009.08.037

[30] Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, et al. The

low-density lipoprotein receptor plays a role in the infection of primary human hepato-

cytes by hepatitis C virus. J Hepatol. 2007;46(3):411-9. DOI: 10.1016/j.jhep.2006.09.024

[31] Albecka A, Belouzard S, Op de Beeck A, Descamps V, Goueslain L, Bertrand-Michel J,

et al. Role of low-density lipoprotein receptor in the hepatitis C virus life cycle.

Hepatology. 2012;55(4):998-1007. DOI: 10.1002/hep.25501

[32] Syed GH, Tang H, Khan M, Hassanein T, Liu J, Siddiqui A. Hepatitis C virus stimulates

low-density lipoprotein receptor expression to facilitate viral propagation. J Virol. 2014;88

(5):2519-29. DOI: 10.1128/JVI.02727-13

[33] Jiang J, Cun W, Wu X, Shi Q, Tang H, Luo G. Hepatitis C virus attachment mediated by

apolipoprotein E binding to cell surface heparan sulfate. J Virol. 2012;86(13):7256-67. DOI:

10.1128/JVI.07222-11

Advances in Treatment of Hepatitis C and B270



[34] Jiang J, Wu X, Tang H, Luo G. Apolipoprotein E mediates attachment of clinical hepatitis

C virus to hepatocytes by binding to cell surface heparan sulfate proteoglycan receptors.

PLoS One. 2013;8(7):e67982. DOI: 10.1371/journal.pone.0067982

[35] Xu Y, Martinez P, Seron K, Luo G, Allain F, Dubuisson J, et al. Characterization of

hepatitis C virus interaction with heparan sulfate proteoglycans. J Virol. 2015;89(7):3846-

58. DOI: 10.1128/JVI.03647-14

[36] Hishiki T, Shimizu Y, Tobita R, Sugiyama K, Ogawa K, Funami K, et al. Infectivity of

hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol.

2010;84(22):12048-57. DOI: 10.1128/JVI.01063-10

[37] Dao Thi VL, Granier C, Zeisel MB, Guerin M, Mancip J, Granio O, et al. Characterization

of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger

receptor BI for entry steps. J Biol Chem. 2012;287(37):31242-57. DOI: 10.1074/jbc.

M112.365924

[38] Catanese MT, Ansuini H, Graziani R, Huby T, Moreau M, Ball JK, et al. Role of scavenger

receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J

Virol. 2010;84(1):34-43. DOI: 10.1128/JVI.02199-08

[39] Maillard P, Huby T, Andreo U, Moreau M, Chapman J, Budkowska A. The interaction of

natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by

ApoB-containing lipoproteins. FASEB J. 2006;20(6):735-7. DOI: 10.1096/fj.05-4728fje

[40] Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, et al. The human

scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus.

EMBO J. 2002;21(19):5017-25. DOI: 10.1093/emboj/cdf529

[41] Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, et al. Cell entry of

hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the

SR-B1 scavenger receptor. J Biol Chem. 2003;278(43):41624-30. DOI: 10.1074/jbc.M30528

9200

[42] Zahid MN, Turek M, Xiao F, Thi VL, Guerin M, Fofana I, et al. The postbinding activity of

scavenger receptor class B type I mediates initiation of hepatitis C virus infection and

viral dissemination. Hepatology. 2013;57(2):492-504. DOI: 10.1002/hep.26097

[43] Bankwitz D, Vieyres G, Hueging K, Bitzegeio J, Doepke M, Chhatwal P, et al. Role of

hypervariable region 1 for the interplay of hepatitis C virus with entry factors and

lipoproteins. J Virol. 2014;88(21):12644-55. DOI: 10.1128/JVI.01145-14

[44] Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, Cosset FL, et al.

Scavenger receptor class B type I is a key host factor for hepatitis C virus infection

required for an entry step closely linked to CD81. Hepatology. 2007;46(6):1722-31. DOI:

10.1002/hep.21994

[45] Kapadia SB, Barth H, Baumert T, McKeating JA, Chisari FV. Initiation of hepatitis C virus

infection is dependent on cholesterol and cooperativity between CD81 and scavenger

receptor B type I. J Virol. 2007;81(1):374-83. DOI: 10.1128/JVI.01134-06

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

271



[46] Koutsoudakis G, Herrmann E, Kallis S, Bartenschlager R, Pietschmann T. The level of

CD81 cell surface expression is a key determinant for productive entry of hepatitis C

virus into host cells. J Virol. 2007;81(2):588-98. DOI: 10.1128/JVI.01534-06

[47] Molina S, Castet V, Pichard-Garcia L, Wychowski C, Meurs E, Pascussi JM, et al. Serum-

derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81

dependent. J Virol. 2008;82(1):569-74. DOI: 10.1128/JVI.01443-07

[48] Feneant L, Levy S, Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses.

2014;6(2):535-72. DOI: 10.3390/v6020535

[49] Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, et al. Claudin association

with CD81 defines hepatitis C virus entry. J Biol Chem. 2010;285(27):21092-102. DOI:

10.1074/jbc.M110.104836

[50] Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, et al. CD81 and

claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol. 2008;82(10):5007-

20. DOI: 10.1128/JVI.02286-07

[51] Farquhar MJ, Hu K, Harris HJ, Davis C, Brimacombe CL, Fletcher SJ, et al. Hepatitis C

virus induces CD81 and claudin-1 endocytosis. J Virol. 2012;86(8):4305-16. DOI: 10.1128/

JVI.06996-11

[52] Brazzoli M, Bianchi A, Filippini S, Weiner A, Zhu Q, Pizza M, et al. CD81 is a central

regulator of cellular events required for hepatitis C virus infection of human hepatocytes.

J Virol. 2008;82(17):8316-29. DOI: 10.1128/JVI.00665-08

[53] Liu Z, Tian Y, Machida K, Lai MM, Luo G, Foung SK, et al. Transient activation of the

PI3K-AKT pathway by hepatitis C virus to enhance viral entry. J Biol Chem. 2012;287

(50):41922-30. DOI: 10.1074/jbc.M112.414789

[54] Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, et al. EGFR and EphA2 are

host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med.

2011;17(5):589-95. DOI: 10.1038/nm.2341

[55] Diao J, Pantua H, Ngu H, Komuves L, Diehl L, Schaefer G, et al. Hepatitis C virus induces

epidermal growth factor receptor activation via CD81 binding for viral internalization

and entry. J Virol. 2012;86(20):10935-49. DOI: 10.1128/JVI.00750-12

[56] Rocha-Perugini V, Montpellier C, Delgrange D, Wychowski C, Helle F, Pillez A, et al. The

CD81 partner EWI-2wint inhibits hepatitis C virus entry. PLoS One. 2008;3(4):e1866. DOI:

10.1371/journal.pone.0001866

[57] Potel J, Rassam P, Montpellier C, Kaestner L, Werkmeister E, Tews BA, et al. EWI-2wint

promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cell Microbiol. 2013;15

(7):1234-52. DOI: 10.1111/cmi.12112

[58] Sourisseau M, Michta ML, Zony C, Israelow B, Hopcraft SE, Narbus CM, et al. Temporal

analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS

Pathog. 2013;9(3):e1003244. DOI: 10.1371/journal.ppat.1003244

Advances in Treatment of Hepatitis C and B272



[59] Martin DN, Uprichard SL. Identification of transferrin receptor 1 as a hepatitis C virus entry

factor. Proc Natl Acad Sci U S A. 2013;110(26):10777-82. DOI: 10.1073/pnas.1301764110

[60] Sainz B, Jr., Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, et al. Identification

of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus

entry factor. Nat Med. 2012;18(2):281-5. DOI: 10.1038/nm.2581

[61] Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, et al.

Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol. 2006;80

(14):6964-72. DOI: 10.1128/JVI.00024-06

[62] Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a critical postinterna-

lization step and delivery to early endosomes via clathrin-coated vesicles. J Virol. 2006;80

(23):11571-8. DOI: 10.1128/JVI.01717-06

[63] Coller KE, Berger KL, Heaton NS, Cooper JD, Yoon R, Randall G. RNA interference and

single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog. 2009;5(12):

e1000702. DOI: 10.1371/journal.ppat.1000702

[64] Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, et al. Claudin-1 is a

hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446(7137):801-

5. DOI: 10.1038/nature05654

[65] Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, et al. Human occludin

is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009;457

(7231):882-6. DOI: 10.1038/nature07684

[66] Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, et al. A genetically

humanized mouse model for hepatitis C virus infection. Nature. 2011;474(7350):208-11.

DOI: 10.1038/nature10168

[67] Da Costa D, Turek M, Felmlee DJ, Girardi E, Pfeffer S, Long G, et al. Reconstitution of the

entire hepatitis C virus life cycle in nonhepatic cells. J Virol. 2012;86(21):11919-25. DOI:

10.1128/JVI.01066-12

[68] Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, Harris HJ, et al. Hepatitis C

virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies.

Hepatology. 2008;47(1):17-24. DOI: 10.1002/hep.21959

[69] Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, et al. Neutralizing

antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol. 2011;85(1):596-605.

DOI: 10.1128/JVI.01592-10

[70] Catanese MT, Loureiro J, Jones CT, Dorner M, von Hahn T, Rice CM. Different require-

ments for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell

transmission. J Virol. 2013;87(15):8282-93. DOI: 10.1128/JVI.01102-13

[71] Barretto N, Sainz B, Jr., Hussain S, Uprichard SL. Determining the involvement and

therapeutic implications of host cellular factors in hepatitis C virus cell-to-cell spread. J

Virol. 2014;88(9):5050-61. DOI: 10.1128/JVI.03241-13

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

273



[72] Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, et al. Binding of hepatitis

C virus to CD81. Science. 1998;282(5390):938-41. DOI: 10.1126/science.282.5390.938

[73] Flint M, Maidens C, Loomis-Price LD, Shotton C, Dubuisson J, Monk P, et al. Character-

ization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor,

CD81. J Virol. 1999;73(8):6235-44.

[74] Levy S, Todd SC, Maecker HT. CD81 (TAPA-1): a molecule involved in signal transduc-

tion and cell adhesion in the immune system. Annu Rev Immunol. 1998;16:89-109. DOI:

10.1146/annurev.immunol.16.1.89

[75] Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I, Reiser H, et al.

Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology.

2008;48(6):1761-8. DOI: 10.1002/hep.22547

[76] Fofana I, Xiao F, Thumann C, Turek M, Zona L, Tawar RG, et al. A novel monoclonal anti-

CD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus

cell-cell transmission. PLoS One. 2013;8(5):e64221. DOI: 10.1371/journal.pone.0064221

[77] Ji C, Liu Y, Pamulapati C, Bohini S, Fertig G, Schraeml M, et al. Prevention of hepatitis C

virus infection and spread in human liver chimeric mice by an anti-CD81 monoclonal

antibody. Hepatology. 2015;61(4):1136-44. DOI: 10.1002/hep.27603

[78] Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scaven-

ger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518-20.

DOI: 10.1126/science.271.5248.518

[79] Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influ-

ences diverse physiologic systems. J Clin Invest. 2001;108(6):793-7. DOI: 10.1172/JCI14011

[80] Catanese MT, Graziani R, von Hahn T, Moreau M, Huby T, Paonessa G, et al. High-

avidity monoclonal antibodies against the human scavenger class B type I receptor

efficiently block hepatitis C virus infection in the presence of high-density lipoprotein. J

Virol. 2007;81(15):8063-71. DOI: 10.1128/JVI.00193-07

[81] Meuleman P, Catanese MT, Verhoye L, Desombere I, Farhoudi A, Jones CT, et al. A

human monoclonal antibody targeting scavenger receptor class B type I precludes hepa-

titis C virus infection and viral spread in vitro and in vivo. Hepatology. 2012;55(2):364-72.

DOI: 10.1002/hep.24692

[82] Lacek K, Vercauteren K, Grzyb K, Naddeo M, Verhoye L, Slowikowski MP, et al. Novel

human SR-BI antibodies prevent infection and dissemination of HCV in vitro and in

humanized mice. J Hepatol. 2012;57(1):17-23. DOI: 10.1016/j.jhep.2012.02.018

[83] Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral

membrane proteins localizing at tight junctions with no sequence similarity to occludin. J

Cell Biol. 1998;141(7):1539-50. DOI: 10.1083/jcb.141.7.1539

[84] Krieger SE, Zeisel MB, Davis C, Thumann C, Harris HJ, Schnober EK, et al. Inhibition of

hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of

E2-CD81-claudin-1 associations. Hepatology. 2010;51(4):1144-57. DOI: 10.1002/hep.23445

Advances in Treatment of Hepatitis C and B274



[85] Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, Fafi-Kremer S, et al. Monoclonal anti-

claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes.

Gastroenterology. 2010;139(3):953-64, 64 e1-4. DOI: 10.1053/j.gastro.2010.05.073

[86] Mailly L, Xiao F, Lupberger J, Wilson GK, Aubert P, Duong FH, et al. Clearance of

persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting

monoclonal antibody. Nat Biotechnol. 2015;33(5):549-54. DOI: 10.1038/nbt.3179

[87] Fukasawa M, Nagase S, Shirasago Y, Iida M, Yamashita M, Endo K, et al. Monoclonal

antibodies against extracellular domains of claudin-1 block hepatitis C virus infection in a

mouse model. J Virol. 2015;89(9):4866-79. DOI: 10.1128/JVI.03676-14

[88] Flego M, Ascione A, Cianfriglia M, Vella S. Clinical development of monoclonal anti-

body-based drugs in HIV and HCV diseases. BMC Med. 2013;11:4. DOI: 10.1186/1741-

7015-11-4

[89] Broering TJ, Garrity KA, Boatright NK, Sloan SE, Sandor F, Thomas WD, Jr., et al. Iden-

tification and characterization of broadly neutralizing human monoclonal antibodies

directed against the E2 envelope glycoprotein of hepatitis C virus. J Virol. 2009;83

(23):12473-82. DOI: 10.1128/JVI.01138-09

[90] Eren R, Landstein D, Terkieltaub D, Nussbaum O, Zauberman A, Ben-Porath J, et al.

Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis

C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant

patients. J Virol. 2006;80(6):2654-64. DOI: 10.1128/JVI.80.6.2654-2664.2006

[91] Ilan E, Arazi J, Nussbaum O, Zauberman A, Eren R, Lubin I, et al. The hepatitis C virus

(HCV)-Trimera mouse: a model for evaluation of agents against HCV. J Infect Dis.

2002;185(2):153-61. DOI: 10.1086/338266

[92] Morin TJ, Broering TJ, Leav BA, Blair BM, Rowley KJ, Boucher EN, et al. Human mono-

clonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees.

PLoS Pathog. 2012;8(8):e1002895. DOI: 10.1371/journal.ppat.1002895

[93] Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset FL, et al. Monoclonal

antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope

glycoprotein. J Virol. 2005;79(17):11095-104. DOI: 10.1128/JVI.79.17.11095-11104.2005

[94] Sabo MC, Luca VC, Prentoe J, Hopcraft SE, Blight KJ, Yi M, et al. Neutralizing monoclo-

nal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and

inhibit infection at a postattachment step. J Virol. 2011;85(14):7005-19. DOI: 10.1128/

JVI.00586-11

[95] Schiano TD, Charlton M, Younossi Z, Galun E, Pruett T, Tur-Kaspa R, et al. Monoclonal

antibody HCV-AbXTL68 in patients undergoing liver transplantation for HCV: results of

a phase 2 randomized study. Liver Transpl. 2006;12(9):1381-9. DOI: 10.1002/lt.20876

[96] Chung RT, Gordon FD, Curry MP, Schiano TD, Emre S, Corey K, et al. Human monoclo-

nal antibody MBL-HCV1 delays HCV viral rebound following liver transplantation: a

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

275



randomized controlled study. Am J Transplant. 2013;13(4):1047-54. DOI: 10.1111/

ajt.12083

[97] Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody

therapeutics. Nat Biotechnol. 2007;25(12):1421-34. DOI: 10.1038/nbt1363

[98] Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies

for hepatitis C virus. Antiviral Res. 2014;105:100-11. DOI: 10.1016/j.antiviral.2014.02.013

[99] Ciesek S, von Hahn T, Colpitts CC, Schang LM, Friesland M, Steinmann J, et al. The green

tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology.

2011;54(6):1947-55. DOI: 10.1002/hep.24610

[100] Colpitts CC, Schang LM. A small molecule inhibits virion attachment to heparan sulfate-

or sialic acid-containing glycans. J Virol. 2014;88(14):7806-17. DOI: 10.1128/JVI.00896-14

[101] Calland N, Sahuc ME, Belouzard S, Pene V, Bonnafous P, Mesalam AA, et al. Poly-

phenols inhibit Hepatitis C virus entry by a new mechanism of action. J Virol. 2015;89

(19):10053-63. DOI: 10.1128/JVI.01473-15

[102] Lin LT, Chung CY, Hsu WC, Chang SP, Hung TC, Shields J, et al. Saikosaponin b2 is a

naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J Hepatol.

2015;62(3):541-8. DOI: 10.1016/j.jhep.2014.10.040

[103] Hsu WC, Chang SP, Lin LC, Li CL, Richardson CD, Lin CC, et al. Limonium sinense and

gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral

Res. 2015;118:139-47. DOI: 10.1016/j.antiviral.2015.04.003

[104] Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, Wang GH, et al. Broad-spectrum antiviral

activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans

for entry. BMC Microbiol. 2013;13:187. DOI: 10.1186/1471-2180-13-187

[105] Chung CY, Liu CH, Burnouf T, Wang GH, Chang SP, Jassey A, et al. Activity-based and

fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor

of hepatitis C virus entry. Antiviral Res. 2016;130:58-68. DOI: 10.1016/j.antiviral.2016.03.

012

[106] Chung CY, Liu CH, Wang GH, Jassey A, Li CL, Chen L, et al. (4R,6S)-2-Dihydromenis-

daurilide is a Butenolide that Efficiently Inhibits Hepatitis C Virus Entry. Sci Rep.

2016;6:29969. DOI: 10.1038/srep29969

[107] Anggakusuma, Colpitts CC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, et al.

Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver

cells. Gut. 2014;63(7):1137-49. DOI: 10.1136/gutjnl-2012-304299

[108] Barry J, Fritz M, Brender JR, Smith PE, Lee DK, Ramamoorthy A. Determining the

effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the

case of the antioxidant curcumin. J Am Chem Soc. 2009;131(12):4490-8. DOI: 10.1021/

ja809217u

Advances in Treatment of Hepatitis C and B276



[109] Helle F, Wychowski C, Vu-Dac N, Gustafson KR, Voisset C, Dubuisson J. Cyanovirin-N

inhibits hepatitis C virus entry by binding to envelope protein glycans. J Biol Chem.

2006;281(35):25177-83. DOI: 10.1074/jbc.M602431200

[110] Meuleman P, Albecka A, Belouzard S, Vercauteren K, Verhoye L, Wychowski C, et al.

Griffithsin has antiviral activity against hepatitis C virus. Antimicrob Agents

Chemother. 2011;55(11):5159-67. DOI: 10.1128/AAC.00633-11

[111] Brown KS, Keogh MJ, Owsianka AM, Adair R, Patel AH, Arnold JN, et al. Specific

interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus

entry. Protein Cell. 2010;1(7):664-74. DOI: 10.1007/s13238-010-0088-9

[112] Hamed MR, Brown RJ, Zothner C, Urbanowicz RA, Mason CP, Krarup A, et al. Recom-

binant human L-ficolin directly neutralizes hepatitis C virus entry. J Innate Immun.

2014;6(5):676-84. DOI: 10.1159/000362209

[113] Khanal M, Vausselin T, Barras A, Bande O, Turcheniuk K, Benazza M, et al.

Phenylboronic-acid-modified nanoparticles: potential antiviral therapeutics. ACS Appl

Mater Interfaces. 2013;5(23):12488-98. DOI: 10.1021/am403770q

[114] Khanal M, Barras A, Vausselin T, Feneant L, Boukherroub R, Siriwardena A, et al.

Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhi-

bition of hepatitis C viral entry. Nanoscale. 2015;7(4):1392-402. DOI: 10.1039/c4nr03875d

[115] Yu F, Wang Q, Zhang Z, Peng Y, Qiu Y, Shi Y, et al. Development of oleanane-type

triterpenes as a new class of HCV entry inhibitors. J Med Chem. 2013;56(11):4300-19.

DOI: 10.1021/jm301910a

[116] VanCompernolle SE,Wiznycia AV, Rush JR, DhanasekaranM, Baures PW, Todd SC. Small

molecule inhibition of hepatitis C virus E2 binding to CD81. Virology. 2003;314(1):371-80.

DOI: 10.1016/S0042-6822(03)00406-9

[117] Cui HK, Qing J, Guo Y, Wang YJ, Cui LJ, He TH, et al. Stapled peptide-based membrane

fusion inhibitors of hepatitis C virus. Bioorg Med Chem. 2013;21(12):3547-54. DOI: 10.

1016/j.bmc.2013.02.011

[118] Si Y, Liu S, Liu X, Jacobs JL, Cheng M, Niu Y, et al. A human claudin-1-derived peptide

inhibits hepatitis C virus entry. Hepatology. 2012;56(2):507-15. DOI: 10.1002/hep.25685

[119] Chi X, Niu Y, Cheng M, Liu X, Feng Y, Zheng F, et al. Identification of a potent and

broad-spectrum hepatitis C virus fusion inhibitory peptide from the E2 stem domain.

Sci Rep. 2016;6:25224. DOI: 10.1038/srep25224

[120] Holzer M, Ziegler S, Albrecht B, Kronenberger B, Kaul A, Bartenschlager R, et al.

Identification of terfenadine as an inhibitor of human CD81-receptor HCV-E2 interac-

tion: synthesis and structure optimization. Molecules. 2008;13(5):1081-110. DOI: 10.

3390/molecules13051081

[121] Masson D, Koseki M, Ishibashi M, Larson CJ, Miller SG, King BD, et al. Increased HDL

cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor.

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

277



Arterioscler Thromb Vasc Biol. 2009;29(12):2054-60. DOI: 10.1161/ATVBAHA.109.191

320

[122] Syder AJ, Lee H, Zeisel MB, Grove J, Soulier E, Macdonald J, et al. Small molecule

scavenger receptor BI antagonists are potent HCV entry inhibitors. J Hepatol. 2011;54

(1):48-55. DOI: 10.1016/j.jhep.2010.06.024

[123] Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, Schooley RT, et al. Evaluation of ITX

5061, a scavenger receptor B1 antagonist: resistance selection and activity in combina-

tion with other hepatitis C virus antivirals. J Infect Dis. 2012;205(4):656-62. DOI: 10.1093/

infdis/jir802

[124] Rowe IA, Tully DC, Armstrong MJ, Parker R, Guo K, Barton D, et al. Effect of scavenger

receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection

undergoing liver transplantation. Liver Transpl. 2016;22(3):287-97. DOI: 10.1002/lt.24349

[125] Yin P, Zhang L. Aspirin inhibits hepatitis C virus entry by downregulating claudin-1. J

Viral Hepat. 2016;23(1):62-4. DOI: 10.1111/jvh.12446

[126] Zona L, Lupberger J, Sidahmed-Adrar N, Thumann C, Harris HJ, Barnes A, et al. HRas

signal transduction promotes hepatitis C virus cell entry by triggering assembly of the

host tetraspanin receptor complex. Cell Host Microbe. 2013;13(3):302-13. DOI: 10.1016/j.

chom.2013.02.006

[127] Blanchet M, Sureau C, Guevin C, Seidah NG, Labonte P. SKI-1/S1P inhibitor PF-429242

impairs the onset of HCV infection. Antiviral Res. 2015;115:94-104. DOI: 10.1016/j.

antiviral.2014.12.017

[128] Chamoun-Emanuelli AM, Pecheur EI, Simeon RL, Huang D, Cremer PS, Chen Z. Phe-

nothiazines inhibit hepatitis C virus entry, likely by increasing the fluidity of cholesterol-

rich membranes. Antimicrob Agents Chemother. 2013;57(6):2571-81. DOI: 10.1128/

AAC.02593-12

[129] Blaising J, Levy PL, Polyak SJ, Stanifer M, Boulant S, Pecheur EI. Arbidol inhibits viral

entry by interfering with clathrin-dependent trafficking. Antiviral Res. 2013;100(1):215-

9. DOI: 10.1016/j.antiviral.2013.08.008

[130] Tscherne DM, Jones CT, Evans MJ, Lindenbach BD, McKeating JA, Rice CM. Time- and

temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J

Virol. 2006;80(4):1734-41. DOI: 10.1128/JVI.80.4.1734-1741.2006

[131] Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S. Lysosomotropic agents as HCV

entry inhibitors. Virol J. 2011;8:163. DOI: 10.1186/1743-422X-8-163

[132] St Vincent MR, Colpitts CC, Ustinov AV, Muqadas M, Joyce MA, Barsby NL, et al.

Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against

enveloped viruses. Proc Natl Acad Sci U S A. 2010;107(40):17339-44. DOI: 10.1073/

pnas.1010026107

Advances in Treatment of Hepatitis C and B278



[133] Vausselin T, Calland N, Belouzard S, Descamps V, Douam F, Helle F, et al. The antima-

larial ferroquine is an inhibitor of hepatitis C virus. Hepatology. 2013;58(1):86-97. DOI:

10.1002/hep.26273

[134] Baldick CJ, Wichroski MJ, Pendri A, Walsh AW, Fang J, Mazzucco CE, et al. A novel

small molecule inhibitor of hepatitis C virus entry. PLoS Pathog. 2010;6(9):e1001086.

DOI: 10.1371/journal.ppat.1001086

[135] Coburn GA, Fisch DN, Moorji SM, de Muys JM, Murga JD, Paul D, et al. Novel small-

molecule inhibitors of hepatitis C virus entry block viral spread and promote viral

clearance in cell culture. PLoS One. 2012;7(4):e35351. DOI: 10.1371/journal.pone.

0035351

[136] European Medicines Agency. Silibinin-C-2',3-dihydrogensuccinate, disodium salt for

the prevention of recurrent hepatitis C in liver transplant recipients [Internet]. 2010.

Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Orphan_de-

signation/2011/01/WC500101019.pdf [Accessed: 2016-08-15]

[137] Liu CH, Lin CC, Hsu WC, Chung CY, Lin CC, Jassey A, et al. Highly bioavailable

silibinin nanoparticles inhibit HCV infection. Gut. 2016. DOI: 10.1136/gutjnl-2016-312019

[138] Wagoner J, Negash A, Kane OJ, Martinez LE, Nahmias Y, Bourne N, et al. Multiple

effects of silymarin on the hepatitis C virus lifecycle. Hepatology. 2010;51(6):1912-21.

DOI: 10.1002/hep.23587

[139] Blaising J, Levy PL, Gondeau C, Phelip C, Varbanov M, Teissier E, et al. Silibinin inhibits

hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking.

Cell Microbiol. 2013;15(11):1866-82. DOI: 10.1111/cmi.12155

[140] Wagoner J, Morishima C, Graf TN, Oberlies NH, Teissier E, Pecheur EI, et al. Differen-

tial in vitro effects of intravenous versus oral formulations of silibinin on the HCV life

cycle and inflammation. PLoS One. 2011;6(1):e16464. DOI: 10.1371/journal.pone.

0016464

[141] Xiao F, Fofana I, Heydmann L, Barth H, Soulier E, Habersetzer F, et al. Hepatitis C virus

cell-cell transmission and resistance to direct-acting antiviral agents. PLoS Pathog.

2014;10(5):e1004128. DOI: 10.1371/journal.ppat.1004128

[142] Murakami Y, Fukasawa M, Kaneko Y, Suzuki T, Wakita T, Fukazawa H. Selective

estrogen receptor modulators inhibit hepatitis C virus infection at multiple steps of the

virus life cycle. Microbes Infect. 2013;15(1):45-55. DOI: 10.1016/j.micinf.2012.10.003

[143] Bush CO, Pokrovskii MV, Saito R, Morganelli P, Canales E, Clarke MO, et al. A small-

molecule inhibitor of hepatitis C virus infectivity. Antimicrob Agents Chemother.

2014;58(1):386-96. DOI: 10.1128/AAC.02083-13

[144] Haid S, Novodomska A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, et al. A plant-

derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastro-

enterology. 2012;143(1):213-22 e5. DOI: 10.1053/j.gastro.2012.03.036

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

279



[145] Lavie M, Voisset C, Vu-Dac N, Zurawski V, Duverlie G, Wychowski C, et al. Serum

amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a

cell culture system. Hepatology. 2006;44(6):1626-34. DOI: 10.1002/hep.21406

[146] Cai Z, Cai L, Jiang J, Chang KS, van der Westhuyzen DR, Luo G. Human serum amyloid

A protein inhibits hepatitis C virus entry into cells. J Virol. 2007;81(11):6128-33. DOI:

10.1128/JVI.02627-06

[147] Hong W, Lang Y, Li T, Zeng Z, Song Y, Wu Y, et al. A p7 ion channel-derived peptide

inhibits hepatitis C virus infection in vitro. J Biol Chem. 2015;290(38):23254-63. DOI:

10.1074/jbc.M115.662452

[148] Matsumura T, Hu Z, Kato T, Dreux M, Zhang YY, Imamura M, et al. Amphipathic DNA

polymers inhibit hepatitis C virus infection by blocking viral entry. Gastroenterology.

2009;137(2):673-81. DOI: 10.1053/j.gastro.2009.04.048

[149] El-Fakharany EM, Sanchez L, Al-Mehdar HA, Redwan EM. Effectiveness of human,

camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: compar-

ison study. Virol J. 2013;10:199. DOI: 10.1186/1743-422X-10-199

[150] Tamura S, Yang GM, Yasueda N, Matsuura Y, Komoda Y, Murakami N. Tellimagrandin

I, HCV invasion inhibitor from Rosae Rugosae Flos. Bioorg Med Chem Lett. 2010;20

(5):1598-600. DOI: 10.1016/j.bmcl.2010.01.084

[151] Han Z, Liang X, Wang Y, Qing J, Cao L, Shang L, et al. The discovery of indole

derivatives as novel hepatitis C virus inhibitors. Eur J Med Chem. 2016;116:147-55.

DOI: 10.1016/j.ejmech.2016.03.062

[152] Wang H, Wang S, Cheng L, Chen L, Wang Y, Qing J, et al. Discovery of imidazo[1,2-

alpha][1,8]naphthyridine derivatives as potential HCV entry inhibitor. ACS Med Chem

Lett. 2015;6(9):977-81. DOI: 10.1021/acsmedchemlett.5b00159

[153] WHO. Guidelines on good manufacturing practices for blood establishments. Annex 4.

WHO Technical Report Series. 2011;961:148-214.

[154] Busch MP, Glynn SA, Stramer SL, Strong DM, Caglioti S, Wright DJ, et al. A new

strategy for estimating risks of transfusion-transmitted viral infections based on rates

of detection of recently infected donors. Transfusion. 2005;45(2):254-64. DOI: 10.1111/

j.1537-2995.2004.04215.x

[155] Dodd RY. Current risk for transfusion transmitted infections. Curr Opin Hematol.

2007;14(6):671-6. DOI: 10.1097/MOH.0b013e3282e38e8a

[156] Burnouf T, Radosevich M. Reducing the risk of infection from plasma products: specific

preventative strategies. Blood Rev. 2000;14(2):94-110. DOI: 10.1054/blre.2000.0129

[157] Horowitz B, Wiebe ME, Lippin A, Stryker MH. Inactivation of viruses in labile blood

derivatives. I. Disruption of lipid-enveloped viruses by tri(n-butyl)phosphate detergent

combinations. Transfusion. 1985;25(6):516-22. DOI: 10.1046/j.1537-2995.1985.25686071

422.x

Advances in Treatment of Hepatitis C and B280



[158] Dichtelmuller HO, Biesert L, Fabbrizzi F, Gajardo R, Groner A, von Hoegen I, et al.

Robustness of solvent/detergent treatment of plasma derivatives: a data collection from

Plasma Protein Therapeutics Association member companies. Transfusion. 2009;49

(9):1931-43. DOI: TRF02222 [pii]10.1111/j.1537-2995.2009.02222.x

[159] Burnouf T. Modern plasma fractionation. Transfus Med Rev. 2007;21(2):101-17. DOI:

10.1016/j.tmrv.2006.11.001

[160] Burnouf T, Radosevich M. Nanofiltration of plasma-derived biopharmaceutical prod-

ucts. Haemophilia. 2003;9(1):24-37. DOI: 10.1046/j.1365-2516.2003.00701.x

[161] Reesink HW, Panzer S, McQuilten ZK, Wood EM, Marks C, Wendel S, et al. Pathogen

inactivation of platelet concentrates. Vox Sanguinis. 2010;99(1):85-95. DOI: 10.1111/

j.1423-0410.2010.01319.x

[162] Horowitz B, Bonomo R, Prince AM, Chin SN, Brotman B, Shulman RW. Solvent/deter-

gent-treated plasma: a virus-inactivated substitute for fresh frozen plasma. Blood.

1992;79(3):826-31.

[163] Piet MP, Chin S, Prince AM, Brotman B, Cundell AM, Horowitz B. The use of tri(n-butyl)

phosphate detergent mixtures to inactivate hepatitis viruses and human immunodefi-

ciency virus in plasma and plasma's subsequent fractionation. Transfusion. 1990;30

(7):591-8. DOI: 10.1046/j.1537-2995.1990.30790385516.x

[164] El-Ekiaby M, SayedMA, Caron C, Burnouf S, El-Sharkawy N, Goubran H, et al. Solvent-

detergent filtered (S/D-F) fresh frozen plasma and cryoprecipitate minipools prepared in

a newly designed integral disposable processing bag system. Transfus Med. 2010;20

(1):48-61. DOI: 10.1111/j.1365-3148.2009.00963.x

[165] Chou ML, Burnouf T, Chang SP, Hung TC, Lin CC, Richardson CD, et al. TnBPTriton X-

45 treatment of plasma for transfusion efficiently inactivates hepatitis C virus. PLoS

One. 2015;10(2):e0117800. DOI: 10.1371/journal.pone.0117800

[166] Mohr H, Pohl U, Lambrecht B, Wieding JU, Schmitt H. [Methylene blue/light treatment

of virus inactivated human plasma: production and clinical experience]. Infusionsther

Transfusionsmed. 1993;20 Suppl 2:19-24.

[167] Steinmann E, Gravemann U, Friesland M, Doerrbecker J, Muller TH, Pietschmann T,

et al. Two pathogen reduction technologies–methylene blue plus light and shortwave

ultraviolet light–effectively inactivate hepatitis C virus in blood products. Transfusion.

2013;53(5):1010-8. DOI: 10.1111/j.1537-2995.2012.03858.x

[168] de Alarcon P, Benjamin R, Dugdale M, Kessler C, Shopnick R, Smith P, et al. Fresh frozen

plasma prepared with amotosalen HCl (S-59) photochemical pathogen inactivation:

transfusion of patients with congenital coagulation factor deficiencies. Transfusion.

2005;45(8):1362-72. DOI: 10.1111/j.1537-2995.2005.00216.x

[169] Hornsey VS, Drummond O, Morrison A, McMillan L, MacGregor IR, Prowse CV. Path-

ogen reduction of fresh plasma using riboflavin and ultraviolet light: effects on plasma

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

281



coagulation proteins. Transfusion. 2009;49(10):2167-72. DOI: 10.1111/j.1537-2995.2009.

02272.x

[170] Ruane PH, Edrich R, Gampp D, Keil SD, Leonard RL, Goodrich RP. Photochemical

inactivation of selected viruses and bacteria in platelet concentrates using riboflavin

and light. Transfusion. 2004;44(6):877-85. DOI: 10.1111/j.1537-2995.2004.03355.x

[171] Dodd RY, Moroff G, Wagner S, Dabay MH, Dorfman E, George V, et al. Inactivation of

viruses in platelet suspensions that retain their in vitro characteristics: comparison of

psoralen-ultraviolet A and merocyanine 540-visible light methods. Transfusion. 1991;31

(6):483-90. DOI: 10.1046/j.1537-2995.1991.31691306242.x

[172] Lin L, Cook DN, Wiesehahn GP, Alfonso R, Behrman B, Cimino GD, et al. Photochem-

ical inactivation of viruses and bacteria in platelet concentrates by use of a novel psora-

len and long-wavelength ultraviolet light. Transfusion. 1997;37(4):423-35. DOI: 10.1046/

j.1537-2995.1997.37497265344.x

[173] Attia MA. Prevalence of hepatitis B and C in Egypt and Africa. Antivir Ther. 1998;3

(Suppl 3):1-9.

[174] Reker C, Islam KM. Risk factors associated with high prevalence rates of hepatitis C

infection in Egypt. Int J Infect Dis. 2014. DOI: 10.1016/j.ijid.2014.02.003

[175] Marschner S, Goodrich R. Pathogen reduction technology treatment of platelets, plasma

and whole blood using riboflavin and UV light. Transfus Med Hemother. 2011;38(1):8-

18. DOI: 10.1159/000324160

[176] Allain JP, Owusu-Ofori AK, Assennato SM, Marschner S, Goodrich RP, Owusu-Ofori S.

Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-

transmitted malaria in endemic regions: the African Investigation of the Mirasol System

(AIMS) randomised controlled trial. Lancet. 2016;387(10029):1753-61. DOI: 10.1016/

S0140-6736(16)00581-X

[177] Stefanutti C, Di Giacomo S, Mareri M, De Lorenzo F, D'Alessandri G, Angelico F, et al.

Immunoadsorption apheresis (Selesorb) in the treatment of chronic hepatitis C virus-

related type 2 mixed cryoglobulinemia. Transfus Apher Sci. 2003;28(3):207-14. DOI: 10.

1016/S1473-0502(03)00055-7

[178] Schettler V, Monazahian M, Wieland E, Ramadori G, Grunewald RW, Thomssen R, et al.

Reduction of hepatitis C virus load by H.E.L.P.-LDL apheresis. Eur J Clin Invest. 2001;31

(2):154-5. DOI: 10.1046/j.1365-2362.2001.00758.x

[179] Schettler V, Monazahian M, Wieland E, Thomssen R, Muller GA. Effect of heparin-

induced extracorporeal low-density lipoprotein precipitation (HELP) apheresis on hep-

atitis C plasma virus load. Ther Apher. 2001;5(5):384-6. DOI: 10.1046/j.1526-0968.2001.

00374.x

[180] Taniguchi M, Furukawa H, Shimamura T, Suzuki T, Yamashita K, Ota M, et al. Impact of

double-filtration plasmapheresis in combination with interferon and ribavirin in living

Advances in Treatment of Hepatitis C and B282



donor liver transplant recipients with hepatitis C. Transplantation. 2006;81(12):1747-9.

DOI: 10.1097/01.tp.0000226075.04938.43

[181] Fujiwara K, Kaneko S, Kakumu S, Sata M, Hige S, Tomita E, et al. Double filtration

plasmapheresis and interferon combination therapy for chronic hepatitis C patients with

genotype 1 and high viral load. Hepatol Res. 2007;37(9):701-10. DOI: 10.1111/j.1872-

034X.2007.00117.x

[182] Ishikawa T, Higuchi K, Kubota T, Seki K, Honma T, Yoshida T, et al. Complete early

virological response was highly achieved by double filtration plasmapheresis plus

IFN-beta induction therapy for HCV-1b patients with relapse or no response after

previous IFN therapy. Ther Apher Dial. 2011;15(4):400-5. DOI: 10.1111/j.1744-

9987.2011.00965.x

[183] Mednikov RV, Rabinovich VI, Kizlo SN, Belyakov NA, Sokolov AA. Double Filtration

Plasmapheresis in Treatment of Patients With Co-Infection of Hepatitis C and Human

Immunodeficiency Virus. Ther Apher Dial. 2016. DOI: 10.1111/1744-9987.12396

[184] Sugimoto K, Kim SR, El-Shamy A, Imoto S, Fujioka H, Kim KI, et al. Outcome of double-

filtration plasmapheresis plus interferon treatment in nonresponders to pegylated inter-

feron plus ribavirin combination therapy. Dig Dis. 2013;31(5-6):434-9. DOI: 10.1159/

000355241

[185] Kaneko S, Sata M, Ide T, Yamashita T, Hige S, Tomita E, et al. Efficacy and safety

of double filtration plasmapheresis in combination with interferon therapy for

chronic hepatitis C. Hepatol Res. 2010;40(11):1072-81. DOI: 10.1111/j.1872-

034X.2010.00708.x

[186] Radosevich M, Burnouf T. Intravenous immunoglobulin G: trends in production

methods, quality control and quality assurance. Vox Sang. 2010;98(1):12-28. DOI:

10.1111/j.1423-0410.2009.01226.x

[187] Sawyer LA. Antibodies for the prevention and treatment of viral diseases. Antiviral Res.

2000;47(2):57-77. DOI: 10.1016/S0166-3542(00)00111-X

[188] Congly SE, Burak KW, Coffin CS. Hepatitis B immunoglobulin for prevention of hepa-

titis B virus infection and recurrence after liver transplantation. Expert Rev Clin

Immunol. 2011;7(4):429-36. DOI: 10.1586/eci.11.30

[189] Piazza M, Sagliocca L, Tosone G, Guadagnino V, Stazi MA, Orlando R, et al. Prophylaxis

of hepatitis C with intramuscular immunoglobulin: clinical and economic appraisal.

BioDrugs. 1999;12(4):291-300. DOI: 10.2165/00063030-199912040-00006

[190] Borgia G. Specific immunoglobulin against HCV: new perspectives. IDrugs. 2004;7

(6):570-4.

[191] Vanwolleghem T, Bukh J, Meuleman P, Desombere I, Meunier JC, Alter H, et al. Poly-

clonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-

chimeric mice from infection with a homologous hepatitis C virus strain. Hepatology.

2008;47(6):1846-55. DOI: 10.1002/hep.22244

Strategies to Preclude Hepatitis C Virus Entry
http://dx.doi.org/10.5772/65470

283



[192] ClinicalTrials.gov: A service of the U.S. National Institutes of Health. Randomized Phase

II Study of Hepatitis C Immune Globulin Intravenous (Human), Civacir(TM), in Liver

Transplantation [Internet]. 2007. updated May 7 2012. Available from: https://

clinicaltrials.gov/ct2/show/study/NCT00473824 [Accessed: 2016-08-15]

[193] ClinicalTrials.gov: A service of the U.S. National Institutes of Health. CivacirW Poly-

clonal Immune Globulin (IgG) to Prevent Hepatitis C Virus (HCV) Recurrence in Liver

Transplant Patients [Internet]. 2013. updated April 20 2016. Available from: https://

www.clinicaltrials.gov/ct2/show/NCT01804829 [Accessed: 2016-08-15]

Advances in Treatment of Hepatitis C and B284


